Правильный ответ. сумма углов правильного18угольника равна(18-2)*180градусов=2880градусов.
Расчет углов правильных многоугольников - советы от нейросети
углы правильного 18угольника равны 160⁰. Центральный угол правильного n – угольника вычисляют по формуле. Центральным углом правильного многоугольника называется центральный угол его описанной окружности, опирающийся на его сторону. На рисунке изображена правильная четырехугольная пирамида SABCD. Укажите градусную меру угла между прямыми. Новости Новости Новости. РЕШЕНИЕ: Сумма углов правильного n-угольника равна (n-2)180° ⇒.
Найдите углы № 1081 ГДЗ Геометрия 9 класс Атанасян Л.С.
ВС - гипотенуза. Сумма всех углов треугольника равна 180 градусам. Erpgerrppgg 27 апр. Zxcv1234567899 27 апр. Sofiakotenko0 27 апр. Prokudina20 27 апр. При полном или частичном использовании материалов ссылка обязательна.
В комментариях, оставленных ниже, ознакомьтесь с вариантами ответов посетителей страницы. С ними можно обсудить тему вопроса в режиме on-line. Если ни один из предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой строке, расположенной вверху, и нажмите кнопку. Последние ответы Bdasa4766 27 апр. Решите задачу : Точка К делит отрезок MN на два отрезка? Danjarfild 27 апр. Юка33 27 апр. Katerina02061 27 апр.
Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах. Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык.
Описанная и вписанная окружности правильного многоугольника Докажем важную теорему о правильном многоуг-ке. Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Они пересекутся в некоторой точке О. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное 1 : Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка: Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность , ч. Продолжим рассматривать выполненное нами построение с описанной окружностью. Так как высоты проведены в равных треуг-ках, то и сами они равны: Теперь проведем окружность, центр которой находится в О, а радиус — это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности по признаку касательной. Стало быть, эта окружность является вписанной: Ясно, что такая окружность будет единственной вписанной. Так как расстояние от О до А1А2 — это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу? Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными. Ответ: не могут. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка. Формулы для правильного многоугольника Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь она обозначается буквой S и периметр обозначается как Р. Длина стороны многоуг-ка традиционно обозначается буквой an, где n— число сторон у многоуг-ка. Например a4— это сторона квадрата, a6— сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной — маленькой буквой r. Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу для многоуг-ка, в который вписана окружность.
Найдите угол правильного 12
Докажите что сумма внешних углов выпуклого многоугольника. Сумма углов п угольника. Сумма внешних углов n угольника. Как найти градусную меру угла правильного многоугольника. Как вычислить градусную меру угла многоугольника.
Как вычичлить градусеую мера. Градусная мера угла правильного многоугольника. Углы в шестиграннике правильном. Чему равен угол правильного шестиугольника.
Сумма углов правильного шестиугольника. Внешний угол многоугольника формула. Внутренний угол многоугольника формула. Решение задач по теме правильные многоугольники 9 класс ОГЭ.
Задачи на многоугольники. Задачи на правильные многоугольники. Задачи по теме правильные многоугольники с решением. Чему равно Кол-во сторон правильного многоугольника.
Чему равно количество сторон правильного многоугольника 170. Правильный n угольник внутренний угол 170. Чему равно количество сторон правильного многоугольника если угол 170. Угол между двумя сторонами правильного многоугольника.
Углы многоугольника вписанного в окружность. Угол между двумя соседними сторонами. Как найти угол шестиугольника. Как вычислить угол шестигранника.
Сумма углов шестиугольника. Сумма углов многоугольника. Сумма углом мноноугоьника. Сумма углов выпуклого четырехугольника.
Как найти количество сторон правильного многоугольника. Как найти число сторон многоугольника. Сумма углов выпуклого n-угольника равна 180 n-2. Сумма углов выпуклого н угольника равна 180 н-2.
Сумма внешних углов n-угольника равна 180 n-2. Сумма углов многоугольника равна 180 : n - 2 градусов.. Угол шестиугольника. Угол правильного шестиугольника.
Выпуклый n угольник. Сумма углов выпуклого угольника. Сумма углов выпуклого n-угольника. Сумма н угольника равна.
Площадь правильного н угольника формула. Формула для нахождения сторон правильного многоугольника. Формулы для вычисления правильного многоугольника. Формулы сторон правильных многоугольников через радиусы.
Правильный шестиугольник формулы. Формула площади многоугольника через радиус описанной окружности.
Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.
Здесь же — ответы на него, и похожие вопросы в категории Геометрия, которые можно найти с помощью простой в использовании поисковой системы. Уровень сложности вопроса соответствует уровню подготовки учащихся 5 - 9 классов. В комментариях, оставленных ниже, ознакомьтесь с вариантами ответов посетителей страницы. С ними можно обсудить тему вопроса в режиме on-line. Если ни один из предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой строке, расположенной вверху, и нажмите кнопку.
Последние ответы Bdasa4766 27 апр. Решите задачу : Точка К делит отрезок MN на два отрезка? Danjarfild 27 апр.
Формула вычисления углов многоугольника. Формула нахождения углов н угольника. Как найти сумму углов правильного многоугольника. Как найти величину внутреннего угла правильного многоугольника. Сумма внутренних углов правильного многоугольника. Внутренний угол правильного н угольника. Угол правильного шестиугольника равен.
Углы в шестиграннике правильном. Чему равен угол правильного шестиугольника. Найдите Унлы правиотнонр сорлка. Найдите углы правильного морокаунтльника. Угол парвильного т угольник. Формула для вычисления суммы углов. Величина угла в правильном n-угольнике. Диагональ шестиугольной Призмы. Углы в правильной шестиугольной призме. Диагональ правильного шестиугольника.
Чему равны углы в правильной шестиугольной призме. Определи величину одного внутреннего угла правильного выпуклого. Определите величину одного внутреннего угла выпуклого 9 угольника. Определить величину одного внутреннего угла правильного выпуклого. Внутренний угол правильного 8 угольника. Найдите углы правильного 18 угольника. Правильный 18 угольник. Найдите углы правильного н угольника если. Найти углы правильного восемнадцать угольник. Внешний угол правильного н угольника равен.
Чему равна сумма внешних углов правильного многоугольника. Чему равна сумма внешних углов n угольника. Формула суммы внешних углов правильного многоугольника. Как найти углы правильного восьмиугольника. Найти сумму углов правильного восьмиугольника. Найдите углы восьмиугольника. Найдите угол правильного n-угольника. Внешний угол двадцатиугольника равен. Внешний угол правильного двадцатиугольника равен. Угол двадцатиугольника равен.
Внешний угол правильного двадцатиугольника равен: а 20; б 22,5; в 18;. Диагональ правильной шестиугольной Призмы. Площадь диагонального сечения шестиугольной Призмы. Площадь диагонального сечения шестиугольной Призмы формула. Правильная шестиугольная Призма. Формула для вычисления угла н угольника. Найдите углы правильного н угольника если н 10. Угол правильного vyjujeujkmybrfформула. Формула чтобы найти угол правильного многоугольника. Длина окружности и площадь круга 9 класс.
Длина и площадь круга 9 класс. Найти внешний угол правильного 12 угольника. Формула угла правильного эн угольника. Формула нахождения суммы углов многоугольника. Формулы многоугольников 8 класс. Многоугольники 8 класс геометрия. Многоугольник это 8 класс. Формула нахождения углов многоугольника. Как найти угол правильного многоугольника.
найдите углы правильного 15 угольника - вопрос №976943
COM - образовательный портал Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов. Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах.
Однако, это получается не для всех и не всегда. Говоря математическим языком, не всегда существует окружность, которая удовлетворяет определению. Многоугольник называется вписанным в окружность, если все его вершины лежат на окружности. Многоугольник называется описанным около окружности, если все его стороны касаются окружности.
Если многоугольник вписан в окружность, то можно сказать, что окружность описана около многоугольника, или, наобррот, если многоугольник описан около окружности, то окружность вписана в него. Такие формулировки тоже встречаются в условиях геометрических задач. Чтобы не путаться запомним - вписанная фигура находится внутри описанной около неё. Четырехугольник вписан в окружность. Четырехугольник описан около окружности.
Рассмотрим другие примеры. Произвольный прямоугольник всегда можно вписать в окружность, но описать нельзя. Описать получится только тогда, когда прямоугольник - это квадрат. Параллелограмм нельзя вписать в окружность. Описать можно только ромб.
Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон: Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может. Ответ: не может.
Описанная и вписанная окружности правильного многоугольника Докажем важную теорему о правильном многоуг-ке. Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Они пересекутся в некоторой точке О. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное 1 : Это равенство означает, что точка О равноудалена от вершин многоуг-ка.
Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка: Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность , ч. Продолжим рассматривать выполненное нами построение с описанной окружностью. Так как высоты проведены в равных треуг-ках, то и сами они равны: Теперь проведем окружность, центр которой находится в О, а радиус — это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn.
Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности по признаку касательной. Стало быть, эта окружность является вписанной: Ясно, что такая окружность будет единственной вписанной. Так как расстояние от О до А1А2 — это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.
Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу? Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку.
Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными. Ответ: не могут. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.
Формулы для правильного многоугольника Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь она обозначается буквой S и периметр обозначается как Р. Длина стороны многоуг-ка традиционно обозначается буквой an, где n— число сторон у многоуг-ка. Например a4— это сторона квадрата, a6— сторона шестиугольника.
Апофема — это радиус вписанной окружности. Центральным углом правильного многоугольника называют угол, образованный двумя радиусами, проведенными до соседних вершин.
Добавить комментарий
- Как найти сумму углов правильного восьмиугольника? Геометрия / Справочник :: Бингоскул
- Как найти сумму углов правильного восьмиугольника? Геометрия / Справочник :: Бингоскул
- Подробное решение
- Найдите углы № 1081 ГДЗ Геометрия 9 класс Атанасян Л.С.
Как найти внешний угол правильного 18 угольника
Угол правильного n угольника 5. Формула суммы углов многоугольника 8 класс геометрия. Сумма внутренних углов правильного n-угольника. (N-2)*180 сумма всех углов n-угольника и разделить на 18 узнаем один угол.
Как найти сумму углов правильного восьмиугольника? Геометрия
Найти углы правильного восемнадцать угольник. Найдите углы правильного n-угольника, если n=18. Для того чтобы найти углы правильного восемнадцатиугольника, мы можем использовать следующую формулу. Задача 68939 Сколько сторон имеет правильный Условие. Получите быстрый ответ на свой вопрос, уже ответило 2 человека: найдите углы правильного 18-ти угольника — Знание Сайт. Изображение Найдите углы правильного n-угольника, если: а) n = 3; б) n = 5; в) n = 6; г) n= 10; д) n= Загрузка.
Популярные решебники
- Найдите углы правильного 18 угольника
- Задание МЭШ
- Найдите угол правильного восемнадцатиугольника
- Понятие правильного многоугольника
Найдите углы правильного 18 угольника - фото сборник
Многоугольник называется описанным около окружности, если все его стороны касаются окружности. Если многоугольник вписан в окружность, то можно сказать, что окружность описана около многоугольника, или, наобррот, если многоугольник описан около окружности, то окружность вписана в него. Такие формулировки тоже встречаются в условиях геометрических задач. Чтобы не путаться запомним - вписанная фигура находится внутри описанной около неё. Четырехугольник вписан в окружность. Четырехугольник описан около окружности. Рассмотрим другие примеры. Произвольный прямоугольник всегда можно вписать в окружность, но описать нельзя. Описать получится только тогда, когда прямоугольник - это квадрат. Параллелограмм нельзя вписать в окружность. Описать можно только ромб.
В окружность можно вписать только равнобочную трапецию, описать около окружности тоже можно не всякую трапецию. Существование вписанной и описанной окружности для произвольных многоугольников связано с величинами их углов и сторон. Сейчас мы на них останавливаться не будем.
Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание. Чему равен внешний угол правильного 18 — ти угольника? Внешний угол правильного многоугольника равен 15 гр. Найти число сторон Является ли равнобедренный треугольник с уголом при вершине 60 гр правильным? На странице вопроса Чему равен внешний угол правильного 18 — ти угольника?
Если ни один из предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой строке, расположенной вверху, и нажмите кнопку. Последние ответы Bdasa4766 27 апр. Решите задачу : Точка К делит отрезок MN на два отрезка? Danjarfild 27 апр. Юка33 27 апр. Katerina02061 27 апр. Используем теорему косинусов. Рассмотрим треугольник АВД.
На рисунке ниже показано несколько примеров таких n-угольников: Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство: Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике? Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника: Задание. В формулу Задание. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон: Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может. Ответ: не может. Описанная и вписанная окружности правильного многоугольника Докажем важную теорему о правильном многоуг-ке. Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Они пересекутся в некоторой точке О. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное 1 : Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка: Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность , ч. Продолжим рассматривать выполненное нами построение с описанной окружностью. Так как высоты проведены в равных треуг-ках, то и сами они равны: Теперь проведем окружность, центр которой находится в О, а радиус — это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности по признаку касательной. Стало быть, эта окружность является вписанной: Ясно, что такая окружность будет единственной вписанной. Так как расстояние от О до А1А2 — это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу? Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют.
Ответ на Номер №1081 из ГДЗ по Геометрии 7-9 класс: Атанасян Л.С.
углы правильного 18угольника равны 160⁰. Правильный 4294967295-угольник — многоугольник с наибольшим известным на данный момент нечётным числом сторон среди всех правильных многоугольников, которые допускают построение циркулем и линейкой. Если вы нашли правильное решение, вы можете поблагодарить нас начиная с 10 рублей. Если известно количество вершин правильного n -угольника, то есть число, то мы можем найти величину внутреннего угла (так как умеем вычислять сумму углов произвольного многоугольника, а в правильном многоугольнике все углы равны).
Углы правильного многоугольника. Формулы
Следовательно, отношение их площадей равняется отношению квадратов их сторон. Легко доказать, что он также является центром восьмиугольника KLMNPQRS, а отрезок ОК одновременно является радиусом вписанной окружности первого из них и радиусом описанной окружности для второго. Примечание: Отношение сторон многоугольников можно найти иначе, например, достроить другие внутренние отрезки и рассмотреть прямоугольные треугольники. Найти площадь круга, если радиус окружности, вписанной в треугольник ADE, равен r. Треугольник ADE прямоугольный, так как опирается на диаметр окружности, в которую он вписан. Принимаем AD за x.
Пусть R - радиус окружности. Центры касающихся окружностей лежат на одной прямой с точкой касания. Поэтому, и это видно из чертежа, искомый радиус большой окружности OK равен диаметру маленькой. Правильный шестиугольник разбивается на 6 правильных равносторонних треугольников отрезками, соединяюшими его вершины и центр. Чтобы убедиться в этом, достаточно посчитать углы треугольников.
Центр окружности, описанной около этого треугольника находится на пересечении отрезков, которые в равностороннем треугольнике являются одновременно высотами, медианами и биссектрисами. Ответ будет получен с чуть большим объёмом вычислений. Обоснование решения такое же, как в предыдущей задаче.
Способ решения может отличаться. Правильный n-угольник разбивается на n равных треугольников, как показано на рисунке. Равенство треугольников следует из определения правильности многоугольника - все стороны и углы одинаковые. Совпадение обусловлено тем, что стороны многоугольника являются касательными к этой окружности и потому перпендикулярны к её радиусу в точке касания.
Ответ дайте в процентах, округлив до целых. Правильные восьмиугольники являются подобными фигурами все углы равны. Следовательно, отношение их площадей равняется отношению квадратов их сторон. Легко доказать, что он также является центром восьмиугольника KLMNPQRS, а отрезок ОК одновременно является радиусом вписанной окружности первого из них и радиусом описанной окружности для второго. Примечание: Отношение сторон многоугольников можно найти иначе, например, достроить другие внутренние отрезки и рассмотреть прямоугольные треугольники. Найти площадь круга, если радиус окружности, вписанной в треугольник ADE, равен r. Треугольник ADE прямоугольный, так как опирается на диаметр окружности, в которую он вписан.
Принимаем AD за x. Пусть R - радиус окружности. Центры касающихся окружностей лежат на одной прямой с точкой касания.
Периметр правильного n угольника формула. Угол между стороной правильного. Угол между стороной правильного н угольника вписанного в окружность. Угол между стороной правильного n-угольника вписанного.
Угол между стороной правильного n-угольника, вписанного в окружность. Свойства многоугольников. Свойства правильного многоугольника. Свойства выпуклого многоугольника. Характеристика многоугольника. Найдите углы правильного 18 угольника. Найдите углы правильно восемнадцать угольника.
Найти углы правильного восемнадцать угольник. Сумма внешних углов выпуклого многоугольника. Докажите что сумма внешних углов выпуклого многоугольника. Сумма углов п угольника. Сумма внешних углов n угольника. Как найти градусную меру угла правильного многоугольника. Как вычислить градусную меру угла многоугольника.
Как вычичлить градусеую мера. Градусная мера угла правильного многоугольника. Углы в шестиграннике правильном. Чему равен угол правильного шестиугольника. Сумма углов правильного шестиугольника. Внешний угол многоугольника формула. Внутренний угол многоугольника формула.
Решение задач по теме правильные многоугольники 9 класс ОГЭ. Задачи на многоугольники. Задачи на правильные многоугольники. Задачи по теме правильные многоугольники с решением. Чему равно Кол-во сторон правильного многоугольника. Чему равно количество сторон правильного многоугольника 170. Правильный n угольник внутренний угол 170.
Чему равно количество сторон правильного многоугольника если угол 170. Угол между двумя сторонами правильного многоугольника. Углы многоугольника вписанного в окружность. Угол между двумя соседними сторонами. Как найти угол шестиугольника. Как вычислить угол шестигранника. Сумма углов шестиугольника.
Сумма углов многоугольника. Сумма углом мноноугоьника. Сумма углов выпуклого четырехугольника. Как найти количество сторон правильного многоугольника. Как найти число сторон многоугольника. Сумма углов выпуклого n-угольника равна 180 n-2. Сумма углов выпуклого н угольника равна 180 н-2.
Сумма внешних углов n-угольника равна 180 n-2.
Найти число сторон Является ли равнобедренный треугольник с уголом при вершине 60 гр правильным? На странице вопроса Чему равен внешний угол правильного 18 — ти угольника? Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.
Углы правильного многоугольника. Формулы
2-е издание. Просвещение, 2013г. угольника равна 1800 град. (N-2)*180 сумма всех углов n-угольника и разделить на 18 узнаем один уголу нас n=18 (18-2)*180=16*180=2880 сумма всех углов 18-угольника 2880:18=160 градусов один угол. Правильный 18 угольник углы. Найти углы правильного угольника. Ответило 2 человека на вопрос: Найдите углы правильного 18-ти угольника. Подробный ответ из решебника (ГДЗ) на Задание 1081 по учебнику Л.С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. Учебник по геометрии 7-9 классов. 2-е издание, Просвещение, 2014г.