Новый композиционный материал создали ученые из Красноярска и Новосибирска на основе нанотрубок и наноалмазов. 21 янв 2022. Пожаловаться. Первые наноалмазы получили красноярские ученые Института биофизики. Учёные из Красноярского научного центра и Сибирского государственного университета создали новый вид биоразлагаемого пластика, который разлагается в лесной почве всего за семь месяцев. «Сделать Енисей теплее»: красноярские ученые решают проблему «черного неба».
Читайте также
- Сибирские ученые создали материал из наноалмазов | АиФ Красноярск
- Лента новостей
- Правила комментирования
- В Сибири разработали композит для обнаружения токсичных веществ в воде | ИА Красная Весна
- Telegram: Contact @nzzhit
Новый многоразовый композит из нановолокон и наноалмазов выявит токсичные вещества в воде
Красноярские ученые синтезировали гибридные наночастицы, которые в будущем могут применяться в медицине. В Красноярске ученые получили кристаллы, с помощью которых можно будет лечить Альцгеймер, Паркинсон и шизофрению. Но сибирским ученым удалось выяснить, что наноалмаз засветится, если он будет находиться на кончике углеродной трубки, которая в несколько раз усиливает мощность даже небольшого электрического поля». Учёные из Красноярска завершили исследование избирательного способа борьбы с раковыми клетками. Новосибирские физики разработали новый материал наноалмазы, встроенные в графен, природных и искусственных аналогов ему нет, утверждают исследователи.
Красноярские ученые придумали устройство для создания искусственной вечной мерзлоты
Красноярские ученые использовали наноалмазы для выявления фенола в воде. В результате красноярские ученые не только получили новый материал, но и открыли новое явление – сегрегацию меди. Наночастицы золота с единственными в своем роде спектральными характеристиками в ближней инфракрасной области разработали красноярские ученые.
Красноярские ученые разработали умный наноскальпель для терапии жидких опухолей
Он способен избирательно разрушать одиночные опухолевые клетки. Эксперименты с асцитной карциномой показали принципиальную возможность нанодисков нацеливаться и уничтожать такие клетки», — рассказала доктор биологических наук, завлабораторией цифровых управляемых лекарств и тераностики Красноярского научного центра СО РАН. Исследования показали, что даже однократное применение магнитного скальпеля заметно сокращает число вредных клеток в опухолях. Изобретение российских ученых может стать базой для разработки нового поколения медицинских изделий малоинвазивной и дистанционно управляемой терапии.
Исследователи отмечают, что магнитомеханическая противораковая терапия с использованием магнетитовых наночастиц, активирующихся низкочастотным переменным магнитным полем, показала высокую результативность в исследованиях на мышах. Исследование было поддержано Министерством науки и высшего образования Российской Федерации. Новости по теме.
У исследователей пока нет полной уверенности в безопасности таких медицинских препаратов», — рассказали в центре СО РАН. Красноярские биофизики предложили применять для этого биолюминесцентные тесты. Ученые проверили этот метод на фуллеренолах. Эти вещества применяются при создании антибактериальных, противогрибковых, противовирусных, противораковых средств.
Затем эти диски были модифицированы аптамерами одноцепочечными последовательностями ДНК или РНК , которые благодаря своей структуре способны с высокой специфичностью связываться с нужными клетками, прикрепляясь к их мембранам. Глава лаборатории отметила, что на данном этапе для активации препарата используется устройство наподобие магнитно-резонансного томографа, но со слабым магнитным полем. Проведены опыты на мышах, у которых были инициированы опухоли. В итоге без лечения опухоль давала метастазы и животные погибали через 20 дней, то есть, сравнительно быстро.
Красноярские учёные создали экологичный пластик
Красноярские ученые разработали безопасный для окружающей среды метод переработки древесины березы в наноцеллюлозу и другие ценные химические продукты. Еще в Советском союзе ученые Института биофизики в Красноярске получили первые наноалмазы — серый порошок, получаемый из серии коротких взрывов углерода. Мы узнаем о достижениях красноярских ученых из случайных новостей и разговоров, но порой недооцениваем значимость этих открытий. Новосибирские физики разработали новый материал наноалмазы, встроенные в графен, природных и искусственных аналогов ему нет, утверждают исследователи.
Красноярские ученые разработали биопластырь
Наноалмазы представляют собой серый порошок, который получают при серии коротких взрывов углерода. По словам ученой, применение таких микроорганизмов существенно безопаснее для окружающей среды, чем использование традиционных химических реагентов. Научный коллектив Федерального исследовательского центра «Красноярский научный центр СО РАН» совместно с учеными Сибирского федерального университета разработал новый метод синтеза алюминиевых сплавов, применение которого позволит создавать новые виды. Учёные СО РАН выявили способ определения загрязнения воды с помощью наноалмазов.
Красноярские ученые разработали метод лечения переломов наночастицами
Ученые предполагают, что плёночные никелевые нанодиски с двусторонним золотым покрытием больше всего подходят на роль «наноскальпелей» в клеточной хирургии опухолей — они будут эффективным средством визуализации поражённых клеток. Подписывайтесь на нашу страницу новостей "Независимый Красноярск" в telegram. Мы в популярных социальных сетях Загрузка.
Наноскальпели под воздействием магнитного поля могут избирательно повреждать раковые клетки в организме человека. Метод лечения — неинвазивный, то есть безоперационный. Пациенту нужно просто ввести суспензию. После этого наноскальпели прикреплются к опухоли и разрушают её в переменном магнитном поле. Суть в том, чтобы ввести пациенту раствор таких частиц, а затем, направляя их активность с помощью магнитного поля, регулировать уничтожение раковых клеток этими наноскальпелями.
Огромным преимуществом такого метода будет адресное уничтожение опухоли без повреждения здоровых тканей», — пояснил доцент кафедры общей физики СФУ Роман Руденко.
В чём проблема? Сложность использования наноскальпелей заключалась в том, что при приготовлении суспензии нанодиски слипались. Чтобы этого не произошло, сибирские специалисты разработали способ управления магнитным моментом через механические напряжения в самом нанодиске. В ходе исследований учёные заметили механические напряжения на боковой поверхности диска. Причины две: неравномерное тепловое расширение слоёв в процессе изготовления и избыточная поверхностная энергия на границе раздела слоёв. При этом эффективность наноскальпеля повышается при увеличении магнитного момента наночастиц.
Любое использование текстовых, фото-, аудио- и видеоматериалов возможно только с согласия правообладателя ВГТРК. Политика конфиденциальности Информация о разработчике сайта.
Красноярские ученые разработали метод лечения переломов наночастицами
По информации краевого официального портала, клинические испытания разработки пройдут в 2017 году на базе Сибирского клинического центра ФМБА России. Внедрение биополимерных повязок запланировано в лечебно-профилактических учреждениях после проведения всех необходимых исследований, а также получения государственной регистрации. Нашли ошибку? Комментировать статьи на сайте возможно только в течении 90 дней со дня публикации.
Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре. Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона. Проанализировать результаты можно будет специально созданной программой.
Полученные результаты открывают перспективы для разработки нового класса систем индикации многоцелевого использования, например, 2D и 3D сенсоров. Кроме того, предлагаемый композит может быть использован в качестве матрицы-хозяина для иммобилизации ферментов, что создает предпосылки для создания новых многоразовых систем медицинской диагностики», — рассказал Илья Рыжков, доктор физико-математических наук, ведущий научный сотрудник Института вычислительного моделирования СО РАН. Новости по теме Все новости 22.
Он обладает уникальными свойствами и может быть использован как светильник. Материал разработан на основе наноалмазов и углеродных нанотрубок — возможно применение при создании дисплеев современного типа.
На поверхность изготовленного композита, который имеет белый цвет, добавляется водный образец с предварительно внесенными реагентами. Если в образце присутствует фенол, наноалмазы в составе композита запускают цветную реакцию и композит окрашивается в малиновый цвет.
Интенсивность цвета пропорциональна содержанию фенола в пробе и может быть легко оценена «на месте» по цветовой шкале», — объяснил один из соавторов работы Никита Ронжин, кандидат биологических наук, научный сотрудник Института биофизики СО РАН Специалисты ФИЦ КНЦ отмечают, что разработанный композит можно применять многократно, в серии как минимум из шести последовательных тестов. После каждого использования необходимо всего лишь промыть композитный диск деионизированной водой для удаления остатков компонентов реакции. Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре. Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона.
Новосибирские ученые скрестили алмаз и графен для получения нового материала
Так наноалмазы появились в нашем институте, всем желающим предложили исследовать их свойства. Тогда достаточных представлений о свойствах этого материала и том, как с ними работать, ни у кого не было. Поскольку ярких эффектов в экспериментах с данными наночастицами никто не получил, всё постепенно затихло. Результат эксперимента настолько нас ошеломил, что потребовался год, чтобы осмыслить выявленный эффект. В случае с наноалмазами повезло: когда мы взглянули на этот материал как на адсорбент, решили нашу исследовательскую задачу эффективно и быстро и получили нетривиальный результат. А через год встретились вновь, с этого момента и начались систематические и разносторонние исследования свойств наночастиц и возможностей их применения в биологии и медицине. Расскажу ещё о нескольких направлениях наших исследований. Одно из них очень модное сегодня во всём мире. Это создание систем адресной доставки веществ, применяемых в медицине. Цель благая — создать целенаправленный лекарственный препарат, чтобы он прицельно действовал в организме на определённый орган или очаг патологии.
Таким образом, повышается эффективность вводимого препарата — можно локально задать его высокую концентрацию в требуемом очаге патологии и при этом избежать массы негативных побочных эффектов. Как выглядит такая система доставки? Она состоит из трёх элементов: носителя, который доставляет препарат, самого лекарства и молекулы, которая будет направлять весь этот комплекс в нужное место. Мы создали такую систему на основе наноалмазов, которые использовали в качестве носителя. В экспериментах in vitro в пробирке мы доказали, что сконструированная система устойчива и проявляет свою функцию. Работает ли эта система in vivo? Многие учёные мира проводят такие исследования в пробирках, в том числе и с наноалмазами. Но что происходит с системой и прежде всего с носителем в организме? Система выполнила свою терапевтическую функцию.
А что произойдёт с носителем? Он будет выводиться из организма или накапливаться в нём? Мы провели исследования на мышах и уже получили часть ответов. Когда мы вводим мышам наноалмазы внутривенно, через два с половиной часа почти половина этих частиц обнаруживается в лёгких и печени. Через десять суток в лёгких их количество снижается более чем в три раза, а в печени возрастает почти в три раза. При этом наночастицы начинают обнаруживаться в селезёнке. Через один и три месяца наблюдается такая же динамика распределения: в печени количество частиц повышается, а в лёгких — снижается. Пока непонятно, будут ли наноалмазы выводиться из печени. Изучение этого вопроса требует отдельного исследования, и у нас есть экспериментальные подходы для этого.
В любом случае мы уже получили новые знания, позволяющие составить более взвешенное представление о границах применимости наноалмазов. Исследования биохимических показателей крови животных после введения им наночастиц показывают, что через два с половиной часа наблюдается изменение ряда этих показателей, а через десять суток отмечается тенденция к их нормализации. Через один и три месяца биохимические показатели крови опытных животных уже не отличаются от нормы. Но остаются открытыми вопросы: происходят ли при этом изменения биохимических показателей в органах животных? За счёт каких механизмов происходит перераспределение наноалмазов между органами? Ответы на них необходимо найти. Возвращаюсь к другим направлениям наших исследований. Наноалмазы могут связывать различные токсиканты. Следовательно, наноалмазы можно использовать для нейтрализации, например, микотоксинов — метаболитов низших грибов, в частности плесневых.
Наиболее опасным из них считается афлатоксин В1.
Полученные результаты исследования опубликованы в журнале Physics of the Solid State. Источник: ТАСС.
Процедура колориметрического анализа воды на содержание фенола с использованием полученного нами композита происходит следующим образом. На поверхность изготовленного композита, который имеет белый цвет, добавляется водный образец с предварительно внесенными реагентами. Если в образце присутствует фенол, наноалмазы в составе композита запускают цветную реакцию и композит окрашивается в малиновый цвет. Интенсивность цвета пропорциональна содержанию фенола в пробе и может быть легко оценена «на месте» по цветовой шкале», — объяснил один из соавторов работы Никита Ронжин, кандидат биологических наук, научный сотрудник Института биофизики СО РАН Специалисты ФИЦ КНЦ отмечают, что разработанный композит можно применять многократно, в серии как минимум из шести последовательных тестов. После каждого использования необходимо всего лишь промыть композитный диск деионизированной водой для удаления остатков компонентов реакции. Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре.
Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра.
Материал представляет собой слойную конструкцию из прочно связанных между собой вертикальных нанотрубок, на поверхности которых распределен слой наноалмазов. Ученые говорят, что получившийся композит уникален по своим свойствам. Об этом сообщает журнале Scientific Reports издательства Nature.
Для того, чтобы заставить наноалмазы испускать свет, необходимо мощное магнитное поле, которое проблематично создать в обычных условиях. Углеродные нанотрубоки обладают свойством многократного усиления магнитного поля на микроуровне — и это свойство используется в полученном композите. Новый материал способен светиться в слабом электрическом поле голубым светом, что предполагает его использование в качестве источника освещения.
В СО РАН хотят получить наноалмазы
Первые применяются в машиностроении и во многих аналитических приборах для отвода тепла, снижения трения или создания герметичного соединения, вторые используются для снижения потерь энергии при нагреве трансформаторов. По словам доктора технических наук, профессора, заведующего лабораторией аналитических методов исследования вещества Института физики им. В данном случае на углеродную поверхность наносят каталитически активный металл. Такие катализаторы найдут применение в медицине, химическом производстве и малой энергетике. Вследствие того, что каждое ядро с оболочкой обладает магнитными свойствами, врачи и химики смогут управлять наночастицами, покрытыми благородными металлами, тогда как раньше они использовали в работе инструменты из золота или платины без управляемых характеристик.
ТАСС добавить к смеси реагента для определения фенолов аминоантипирина, перекиси водорода и фенола, то раствор быстро окрасится в ярко-малиновый цвет. Это позволяет использовать наноалмазы для создания аналитической системы быстрого обнаружения фенола в воде", - сообщили в КНЦ. Для определения загрязнения используют так называемые детонационные наноалмазы, получаемые при взрыве содержащих углерод взрывчатых веществ например, смесь тротила и гексогена , в замкнутой камере при недостатке кислорода. После растворения порошка таких наноалмазов получается суспензия, которую и можно использовать для контроля за качеством воды.
Наилучшим образом они подходят для изготовления ферромагнитных жидкостей и сердечников высокочастотных трансформаторов. Первые применяются в машиностроении и во многих аналитических приборах для отвода тепла, снижения трения или создания герметичного соединения, вторые используются для снижения потерь энергии при нагреве трансформаторов. По словам доктора технических наук, профессора, заведующего лабораторией аналитических методов исследования вещества Института физики им. В данном случае на углеродную поверхность наносят каталитически активный металл. Такие катализаторы найдут применение в медицине, химическом производстве и малой энергетике.
Учредитель: федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания». Главный редактор: Лепухов Д. Электронная почта редакции сетевого издания: web kgtrk.
Сибирские ученые создали материал из наноалмазов
Главная Наука ИНХ в зеркале прессы Ученые из Новосибирска и Красноярска создали новый материал из нанотрубок и наноалмазов. Главная Наука ИНХ в зеркале прессы Ученые из Новосибирска и Красноярска создали новый материал из нанотрубок и наноалмазов. Коллектив ученых из Красноярского научного центра Сибирского отделения РАН (СО РАН) и Сибирского федерального университета разработал недорогой. Наночастицы золота с единственными в своем роде спектральными характеристиками в ближней инфракрасной области разработали красноярские ученые. Новости Красноярска Новости общества. Ученые из Новосибирска и Красноярска создали новый композиционный материал на основе углеродных нанотрубок и наноалмазов.