Новости северск аэс

Новости в северском.

Курсы валюты:

  • «Росатом» приступил к строительству первого в мире безопасного ядерного реактора
  • В Томской области началось строительство высоковольтной ЛЭП к будущей экспериментальной АЭС
  • Энергоблок №3 Калининской АЭС выведут в плановый капитальный ремонт с модернизацией оборудования
  • Кассетные бомбы и ФАБы сносят оборону врага у Артёмовска и Северска (ВИДЕО) | Русская весна
  • Одна мысль про “В «РОСАТОМЕ» объяснили, почему АЭС в Северске пока не построят”
  • Последние новости (Томск)

Для выдачи мощности реактора нового поколения БРЕСТ-300 в Северске построят новые ЛЭП

Об этом сообщили в пресс-службе «Росатома». На этом объекте уникально все: каждый производственный участок —это решение технологической задачи, за которую еще никто в мире не брался», — сказал глава госкорпорации Алексей Лихачев.

Это важное событие открывает новую эру в развитии ядерной энергетики и подтверждает ведущую роль России в этой области. Тестирование нового оборудования позволит улучшить процессы производства ядерного топлива и повысить его эффективность. Это важный шаг на пути к созданию более безопасных и экологически чистых источников энергии, которые будут способствовать устойчивому развитию общества.

Новое топливо В рамках проекта Топливная компания разработала принципиально новый вид ядерного топлива — смешанное нитридное уран-плутониевое топливо, которое носит название «СНУП». Параллельно продолжается работа по созданию второго поколения твэлов с более высоким уровнем выгорания, которые должны использоваться, когда производство СНУП-топлива перейдет на этап рефабрикации. Технологии переработки облученного топлива так же важны для атомной энергетики будущего, как и новые реакторы и ранее не существовавшие виды топлива. Именно они помогут сделать атомную энергетику не только экономически доступной и безопасной, но и практически безотходной в своей производственной цепочке и жизненном цикле.

И, таким образом, эта замкнутая система станет практически независимой от внешних поставок сырья». Идеи о замыкании ядерного топливного цикла были высказаны советским физиком Александром Лейпунским еще на заре атомной промышленности. А теперь наша страна открывает всему миру новую эру в использовании атомной энергии: экономически эффективной, абсолютно безопасной и экологически чистой. Президент Российской академии наук Александр Сергеев считает, что «строительство БРЕСТа знаменует собой начало новой эпохи в мировой ядерной энергетике». Строительство комплекса должно завершиться к 2030 году. А в будущем установка может стать даже объектом экспорта. В реализации проекта принимают участие более 30 организаций и более полутора тысяч ученых, инженеров и конструкторов. Главная заслуга принадлежит именно людям, которые трудились над созданием уникального проекта.

Две реки, одна из которых судоходная, близость Томска с его выходом на Транссибирскую магистраль — потенциальные решения для поставки оборудования и для охлаждения атомных реакторов. Больше того — в довоенное время здесь располагался детский исправительный лагерь «Чекист», в годы войны в производственных корпусах работал филиал Харьковского машиностроительного завода. А это не только более-менее подходящие цеха, но еще и небольшой жилой поселок, водозаборная станция, подведенная ЛЭП, телефонная связь и даже собственная узкоколейка. Вердикт ГСПИ-11 был положительным, и сразу после появления постановления Совета Министров крайне оперативно развернулась большая стройка. Научным руководителем будущего комбината был назначен Исаак Константинович Кикоин, который в группе Курчатова отвечал за диффузионное обогащение урана и только что обеспечил сдачу в эксплуатацию обогатительного комбината в Свердловске-44 Новоуральске. Менее полугода потребовалось ГСПИ-11 на разработку комплексного проекта — строить предстояло одновременно вспомогательные предприятия, жилье, дороги и объекты комбината. Летом 1949 на площадку стали прибывать строительные батальоны и заключенные, к концу года работы вели уже 15 тысяч человек, из которых почти 11 тысяч — заключенные. Поскольку истории о том, как «беспощадные надсмотрщики измывались над бесправными каторжанами, которые гибли на атомных стройках просто сотнями тысяч» бесконечно кочуют по просторам всевозможных сочинителей, остановимся чуточку подробнее на том, как все это было организовано в реальности. Прежде всего, на общестроительные работы Спецкомитета никогда не попадали осужденные по «политической» статье 58 УК — только получившие сроки за бытовые и хозяйственные преступления, причем только из числа тех, кому сидеть оставалось не менее трех лет, «текучка кадров» никого не устраивала.

Лагерей было несколько — на 2-3 тысячи человек каждый, и в каждом строились: столовая, клуб с библиотекой, школа-десятилетка, здравпункт, а уже в 1950-м году здесь появилось еще и профтехучилище. К началу 1953 года на строительстве комбината-816 было задействовано 34 тысячи заключенных, которые практически всем составом подпали под действие амнистии марта 1953 года. Ударная секретная стройка Комбинат начинался с прокладки дорог, строительства жилья, но одновременно велся огромный объем промышленного строительства — были возведены кирпичный, бетонный и арматурный заводы, одновременно строились ТЭЦ и котельные, в Томске строили вторую очередь ГРЭС. Терять время на ожидание бульдозеров и экскаваторов было нельзя — сроки были предельно сжатыми. Завод «И» для комбината-816 был головным, поэтому его строительство и было начато первым, и в те же сроки было начато возведение крупной береговой насосной станции. Воды требовалось много — для строящихся ТЭЦ, для самих строителей, для охлаждения реактора, который еще только предстояло создать, для диффузионного, сублиматного, радиохимического и химико-металлургического заводов. Реакторы Северска строились для наработки оружейного плутония, радиохимический завод предназначался для его химического выделения из облученного урана. Уран, обогащенный на диффузионном заводе его название — завод разделения изотопов, оказалось более точным и более долговечным, поскольку сохранилось и после перехода на газовые центрифуги. Химико-металлургический завод — предприятие, на котором из урана и плутония оружейной чистоты производились детали изделий, окончательная «сборка» которых проходила в КБ-11.

Этим химико-металлургический завод Северска принципиально отличался от завода с таким же названием в составе «Маяка» — на Урале работали только с плутонием. О том, как строились и какими были ядерные реакторы Северска, мы писали подробно, поэтому в этот раз подробнее рассмотрим историю и настоящее остальных заводов СХК. Логика структуры СХК Логика структуры комбината, который был возведен на берегу Томи определялась производственными задачами, которые поставил перед ним Спецкомитет. Это химическое соединение обладает очень полезным физическим свойством — при нагреве свыше 56 градусов Цельсия этот порошок превращается в газ, минуя стадию жидкости. Для обеспечения работы реакторного, сублиматного и диффузионного заводов требуется целый ряд вспомогательных подразделений — контроля, автоматики, блокировок, систем защиты, очистных сооружений, лабораторий измерительных, исследовательских и контролирующих, мастерские по ремонту оборудования и контрольно-измерительной аппаратуры. После того, как получены химические соединения урана и плутония проектного изотопного состава, эти химические элементы нужно превратить в металлы, которые предстоит обрабатывать на литейном механическом производства, то есть еще одной структурной единицей СХК должен был стать химико-металлургический завод. Немало, не так ли? Учтем, что одновременно с возведением всех этих заводов, цехов химического производства сублиматный завод требовал отдельных цехов, в которых производился фтористый водород, радиохимический завод требовал производства плавиковой и серной кислоты, реакторным цехам требовался жидкий азот и так далее строились склады, жилье для персонала, вся социальная городская инфраструктура растущего города Северск — школы, больницы, библиотеки, стадионы и спортивные клубы и так далее.

От БН до БРЕСТа: В Томской области начали монтаж ядерного реактора четвертого поколения

Ключевым проектом в энергетике региона является строительство атомной электростанции (АЭС) мощностью 300 МВт в ЗАТО Северск, на площадке Сибирского химического комбината. Энергоблок строят в закрытом городе Северск Томской области. В тестовом режиме запущен модуль по производству ядерного топлива, сообщает РИА Новости. Топливо, отработавшее в реакторах существующих АЭС, может стать топливом для реакторов будущего. Прошло 37 лет с момента катастрофы, но территорию бывшей Чернобыльской АЭС продолжают исследовать. новости Афанасий.

Глава Росатома назвал Северск будущим центром мировых ядерных технологий

В Томской области началось строительство высоковольтной ЛЭП к будущей экспериментальной АЭС Росатом с 2011 года реализует на Сибирском Химическом комбинате в Северске проект «Прорыв», в рамках которого будет построен реактор, работающий в замкнутом топливном.
Северская АЭС: правдивы ли скандальные откровения заключенного под стражу замгендиректора СХК? Энергоблок строят в закрытом городе Северск Томской области. В основание энергоблока 8 июня залит первый бетон.

В Северске начали монтаж первого в мире быстрого реактора четвёртого поколения

В Северске Томской области на площадке строительства опытно-демонстрационного энергокомплекса на площадке АО «СХК» началась сборка гусеничного крана. первый в мире Perpetuum Mobile мощностью 300 МВт – АЭС с замкнутым. Открытый спортивно-творческий фестиваль «Северские зори» для людей с инвалидностью пройдет в Северске Томской области с 3 по 7 сентября 2018 года.

Под Томском запустят производство ядерного «топлива будущего»

Энергоблок строят в закрытом городе Северск Томской области. В основание энергоблока 8 июня залит первый бетон. Северске на площадке «Сибирского химического комбината» (СХК) госкорпорации «Росатом» стартовало строительство первого в мире энергоблока нового поколения. На опытно-демонстрационной площадке проекта «Прорыв» в городе Северск, Томская область, начались испытания уникального оборудования для производства инновационного ядерного. 4 апреля 2024 Новости В Росатоме изготовлено топливо для универсального атомного ледокола «Якутия» ПОДРОБНЕЕ.

Энергоблок №3 Калининской АЭС выведут в плановый капитальный ремонт с модернизацией оборудования

Казалось, что пределов для расширения использования АЭС нет. Но на самом деле они были — уран. Легководные реакторы, ставшие основой атомной энергетики, довольно капризные и малые — в качестве топлива они используют не самый распространённый в природе изотоп урана U-238, а гораздо более редкий U-235. Открытый ядерный топливный цикл Эта проблема была очевидна ещё на заре атомной отрасли, поэтому и решение её стали искать параллельно с развитием энергетических реакторов. В чём главная проблема легководных реакторов? Зато это могут сделать быстрые нейтроны, выделяющиеся при реакции деления. Но в легководном реакторе они быстро замедляются теплоносителем — водой, а кроме того, быстрые нейтроны гораздо менее эффективно запускают реакцию деления U-235. Классическая цепная реакция в легководном реакторе Решение? Заменяем теплоноситель на тот, который не будет замедлять нейтроны, делаем более плотное расположение топлива в реакторе, чтобы увеличить поток быстрых нейтронов и компенсировать их меньшую эффективность в процессе реакции с U-235.

В процессе захвата U-238 нейтронов от реакции деления U-235 будет нарабатываться Pu-239 плутоний. То есть в отработавшем топливе реактора на быстрых нейтронах можно добиться выхода делящегося вещества равного или большего, чем было загружено в него изначально. То есть реактор в процессе своей работы будет не просто выжигать уран, но и нарабатывать плутоний. Неклассическая реакция в реакторе на быстрых нейтронах Кроме вполне очевидного военного потенциала, данное решение открывало и совершенно новый путь: если можно бесполезный U-238 превращать в плутоний и потом использовать его в обычных легководных реакторах, то можно получить почти неисчерпаемый запас топлива для реакторов — замкнуть ядерный топливный цикл ЗЯТЦ. Такая двухчастная схема атомной энергетики будущего виделась в 60-70е перспективной и необходимой. Сказать легко — сделать оказалось сложно, так как перед учёными встали сразу несколько фундаментальных проблем. Натрий начинает и заходит в тупик Первая и главная проблема — это теплоноситель. Вода чрезвычайно удобна, так как с ней человечество научилось давно работать.

А вот для реакторов на быстрых нейтронах выбор был из веществ, работать с которыми, мягко говоря, совсем неудобно. Главные требования к новому теплоносителю были: хорошие нейтронные характеристики, текучесть и низкая вязкость в жидком виде, как можно меньшая температура плавления и малое парообразование. Кандидатов было немного, но победу в 50-х годах одержал химически активный натрий. Стоимость в долларах уже значительно устарела информация на 2002 год , но относительный порядок величин представить даёт Почему натрий? Его реально много в земной коре, он не вступает в реакцию с нержавеющей сталью и цирконием в отличии от ртути и калия. При этом из всех конкурентов он обладает одной из лучшей нейтронной активностью. Почти идеал, если забыть о том, что натрий имеет свойство воспламеняться и взрываться при контакте с водой и воздухом. Тем не менее из всех вариантов теплоносителей, отрабатывавшихся на экспериментальных установках, именно он оказался единственным кандидатом для энергетических реакторов на быстрых нейтронах, в частности отечественных реакторов типа БН.

Высокая химическая активность натрия потребовала специальных технических решений, которые, при переходе от бумажной концепции к металлу, вызвали сильное удорожание проектов. Во-первых, требовалось изолировать натриевый контур охлаждения от водяного, так как их протечка могла привести к пожару или взрыву внутри реактора. Для этого пришлось делать промежуточных контур, разделяющий натрий и воду и снижающий КПД реактора, а также удорожавший конструкцию. Требование недопуска контакта натрия и воздуха заставило продумывать и хитрую систему замены отработанного топлива с помощью роботизированного комплекса, что ещё больше усложнило конструкцию реактора. Кроме того, пришлось решать проблему и загрязнения самого натрия в процессе работы реактора — обычными фильтрами тут не обойтись, поэтому создали так называемые «холодные ловушки». В итоге проект, который на бумаге выглядел не дороже легководника при переходе с кульманов на площадку строительства, значительно прибавил в стоимости и потерял в рентабельности. Реактор типа БН — сложно, дорого, с туманными перспективами Второй проблемой стала переработка топлива.

Окончательное решение о месте размещения АЭС планировалось принять в начале 2009 года [4] , однако в связи с неначавшимся финансированием процесс затянулся. На ноябрь-декабрь 2008 года было намечено проведение общественных слушаний по вопросу строительства АЭС, однако прошли они только в Северске, куда большинство томичей не имеет возможности въезда [6]. Власти пытаются изменить общественное мнение в сторону поддержки АЭС, проводя агитационные мероприятия, в частности встречи представителей руководителей научных учреждений Томска со СМИ [7]. Некоторые экологические проблемы не разъяснены до конца, так, например, не уточняются вопросы утилизации реактора по истечении срока эксплуатации, перевозки ядерного топлива и облученного ядерного топлива через город Томск единственная железнодорожная ветка проходит через город, разделяя его практически пополам и некоторые другие [8].

В шахту реактора погрузили первую часть корпуса — нижний ярус ограждающей конструкции. В «Росатоме» отметили, что, в отличие от предшественников, БРЕСТ-ОД-300 будет обеспечивать себя основным энергетическим компонентом — плутонием-239 — самостоятельно.

Под Томском планировали построить АЭС мощностью 2,3 гигаватта. В непосредственной близости от города должен был появиться опытный демонстрационный реактор с промышленной мощностью. Обещали, что он будет совершенно нового для России типа. Впрочем, арестованный в 2012 году директор расположенного в Северске Сибирского химического комбината Владимир Короткевич в открытом письме сообщил, что «Росэнергоатом» не намерен строить АЭС под Томском. Кроме того, эксперты «Системного оператора» Единой энергосистемы России дали заключение об отсутствии необходимости в новом источнике генерации электроэнергии. Так что судьба этого проекта пока под вопросом, тем более, что и большинство экологов против. В Японии авария случилась с реактором не чернобыльского типа. В России вполне вероятны еще более опасные аварии, чем в Японии», — уверен директор Сибирского экологического агентства Алексей Торопов.

На площадке Росатома в Северске Томской области запустят производство СНУП-топлива

Современные ядерные реакторы соответствуют требованиям безопасности, но требуют совершенствования и использования новых видов конструкционных материалов, новых технологий безопасности труда обслуживающего персонала, дополнительного контроля за ядерными отходами и других систем контроля разных видов безопасности. Поэтому ввод в эксплуатацию современных АЭС становится более сложным, продолжительным и капиталоемким процессом. Анализ современных региональных тенденций развития атомной энергетики в стране показывает, что эксплуатационная безопасность энергоблоков должна сочетаться с ресурсной безопасностью АЭС. Увеличение затрат в себестоимости продукции на обеспечение разных видов безопасности АЭС должна компенсироваться ростом эффективности технологического процесса за счет внедрения системных, информационных, технических инноваций и снижения затрат на топливную составляющую. При оценке рентабельности АЭС необходимо более детально учитывать аспекты природоохранной деятельности и затраты на демонтаж ядерных установок через 25-30 лет [1]. Современная стратегия развития атомной энергетики должна опираться на использование реакторов как тепловых, так и на быстрых нейтронах. В России экстенсивная модель развития ядерной энергетики требует дополнительного решения вопросов: безопасности топливного цикла, ресурсной безопасности, безопасности ядерных технологий, утилизационной безопасности. Современные ядерные реакторы как элементы крупномасштабных энерготехнологий должны соответствовать концепции «естественной безопасности» за счет использования технических решений для снижения эксплуатационной составляющей и рисков аварий. Реализация этой концепции при строительстве Северской АЭС предполагает необходимость оборудования нового поколения, систему экологического мониторинга и экологических стандартов. Для решения проблемы энергодефицитности Томской области с 2008 года реализуется целевая региональная программа «Энергетическая стратегия Томской области на период до 2020 года».

Основные ее цели следующие: обеспечение энергобезопасности области, переход от энергодефицитной территории к энергоизбыточной; создание условий для перевода области на энергосберегающий путь развития и организация системы рационального использования ТЭР в энергетике и других отраслях хозяйственного комплекса; сооружение новых и замещающих электрических и тепловых мощностей с внедрением инновационных технологий; реализация проектов использования попутного газа нефтяных месторождений для производства электроэнергии; формирование стимулов энергосбережения на производстве, транспорте и при потреблении тепловой и электрической энергии, природного газа. Повысить уровень удовлетворения потребления электроэнергии в Томской области можно путем строительства АЭС. Целью строительства Северской АЭС является развитие производства электрической энергии, обеспечение устойчивого покрытия роста спроса на базисную электроэнергию по прогнозам топливно-энергетического баланса ОЭС Сибири и Урала на долгосрочный период [2].

Это связано и с обеспечением дополнительной безопасности, и с большей нагрузкой здания реактора. Как идет подготовка остальных блоков к бетонированию, мы увидели своими глазами, побывав на строительной площадке. В котловане площадью в шесть футбольных полей работало несколько бригад.

Возле уже забетонированных блоков фундаментной плиты толщиной в два с половиной метра трое строителей соединяли специальными муфтами мощные, в 40 мм шириной, прутья арматуры. Мы знаем, что строим и какие требования предъявляются к этому объекту. На этом шестом блоке процесс армирования только начался, а вот на первом он приближался к финалу. Со стороны блок напоминал большую клетку, внутри которой было еще много-много других клеток поменьше — настолько плотно она была напичкана арматурой. В узких коридорах туда-сюда ходили рабочие с материалом для армокаркаса, вспыхивала ярким белым светом сварка, наверху строители обвязывали крепкой проволокой металлические прутья. Сергей работает в «Титане-2» уже шестой год.

Компания надежная, зарплата стабильная, коллектив дружный. До этого он строил объекты в Сосновом Бору, а сейчас приехал в Северск. Будет работать и на отходах атомного производства, которые нигде не используются. Это экономично, экологично, безопасно. За ним будущее.

Подрядчику было выдано предписание его отремонтировать, однако напомню, что речь идет не о рядовом здании, а о строительстве атомного реактора. В конце 2018 года инвентаризационная комиссия обнаружила частичное отсутствие комплектующих.

Стоимость утраченного оборудования составила 2,1 млн. В ходе выездной проверки объекта северским отделом инспекции ядерной и радиационной безопасности на промышленно-техническом центре ПТЦ и закрытом административно-территориальном образовании ЗАТО Межрегионального территориального управления по надзору за ядерной и радиационной безопасностью Сибири и Дальнего Востока Ростехнадзора возникли серьезные вопросы к прочности несущих конструкций здания. Для проверки надежности понадобились сложные методы контроля. Фактически, строительство в стадии заморозки.

Первые проработки таких реакторов были ещё в 50-е, но натолкнулись на то, что существующие конструкционные материалы неспособны выдерживать условия работы со свинцовым теплоносителем. Одна из первых проблем — сам теплоноситель. Решение этой проблемы требует разработки новых стальных сплавов. Кроме того, неизвестно поведение свинцовой коррозии и степень нейтронной активации свинца при длительной работе.

Расплавленный свинец хоть и не вступает в мгновенную бурную реакцию с водой, но при попадании в него воды может случиться «паровой взрыв». Исследования например вот это позволяют предполагать, что даже при разрыве трубки теплоносителя и попадании струи воды в свинец, взрыва случиться не должно. Тем не менее гарантий, что такого не произойдёт в реальном реакторе, нет. Высокая температура плавления свинца потребовала разработки специальной системы разогрева реактора который займёт несколько месяцев! С другой стороны считается, что при аварии с прорывом теплоносителя свинец просто застынет и тем самым позволит минимизировать ущерб. Оксиды урана и плутония всплывают в свинце, что недопустимо по существующим нормам. Для решения проблемы пришлось разрабатывать нитридное топливо для реактора. Никто никогда такого топлива не делал.

Судя по информации из открытых источников, пока нитридное топливо всё ещё экспериментальная технология и имеет немало детских болезней. Решение избавиться от промежуточного контура между водой и теплоносителем реактора привело к необычному решению: колонку парогенератора решили погрузить напрямую в расплавленный свинец. Решение, мягко говоря, экзотичное. Во-первых, неизвестно как себя поведёт корпус парогенератора при длительном нахождении в расплаве свинца. Во-вторых, ремонт парогенератора и некоторые аварийные действия с ним возможны только при использовании роботизированного комплекса, так как работа человека вблизи расплава свинца, требует специальной термостойкой экипировки. В-третьих, ремонт будет осложнён наведённой от свинца радиацией в конструкциях парогенератора. В-четвёртых, возможно радиационное загрязнение воды в парогенераторе и от неё всего насосно-турбинного оборудования. Как решили эти проблемы, неизвестно.

Выглядит интересно и необычно, но насколько эффективно — неясно Можно заметить, какое количество проблем а перечислены далеко не все , новых подходов и решений требует БРЕСТ. Это действительно прорывной проект, который в случае успеха может стать такой же вехой для ядерной энергетики, как ITER— для термояда. Но цена провала тут гораздо выше. Всё дело в амбициях и ресурсах. Перспектива, которая может стать собственным гробовщиком Проект БРЕСТ рождался, наверное, в самое неудачное время, какое только было для отечественной атомной индустрии — в 90е: денег нет, перспективы туманные, на государственном уровне всем просто не до атомки. Так как денег было всё равно мало, а проект требовал масштабной проработки, то приходилось выбирать тот вариант строительства опытного реактора, который дал бы максимальную отдачу. Обычно в качестве демонстраторов технологии используют реакторы небольшой мощности — 10-50 МВт электрических. Но при такой мощности ни продемонстрировать концепцию «естественной безопасности», ни замкнутого топливного цикла не получится, так как достигнуть коэффициента воспроизводства даже в 1 на столь маленьком образце не представляется возможным.

При этом денег на разработку и сооружение реактор малой мощности потребует не на порядок больше, чем более мощный вариант. Проект, почти полностью сотканный из новых непроверенных решений, предлагалось построить без отработки элементов проекта в меньшем масштабе. В случае успеха — прорыв в новую эру, а вот в случае провала велик шанс, что, при имеющейся в отрасли конкуренции, всё направление на долгие годы будет дискредитировано. Тем не менее ставка была сделана, и работа проектантов закипела.

В Томской области началось строительство высоковольтной ЛЭП к будущей экспериментальной АЭС

Сотни тысяч человек участвовали в ликвидации катастрофы. В их числе семьсот северчан — представителей Сибирского химического комбината, других городских предприятий и организаций. Все они — люди невероятной силы духа, воли и мужества, чей вклад в контроль за ситуацией, в выполнение колоссального объема спасательных и строительных работ невозможно переоценить. Мы всегда будем помнить о горьких уроках Чернобыля, о героях-участниках уже далеких и в то же время таких близких многим из нас событий.

Она обеспечивает удержание теплоизоляционного бетона, формирует дополнительный локализующий барьер защиты, который следует за границей контура теплоносителя. На ее поверхности температура должна быть не больше 60 градусов, а радиационный фон фактически равен естественному. Северск Томской обл.

Установлена стальная опорная плита реактора общим весом 165 тонн. Ограждающая конструкция — внешняя часть корпуса реакторной установки. Она обеспечивает удержание теплоизоляционного бетона, формирует дополнительный локализующий барьер защиты, который следует за границей контура теплоносителя.

Заливка первого бетона ректора БРЕСТ-300 в Северске Страсти по замкнутому циклу В 60-е годы 20 века развитие атомной энергетики шло семимильными шагами. К началу 60-х в мире было всего 3 атомных энергетических энергоблока: первая АЭС в мире, сооружённая в Обнинске, что выдавала в сеть всего 5 МВт; первая коммерческая, сооружённая в британском Колдер-Холле, уже 46 МВт электрической мощности; и первая американская, пущенная через год — всего 60 МВт.

Казалось, что пределов для расширения использования АЭС нет. Но на самом деле они были — уран. Легководные реакторы, ставшие основой атомной энергетики, довольно капризные и малые — в качестве топлива они используют не самый распространённый в природе изотоп урана U-238, а гораздо более редкий U-235. Открытый ядерный топливный цикл Эта проблема была очевидна ещё на заре атомной отрасли, поэтому и решение её стали искать параллельно с развитием энергетических реакторов. В чём главная проблема легководных реакторов?

Зато это могут сделать быстрые нейтроны, выделяющиеся при реакции деления. Но в легководном реакторе они быстро замедляются теплоносителем — водой, а кроме того, быстрые нейтроны гораздо менее эффективно запускают реакцию деления U-235. Классическая цепная реакция в легководном реакторе Решение? Заменяем теплоноситель на тот, который не будет замедлять нейтроны, делаем более плотное расположение топлива в реакторе, чтобы увеличить поток быстрых нейтронов и компенсировать их меньшую эффективность в процессе реакции с U-235. В процессе захвата U-238 нейтронов от реакции деления U-235 будет нарабатываться Pu-239 плутоний.

То есть в отработавшем топливе реактора на быстрых нейтронах можно добиться выхода делящегося вещества равного или большего, чем было загружено в него изначально. То есть реактор в процессе своей работы будет не просто выжигать уран, но и нарабатывать плутоний. Неклассическая реакция в реакторе на быстрых нейтронах Кроме вполне очевидного военного потенциала, данное решение открывало и совершенно новый путь: если можно бесполезный U-238 превращать в плутоний и потом использовать его в обычных легководных реакторах, то можно получить почти неисчерпаемый запас топлива для реакторов — замкнуть ядерный топливный цикл ЗЯТЦ. Такая двухчастная схема атомной энергетики будущего виделась в 60-70е перспективной и необходимой. Сказать легко — сделать оказалось сложно, так как перед учёными встали сразу несколько фундаментальных проблем.

Натрий начинает и заходит в тупик Первая и главная проблема — это теплоноситель. Вода чрезвычайно удобна, так как с ней человечество научилось давно работать. А вот для реакторов на быстрых нейтронах выбор был из веществ, работать с которыми, мягко говоря, совсем неудобно. Главные требования к новому теплоносителю были: хорошие нейтронные характеристики, текучесть и низкая вязкость в жидком виде, как можно меньшая температура плавления и малое парообразование. Кандидатов было немного, но победу в 50-х годах одержал химически активный натрий.

Стоимость в долларах уже значительно устарела информация на 2002 год , но относительный порядок величин представить даёт Почему натрий? Его реально много в земной коре, он не вступает в реакцию с нержавеющей сталью и цирконием в отличии от ртути и калия. При этом из всех конкурентов он обладает одной из лучшей нейтронной активностью. Почти идеал, если забыть о том, что натрий имеет свойство воспламеняться и взрываться при контакте с водой и воздухом. Тем не менее из всех вариантов теплоносителей, отрабатывавшихся на экспериментальных установках, именно он оказался единственным кандидатом для энергетических реакторов на быстрых нейтронах, в частности отечественных реакторов типа БН.

Высокая химическая активность натрия потребовала специальных технических решений, которые, при переходе от бумажной концепции к металлу, вызвали сильное удорожание проектов. Во-первых, требовалось изолировать натриевый контур охлаждения от водяного, так как их протечка могла привести к пожару или взрыву внутри реактора. Для этого пришлось делать промежуточных контур, разделяющий натрий и воду и снижающий КПД реактора, а также удорожавший конструкцию. Требование недопуска контакта натрия и воздуха заставило продумывать и хитрую систему замены отработанного топлива с помощью роботизированного комплекса, что ещё больше усложнило конструкцию реактора. Кроме того, пришлось решать проблему и загрязнения самого натрия в процессе работы реактора — обычными фильтрами тут не обойтись, поэтому создали так называемые «холодные ловушки».

"Росатом" надеется ввести реактор "БРЕСТ" в 2028-2029 гг

Ожидается, что реактор заработает во второй половине 2020-х годов. По принципу естественной безопасности Перед началом официального старта мероприятия руководитель проектного направления «Прорыв», специальный представитель по международным и научно-техническим проектам госкорпорации «Росатом» Вячеслав Першуков рассказал журналистам, что конструкция реактора БРЕСТ-ОД-300 со свинцовым теплоносителем основана на принципах так называемой естественной безопасности. По его словам, интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения. Он уверен, что в будущем подобные установки должны сделать атомную энергетику «не только более безопасной, но и более экономически конкурентной по сравнению с наиболее эффективной тепловой электрогенерацией». Она также подчеркнула, что «сама идея проекта "Прорыв" — это не только новое поколение реакторов, но и новое поколение технологий ядерного топливного цикла». Все они искренне радовались этому стартовавшему в России инновационному и очень важному для всей атомной энергетики проекту. Открывший торжественную церемонию генеральный директор госкорпорации «Росатом» Алексей Лихачев сообщил, что благодаря переработке ядерного топлива, по сути, бесконечное количество раз ресурсная база атомной энергетики станет практически неисчерпаемой.

Она обеспечивает удержание теплоизоляционного бетона, формирует дополнительный локализующий барьер защиты, который следует за границей контура теплоносителя. На ее поверхности температура должна быть не больше 60 градусов, а радиационный фон фактически равен естественному. Северск Томской обл.

Помимо энергоблока, ОДЭК будет также включать объекты пристанционного ядерного топливного цикла - комплекс по производству смешанного уран-плутониевого нитридного топлива, а также модуль переработки облученного ядерного топлива.

Его цель - создание ядерно-энергетического комплекса, который позволит организовать пристанционный замкнутый ядерный топливный цикл, что даст возможность не только производить электричество, но и готовить из топлива, выгружаемого из активной зоны реактора, новое. Сообщалось, что общий объем инвестиций в проект "Прорыв" по состоянию на сентябрь 2022 года оценивался в 240 млрд рублей.

По его словам, интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения. Он уверен, что в будущем подобные установки должны сделать атомную энергетику «не только более безопасной, но и более экономически конкурентной по сравнению с наиболее эффективной тепловой электрогенерацией». Она также подчеркнула, что «сама идея проекта "Прорыв" — это не только новое поколение реакторов, но и новое поколение технологий ядерного топливного цикла». Все они искренне радовались этому стартовавшему в России инновационному и очень важному для всей атомной энергетики проекту. Открывший торжественную церемонию генеральный директор госкорпорации «Росатом» Алексей Лихачев сообщил, что благодаря переработке ядерного топлива, по сути, бесконечное количество раз ресурсная база атомной энергетики станет практически неисчерпаемой. При этом он подчеркнул и отсутствие для будущих поколений проблемы накопления отработавшего ядерного топлива.

Быстрая доставка новостей — в «Ленте дня» в Telegram.

В Северске начался монтаж реакторной установки IV поколения БРЕСТ-ОД-300

И волевым усилием спасти атомную отрасль, стоящую на пороге остановки всех АЭС, роспуска научных институтов и открытия атомных городов. В Северске Томской области, в закрытом городе с населением 112 тысяч человек, где в послевоенные годы реализовался советский атомный проект. Энергоблок строят в закрытом городе Северск Томской области. В основание энергоблока 8 июня залит первый бетон. Монтаж ядерного реактора БРЕСТ-300 начался в Северске с установки опорной плиты и первой части корпуса реакторной установки — нижнего яруса ограждающей конструкции.

Похожие новости:

Оцените статью
Добавить комментарий