Новости когда минус на минус дает плюс

Минус умноженный на плюс будет минус. Плюс в том, что повзрослев такие дети право на имущественный вычет не теряют. Лучший ответ: Таня Масян. минус на минус даёт плюс, плюс на плюс даёт плюс, плюс на минус даёт минус. более месяца назад.

Правила умножения и деления отрицательных чисел

Их всегда обозначают знаком минус — «-». Нуль 0 — ни положительное, ни отрицательное число. Вот это ему повезло! Числовую ось можно расположить как горизонтально стрелка вверх , так и вертикально стрелка вправо. Если стрелка направлена вверх, то в верхней части от начала отсчета всегда расположены положительные числа, а в нижней — отрицательные. Смотрите: Прямая, на которой отмечена начальная точка, положительное направление и единичный отрезок, называется координатной или числовой осью.

Теперь у него такая замечательная база в математике, и его уверенность в том, что он может сделать, переполняет всю комнату. Лиам не боится браться за сложные математические концепции и уравнения, даже если он еще не выучил эти концепции. Мы должны вам выразить огромную благодарность и признательность за то, что вы привели его к этому моменту. Ему очень понравились ваши занятия, и он с нетерпением ждет их каждую неделю. Большое спасибо! Хотя первоначальные концепции могут показаться трудными для понимания, и так много областей затронуто, Белла сказала, что все будет хорошо, и так оно и было! Она закладывает отличный фундамент, как посадка семян, и к середине года они укореняются, растут и зацветают. Это было так важно для детей — иметь что-то сложное и веселое, видеть, как растет их уверенность и они преуспевают. Белла отлично ладит с детьми, очень ободряет и поддерживает, если им нужна помощь.

Мы были рады порекомендовать наших друзей, многие из которых перешли с других программ — MathPlus охватывает больше материала, а обучение немного меньше, и месяц за месяцем. Настоятельно рекомендую! Кэтрин Чан Школа MathPlus — замечательная школа. У меня не хватает слов, чтобы похвалить академический уровень этой школы. Мой 7-летний сын учится здесь пару месяцев, и его успехи очевидны. Теперь он может решать сложные задачи. Миссис Белла Гершт, учитель математики, превосходна. Она очень добрая и терпеливая со всеми детьми. Ее методы обучения великолепны, как и ее математические книги и материалы.

Студенты могут легко следовать ее объяснениям и решать проблемы без поддержки. Ее страсть к математике заразительна, и моему сыну это нравится. Очень рекомендую отправлять сюда своих детей. Александра Василиу MathPlus спас жизнь в начале Covid. Мой сын в то время 7 лет был записан в программу, и я сразу же был уверен, что он многому научится, пока его обычная школа выясняет ситуацию. Как родитель, я могу сказать о MathPlus только положительные отзывы. Мой сын теперь просто любит математику и ждет нового интересного и понятного материала. Учебная программа, которую они предлагают, является прекрасной возможностью улучшить или расширить знания вашего ребенка по математике. Он охватывает не только основы математики, но также содержит раннее введение в геометрию и алгебру.

Уроки перегружены, но мой 8-летний сын без проблем их выдерживает, время летит быстро, и он учится через понимание, а не просто запоминая. Мы взяли весенний семестр 20-го года, летний класс и в настоящее время тоже зачислены. Я определенно рекомендую MathPlus и их замечательного учителя. Несколько моих друзей записались в этом году, и их детям это тоже нравится. Победа Наши девочки в MathPlus почти 2 года. Программа не только дает нашим дочерям базовые знания по математике, но и пробуждает в них радость и страсть к учебе. Они значительно улучшились за короткий период времени. Мы, родители, довольны прогрессом. Мы настоятельно рекомендуем MathPlus семьям, которые хотят получить сложную и всестороннюю учебную программу для своих детей.

Алиша и Уильям Нгуен родители учащихся школы MathPlus После того, как наши дети начали посещать школу MathPlus, мы заметили значительный прогресс в их математических знаниях. Мы также заметили, как им нравится ходить на занятия, потому что задания интересные и веселые! Разнообразие задач и способов подачи классной и домашней работы велико. Кроме того, Белла очень хороший и талантливый учитель. Мы настоятельно рекомендуем школу MathPlus родителям, которые хотят вывести своих детей на новый уровень в математике. Лариса Закирова Мы присоединились к MathPlus, когда моя дочь была в 3-м классе, так как ее учитель в начальной школе Бруклина беспокоился о ее математических способностях. Я думал, что дополнительная математическая практика поможет ей достичь среднего уровня математики в школе. К моему удивлению, к концу третьего класса она стала лучшей ученицей по математике в своем классе. Мы продолжали посещать MathPlus, и моя дочь продолжала оставаться одной из лучших учениц в своем классе.

И теперь она будет сдавать самый высокий уровень математики в средней школе. Она планирует посещать MathPlus во время учебы в старшей школе, чтобы подготовиться к вступительным экзаменам в колледж. Мы очень ценим прекрасную работу учителей MathPlus, их внимание к каждому ребенку и энтузиазм в изучении математики. Юлия Голдберг Я твердо верю, что отношения между ребенком и учителем являются основой успеха. Подход учителя к ученикам может сильно повлиять на результаты. Мой сын попробовал программу pre-k в другой математической школе, и это было непросто для нас обоих. Класс был слишком большим, он чувствовал себя потерянным и никогда по-настоящему не общался со своим учителем; он был несчастен, я чувствовал себя виноватым, и на этом все закончилось. Перенесемся на 4 месяца вперед; Я счастлив и чувствую облегчение — мой сын очень увлечен, любит ходить на занятия и чувствует себя частью группы.

Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное.

Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы , дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус.

Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления. Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-». Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое. В математике кольцом принято называть множество, в котором задействованы две операции с двумя элементами. Но разбираться с этим лучше на примере. Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как -C. Выведение аксиом для отрицательных чисел Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак? Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат».

Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D.

Второй — при заключении договора инвестирования в строительство долевого участия. Отличие в том, что в первом случае заключается договор купли-продажи, и сразу после его подписания происходит переход права собственности. Для получения вычета гражданину необходимо составить декларацию, приложить пакет документов и подать заявление. Во втором регистрация права собственности наступает не сразу, поэтому претендовать на вычет хозяин может только после завершения строительства и подписания акта приема-передачи квартиры. То есть в этом году право на вычет имеет только тот, кто купил недвижимость, в том числе подписал акт приема-передачи в прошлом году или ранее. И налоговый вычет он получит единой суммой.

Если ждать до конца налогового периода не хочется, можно уже в этом начать получать вычет ежемесячно у работодателя. Но для этого все равно необходимо через налоговую инспекцию оформить уведомление, вместе с соответствующим заявлением подать в инспекцию комплект документов, как при оформлении вычета путем представления 3-НДФЛ. Размер вычета будет равен сумме НДФЛ, которую налогоплательщик должен заплатить в бюджет, то есть с зарплаты просто не будет взиматься подоходный налог. Правда, второй вариант имеет одно но: если вдруг в этом году придется платно лечиться или оплачивать учебу ребенка, социальный вычет вы получить не сможете, потому что сумма налоговых перечислений будет равна нулю так как вся зачтена в счет суммы имущественного вычета. Делим на всех — Квартиру мы приобрели совместно с супругом за 2 млн руб.

Минус на минус даёт плюс или как крысы решили проблему

Если мы умножаем «минус» на «плюс», то получаем всегда «минус». Если мы умножаем «плюс» на «минус», то получаем всегда также «минус». Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс». Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс». Вычитание и сложение. Они базируются уже на других принципах. Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный.

Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами: 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа.

Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10.

Существуют определенные правила для знаков при сложении и вычитании отрицательных чисел: Правила и примеры с отрицательными числами Чтобы понимать, как решать примеры с отрицательными числами, нужно помнить о некоторых правилах: Как сложить два отрицательных числа? Для этого надо сложить два числа и поставить знак минус. При вычитания двух чисел, в которых оба отрицательные, следует знать правило: минус на минус дает плюс. То есть, если стоят рядом два минуса, в сумме получается плюс.

В каждодневной работе на это так часто не хватает времени!

Расширив сферу обязанностей, вы сможете проявить себя как исполнительный и надежный сотрудник. А если вы предложите руководству способы выхода из кризиса, то ваша оценка в его глазах возрастет. Для бухгалтера финансовый кризис — это... На вопрос, что для бухгалтера финансовый кризис, они ответили — это сокращение доходов. И все же будем надеяться, что на практике доходы если не повысятся, то хотя бы не уменьшатся.

Лучшие времена непременно настанут. И наверняка начальство поощрит ваши былые заслуги, в том числе материально. Говоря о перспективах для сотрудников, нельзя забывать о перспективах самой организации. Но сейчас, когда конкуренты сокращают расходы на рекламу, не стоит им вторить. Конечно, это относится к тем организациям, которые могут себе позволить если не увеличивать, то хотя бы не сокращать эти расходы.

Те, на кого направлена рекламная информация — в основном это покупатели товаров, работ, услуг, — обязательно заметят то, что в суровые времена ваша организация выстояла среди конкурентов. А значит, она надежная, и ей можно доверять. Здесь сработает банальный принцип — если фирма тратит деньги на рекламу, следовательно, у нее они есть в достаточном количестве. А в кризис абсолютная ликвидность особо ценится. Ведь не исключено, что он попал в категорию проблемных.

Вспомните случаи, когда деньги некоторых организаций по вине банка так и не доходили до контрагента, а что еще хуже — до бюджета. Если же вы своим банком довольны и — что еще лучше — он выстоял в нелегком «кризисном поединке», то этот пункт не для вас.

Правила и примеры с отрицательными числами

  • Вход через соцсеть
  • Другие вопросы:
  • Минус на минус даёт плюс или как крысы решили проблему — Роман Токарев на
  • Общие понятия
  • Умножение на ноль и единицу

Что дает плюс на минус в математике

Правило минус на минус дает плюс помогает легко выполнить вычитание двух отрицательных чисел. А название темы "Минус на минус не дает плюс", свидетельствует, что ты умножаешь минус на плюс. И получается, что минус на минус, дал плюс. Требуется доказать, что (-a)(-b)=ab. Чтобы ответить на этот вопрос, мы будем действовать в рамках аксиоматики действительных чисел. Для начала докажем, чт. Новости. Американские психологи обнаружили, что добиться согласия легче, если люди, ищущие решение, имеют похожий настрой или черты характера.

Правила умножения и деления отрицательных чисел

Кружки одинакового цвета друг от друга отскакивают, а разного, соприкоснувшись исчезают с негромким хлопком и яркой вспышкой света. Иногда под вспышкой фотокамеры на холсте появляется пара из разбегающихся в разные стороны красного и зеленого кружков рождение электрон-позитронной пары из гамма-кванта. Заряд в любой момент времени будет целым числом. Он будет положительным, если в этот момент на преобладают красные кружки, отрицательным — если преобладают зеленые, и равным нулю — если и тех и других кружков в момент оказалось поровну. Наши картины не статичны, более того, количество присутствующих на них кружков меняется со временем. Несмотря на эти изменения, для любой картины ее заряд остается постоянным во времени, то есть он не зависит от и может быть записан как. Действительно, в придуманном нами мире кружки красного и зеленого цвета появляются и исчезают с картин только в паре друг с другом. Поскольку суммарный заряд любой такой пары равен нулю, то ни процесс спонтанного порождения, ни процесс аннигиляции не могут повлиять на общий заряд. Как следствие заряд картины остается постоянным на протяжении всего времени ее существования.

Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Заметим теперь, что и A , и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Но для уровня старшекласника-первокурсника. Допустим мы идем вдоль дороги, нас обгоняет машина и начинает удаляться. Время растет - и расстояние до нее растет. Скорость такой машины будем считать положительной, она может быть например 10 метров в секунду. Кстати, а сколько это километров в час? Наверное дорога плохая... А вот машина идущая нам навстречу не удаляется, а приближается.

Поэтому и скорость ее удобно считать отрицательной. Расстояние уменьшается: 30, 20, 10 метров до встречной машины. Каждая секунда - минус 10 метров. Теперь понятно почему скорость с минусом? Вот она пролетела мимо. Какое до нее расстояние через секунду? Правильно, -10 метров, то есть "в 10 метрах позади". Вот мы получили первое утверждение. Минус отрицательная скорость на плюс положительное время дал минус отрицательное расстояние, машина у меня за спиной. А теперь внимание - минус на минус.

Где встречная машина была за секунду ДО того как проехала мимо? Так понятно, или кто-то знает пример еще проще? Ответить Да можно доказать проще! То что мы отложили в положительную часть стало отрицательным и наоборот. Ответить Думаю вы правы. Я лишь попытаюсь показать вашу точку зрения подробнее, так как вижу, что не все это поняли. Минус означает отобрать. Ведь надо же как то обозначить действие. При этом отобранные яблоки не стали мнимыми, так как закон сохранения материи никто не отменял. Положительные яблоки просто перешли к тому, кто их отобрал.

Здесь минус не компенсирует плюс, а отрицает его и становится на его место. Сначала яблоки отобрали у вас, а затем вы их отобрали у вашего обидчика. В результате все яблоки остались положительными, только отбор не состоялся, так как произошла социальная революция. Вообще говоря, то что отрицание отрицания ликвидирует отрицание и всё к чему отрицание относится детям понятно и без объяснений, так как это очевидно. Объяснить детям нужно только то, что взрослые искусственно запутали, да так, что и сами теперь не могут разобраться. А путаница состоит в том, что вместо отрицания действия ввели отрицательные числа, то есть отрицательную материю. Ведь с отрицательной материей должно происходить всё тоже самое, что и с положительной, только с другим знаком. Поэтому детям кажется логичнее, что при умножении отрицательной материи должно происходить приумножение именно отрицательной материи. Но и здесь не всё гладко, ведь для приумножения отрицательной материи достаточно чтобы только одно число было с минусом. При этом один из сомножителей, который обозначает не вещественное наполнение, а разы повторения отобранной материи всегда положительный, так как разы не могут быть отрицательными даже если повторяется отрицательная отобранная материя.

А для того, чтобы знак минус воспринимался не как признак мнимого числа, то есть отрицательной материи, а как действие, взрослым нужно договориться сначала между собой, что если знак минус стоит пред числом, то он обозначает отрицательное действие с числом, которое всегда положительное, а не мнимое. Если же знак минус стоит перед другим знаком, то он обозначает отрицательное действие с первым знаком, то есть меняет его на противоположный. Тогда всё станет на свои места естественным образом. Затем надо объяснить это детям и они прекрасно поймут и усвоят такое понятное правило взрослых. Ведь сейчас все взрослые участники обсуждения фактически пытаются объяснить необъяснимое, так как физического объяснения этому вопросу нет, это просто условность, правило. А объяснять абстракцию абстракцией же - это тавтология. Если знак минус отрицает число, то это физическое действие , но если он отрицает само действие, то это просто условное правило. То есть взрослые просто договорились, что если отбор отрицается, как в рассматриваемом вопросе, то отбора нет, неважно сколько раз! При этом всё, что у вас было остаётся с вами, будь то просто число, будь то произведение чисел, то есть много попыток отбора. Вот и всё.

Если кто-то не согласен, то подумайте спокойно ещё раз. Ведь и пример с машинами, в котором есть отрицательная скорость и отрицательное время за секунду до встречи это всего лишь условное правило связанное с системой отсчёта. В другой системе отсчёта та же скорость и то же время станут положительными. А пример с зазеркальем связан со сказочным правилом, в котором минус отражаясь в зеркале только условно, но вовсе не физически становится плюсом. Ответить С математическими минусами все вроде понятно. А вот в языке, когда задается вопрос с отрицанием как на него отвечать?

Минус пять это число обратное пяти. А обратное минус пяти будет пять.

Со сменой знака меняются стороны на числовой прямой.

Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс». Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное. Общие математические правила Конечно, такое объяснение не подойдет для школьников младших классов, которые только начинают учить абстрактные отрицательные числа. Им лучше объяснять на видимых предметах, манипулируя знакомым им термином зазеркалья. Например, придуманные, но не существующие игрушки находятся именно там. Их и можно отобразить со знаком «-». Умножение двух зазеркальных объектов переносит их в еще один мир, который приравнивается к настоящему, то есть в результате мы имеем положительные числа. А вот умножение абстрактного отрицательного числа на положительное лишь дает знакомый всем результат.

Ведь «плюс» умножить на «минус» дает «минус». Правда, в дети не слишком-то пытаются вникнуть во все математические нюансы. Хотя, если смотреть правде в глаза, для многих людей даже с высшим образованием так и остаются загадкой многие правила. Все принимают как данность то, что преподают им учителя, не затрудняясь вникать во все сложности, которые таит в себе математика. Это верно как для целых, так и для дробных чисел. Действительно, а почему? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы запомнили - что вот именно так и больше не задаемся вопросом.

А давайте зададимся... Давным-давно людям были известны только натуральные числа: 1, 2, 3,... Их использовали для подсчета утвари, добычи, врагов и т. Но числа сами по себе довольно бесполезны — нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел — тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа.

Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами.

Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды , непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо.

Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т. Заметим, что кольца, в самой общей конструкции , не требуют ни перестановочности умножения, ни его обратимости т.

«Минус» на «Минус» дает плюс?

Почему минус на минус - плюс? - на - будет +? Откуда? Чтобы что? Как? | Видео Если мы умножаем «минус» на «минус», то получим «плюс».
Действия с минусом. Почему минус на минус дает плюс Минус на минус дает плюс в математике, когда два отрицательных числа умножаются.
Почему минус на минус - плюс? - на - будет +? Откуда? Чтобы что? Как? — Когда все узнали об успехе программы «Минус 100» в 2007 году, приходилось слышать мнение, что тот результат достигнут административным ресурсом.
Когда минус дает плюс В итоге, зная правильный ответ, мы сами понимаем, что минус на минус ДОЛЖЕН давать плюс.

Почему минус на минус даёт плюс? Сохраните себе это видео | Резерв Математик Андрей

То есть, указывает, что "надо сменить направление у результата умножения". Так вот, возвращаясь к вашей жизни на берегу океана. По радио передали сводку, что ветер усилиться в минус три раза. То есть, нам фактически передали два параметра ветер станет в три раза сильнее; ветер сменит направление на противоположное! Вот этот знак минус и указал, что надо "поменять знак" у итогового результата. И что получается в случае двух минусов? Дул ветер со скоростью минус два метра в секунду, со стороны моря отрицательный ветер , он усилиться в три раза и сменит направление! То есть, станет дуть в положительном направлении. Вот, два минуса и дали нам плюс. А вот объяснение с логической точки зрения. Мама утверждает сыну, что он разбил тарелку.

Ответ был отрицательным - сын отвечает, что он не разбивал тарелку. То есть, утверждение мамы было ложным, то есть, отрицательным. А вечером сын сказал, что он наврал. То есть, произошло отрицание его отрицательного ответа. А значит утверждение о том, что он разбил тарелку, стало положительным.

Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами.

Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции...

Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо.

Проще всего ответить: «Потому что таковы правила действий над отрицательными числами».

Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы запомнили - что вот именно так и больше не задаемся вопросом.

А давайте зададимся... Давным-давно людям были известны только натуральные числа: 1, 2, 3,... Их использовали для подсчета утвари, добычи, врагов и т.

Но числа сами по себе довольно бесполезны — нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел — тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах.

В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись.

Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н.

Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе.

Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример?

Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку.

Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать.

Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами.

Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды , непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо.

Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т.

Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т.

Заметим, что кольца, в самой общей конструкции , не требуют ни перестановочности умножения, ни его обратимости т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец. Для этого нам потребуется установить некоторые факты.

Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и - -A являются противоположными к одному и тому же элементу -A , поэтому они должны быть равны.

Значит, это произведение равно нулю. А то, что в кольце ровно один ноль ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность! Евгений Епифанов 1 Почему минус один умножить на минус один равно плюс один?

Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики. Но числа сами по себе довольно бесполезны - нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел - тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения.

Умножение - это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже - сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом - так появились дробные числа.

Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений - это был лишь инструмент для получения положительного ответа.

Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно.

Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа.

Если у меня есть конфет и я отдам сестре , то у меня останется конфеты, а вот отдать ей конфет я при всем желании не могу. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н.

Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе.

Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! Рассмотрим для примера уравнение.

Когда минус на минус дает плюс

Как понять, почему «плюс» на «минус» дает «минус» ? Я понимаю, что лупить ремнем плохо, но иногда пара ударов по попе (два минуса) дают тот самый желательный плюс)).
«Почему минус на минус даёт плюс ?» — Яндекс Кью — Когда все узнали об успехе программы «Минус 100» в 2007 году, приходилось слышать мнение, что тот результат достигнут административным ресурсом.
Минус на минус дает плюс Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс.
«Минус» на «Минус» дает плюс? 1) Почему минус один умножить на минус один равно плюс один?

Когда минус дает плюс

Взысканием суммы занималась прокуратура и судебные приставы. На этом позитив заканчивается. А вот перечень негативных событий: был задержан по подозрению во взяточничестве Валерий Усатов, чиновник администрации Омска; в Эстонии задержан бывший депутат Горсовета Александр Дмитриев, он же — бывший директор одного из отделений банка «АК Барс Банк», которого обвиняют в мошенничестве. К негативным событиям отнесено выведение из состава учредителей коммерческих фирм Вадима Цыганкова, возглавляющего Калачинский район; коррупционный скандал с Виктором Барановым, возглавлявшим управление Министерства экономики области; превышение должностных полномочий Анатолием Стадниковым, возглавлявшим Нижнеомский район; долг «Омскэнергосбыта» размером в 2 млрд. Но, несмотря на такой ворох проблем, эксперты посчитали, что социально-политическая устойчивость нашего региона достаточно высока. С чем, очевидно, можно поздравить жителей Омска. Самую нижнюю строку рейтинга занял Дагестан, его уровень устойчивости составляет 2,4 балла.

Самым устойчивым регионом была названа Мордовия с результатом в 8,9 балла, следом идут Тамбовская, Амурская и Тюменская области с одинаковым результатом — 7,9 балла. Самую большую группу составили области с высоким уровнем устойчивости — от 7 до 7,9 баллов. Среди них оказалась и омская область, заняв 31-е место.

У омского региона 7 баллов. Такой же результат показали Ставропольский край и Калининградская область. Что интересно, так это баланс позитивных и негативных событий, которые продемонстрировала Омская область. Негативных оказалось намного больше, чем позитивных, и почти все они носят коррупционный характер.

Нижегородцы хотят высказаться! Не чиновникам решать, позволять ли им». Самое примечательное в этой позиции, что кандидат требует от администрации города нарушить областной закон.

Вычитание отрицательных чисел Вычитание может происходить между: Двумя отрицательными числами. После этого, мы увидим выражение из предыдущего пункта, то есть сложение отрицательного числа с положительным. Нужно поменять числа местами и выполнить вычитание. В этом случае получается та же ситуация, что при сложении двух отрицательных чисел. Этот случай больше прочих любим составителями примеров. Значит, получится сложение двух положительных чисел. Стоит добавить, что сложение или вычитание нуля никак не повлияет на отрицательное число. При этом, если из нуля вычесть число, то оно изменит свой знак на противоположный. Что мы узнали? Мы поговорили о том, что такое отрицательное число.

Свежие записи

  • Когда плюс на минус дает плюс
  • Умножение на ноль и единицу
  • Публикации
  • Минус на минус не может дать плюс
  • Почему минус на минус даёт плюс? Сохраните себе это видео | Резерв Математик Андрей

Когда минус на минус дает плюс?

Почему минус на минус даёт плюс? Сохраните себе это видео, чтобы вернуться к нему в любой момент! С просьбой объяснить все «плюсы» и «минусы» майских платежек редактор портала обратился к бухгалтеру центра расчетов с потребителями Алевтине Мальцевой. Лента новостей Друзья Фотографии Видео Музыка Группы Подарки на МИНУС даёт ПЛЮС. Смотрите видео онлайн «Почему минус на минус дает плюс?» на канале «Инженерия XXII» в хорошем качестве и бесплатно, опубликованное 7 апреля 2022 года в 17:25, длительностью 00:15:42, на видеохостинге RUTUBE.

Правило минус на минус дает

Бережливое производство 6sigma Топ-Менеджмент Консалт Новости Lean. В 1904 году на Всемирной ярмарке в Сент-Луисе с торговцем вафлями Эрнестом Хамви случилась настоящая беда! И получается, что минус на минус, дал плюс. и даже минус на минус дает плюс. Как известно, уже в школе всем говорят, что минус на минус дает плюс.

Как понять, почему «плюс» на «минус» дает «минус» ?

Дед взял ложку да как даст бабке по лбу — “БЕЗ-ОТ-КАЗ-НЫЙ”, мля, “БЕЗОТКАЗНЫЙ”. И был нам дарован этот инструмент только тогда, когда люди стали понимать, как надо пользоваться данным инструментом. При вычитании из определенного числа отрицательное число получается плюс (правило: два минуса дают плюс).

Похожие новости:

Оцените статью
Добавить комментарий