Новости что такое шоу алисы

«Алиса» научилась персонализировать «Утреннее шоу». Как настроить новости на Яндекс Алисе: шаг за шагом. Настройка новостей в Яндекс Алисе позволяет получать свежие новости по интересующим вас темам. Виртуальный ассистент Алиса поставит утреннее шоу: слушайте музыку, новости, подкасты и настраивайтесь на день. Яндекс Станция включает Шоу Алисы (погода, новости, музыка и т.п.). Об этом я рассказываю ниже. Для утреннего сценария использую автоматизацию охлаждения кухни кондиционером. Чтобы выбрать тематику новостей и подкастов, нужно просто открыть приложение Яндекс и сказать: «Алиса, открой настройки шоу» или «Алиса, открой настройки новостей». О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам.

Алиса запустила утреннее шоу с персональными рекомендациями

Персональное утреннее шоу уже доступно в «Яндекс. Станции», «Станции Мини» и других «умных» колонках с «Алисой».

Утреннее шоу — это такой формат, который позволяет собрать воедино то, что любишь. Несложные манипуляции с настройками — и человек получает именно то, что хочет. Думаю, новую возможность особенно оценят авторы подкастов, у которых появилась ещё одна площадка», — отметил Андрей Законов, руководитель продукта голосового помощника «Алиса».

Разработчик навыка сможет указать дату, до которой история актуальна. Длительность истории не должна превышать одной минуты. Чтобы подключить навык к утреннему шоу Алисы, оставьте заявку через форму: А теперь — подробнее о работе функциональности. Диалогов: он содержит состояния, поверхность запуска и другие важные параметры.

Можно сказать, что утреннее шоу от Алисы — это некая замена радиостанциям.

Обратите внимание: В отличие от радиостанций, в утреннем шоу Алисы нет рекламы. Отметим, что включить утреннее шоу от Алисы можно не только утром. Оно доступно в любое время дня. При этом для шоу всегда подбираются актуальные к текущему моменту новости если в настройках указано, что шоу должно включать в себя новости. И тогда вместо мелодии будильника будет воспроизводиться шоу. Как настроить утреннее шоу от Алисы Пользователь Яндекс Станции может сформировать в утреннем шоу именно то, что он хочет слышать с утра.

Топовые фишки Яндекс.Станции, о которых вы могли не знать

Пользователи умных колонок с голосовым помощником «Алиса» теперь могут послушать новости технологий от портала Утреннее шоу. Утреннее шоу Алисы — как настроить и использовать Утреннее шоу Алисы позволяет ознакомиться с новейшими новостями, прослушать интересные подкаcты и. «Яндекс» представил апрельское обновление «Алисы» и своих умных устройств. Утреннее шоу Алисы теперь можно настроить на свой вкус. Для этого пользователь может сам выбрать тематику новостей и подкастов.

Слушать утреннее и вечернее шоу Алисы на Станции

Умная лампочка Яндекс с Алисой, цоколь E27, белая (YNDX-00501). «Яндекс» представил апрельское обновление «Алисы» и своих умных устройств. Утреннее шоу Алисы – получайте новости и полезную информацию каждое утро.

Вышло апрельское обновление Алисы и умных устройств Яндекса

Чтобы запустить программу, достаточно сказать: «Алиса, включи утреннее шоу! Слушателей ждут новости, прогноз погоды, музыка и короткие подкасты — например, о том, способны ли животные обманывать или как влияет шоколад на здоровье. Алиса выступает диджеем: ставит и комментирует песни из персонального плейлиста дня на Яндекс. Музыке — в нём собраны треки, отобранные для пользователя.

А еще в настройках появляется возможность добавить в «эфир» подкасты продолжительностью несколько минут и дополнительные навыки — например, какие-нибудь интересные факты. Полезный навык для кухонной «Станции» — расшифровка пищевых добавок Приверженцы здорового образа жизни и правильного питания обычно очень придирчиво относятся к выбору продуктов и внимательно изучают этикетки в магазине. Но, если на кухне оказалось что-то купленное по-быстрому или так же по-быстрому заказанное в доставке, проверить состав можно с помощью «Яндекс. Втройне удобно, когда готовка идет полным ходом и не хочется лишний раз мыть и вытирать руки, чтобы взять смартфон. Намного легче обратиться к «Алисе» с просьбой расшифровать пищевую добавку, указав ее буквенный и цифровой индекс, — колонка расскажет, что это такое и для чего используется в тех или иных продуктах. Голосовые квесты — отличный способ убить время и попробовать себя в неожиданных амплуа Для «Алисы» создано огромное количество игровых навыков, но мы решили выбрать один. Из самого злободневного. Попробуйте себя в президентской гонке в США с навыком «День выборов». В этой игре «Алиса» будет задавать вопросы, а пользователь должен принимать решения и отвечать ей. Задача — не растерять доверие избирателей и привести себя к победе.

Разумеется, навык сделан таким образом, чтобы победа в выборах не досталась легкой ценой. Поэтому не исключено, что игру не раз придется начинать заново.

Прокомментировать 100 Четыре года назад мы запустили Алису. С самого начала она обладала собственным, узнаваемым голосом. Хотя проблемы тоже были: интонации хромали, эмоции скакали от слова к слову, а омонимы и вовсе ставили синтез в тупик. Алиса звучала пусть и не как робот, но ещё и не как человек. Исследования показывают , что желание общаться с голосовым помощником напрямую зависит от того, насколько точно он имитируют речь людей. Поэтому мы постоянно работаем над «очеловечениванием» голоса Алисы. С тех пор сменилось несколько поколений нашего голосового синтеза. Мы научились расставлять интонации, отличать «замОк» от «зАмка» и многое другое.

Сейчас мы переходим на следующий уровень: учим Алису управлять эмоциями и стилем своей речи, распознавать шёпот и отвечать на него шёпотом. Казалось бы, что в этом сложного и почему всё это было невозможно ещё несколько лет назад? Вот об этом я и расскажу сегодня сообществу Хабра. Ранний параметрический синтез: эпоха до Алисы Мы начали заниматься голосовыми технологиями в 2012 году. Через год родился SpeechKit. Ещё через год мы научились синтезировать голос — возможно, вы помните YaC 2014 и экспериментальный проект Яндекс. С тех пор прогресс не останавливается. Исторически речевой синтез бывает двух видов: конкатенативный и параметрический. В случае с первым, есть база кусочков звука, размеченных элементами речи — словами или фонемами. Мы собираем предложение из кусочков, конкатенируя то есть склеивая звуковые сегменты.

Такой метод требует большой базы звука, он очень дорогой и негибкий, зато до пришествия нейросетей давал самое высокое качество. При параметрическом синтезе базы звука нет — мы рисуем его с нуля. Из-за большого прыжка в размерности end2end работает плохо даже сейчас. Лучше разделить это преобразование на два шага: сначала нарисовать звук в особом параметрическом отсюда название метода пространстве, а затем преобразовать параметрическое представление звука в wav-файл. В 2014 году нейросетевые методы речевого синтеза только зарождались. Тогда качеством правил конкатенативный синтез, но нам в эру SpeechKit было необходимо легковесное решение для Навигатора , поэтому остановились на простом и дешёвом параметрическом синтезе. Он состоял из двух блоков: Первый — акустическая модель. Она получает лингвистические данные разбитые на фонемы слова и дополнительную разметку и переводит их в промежуточное состояние, которое описывает основные свойства речи — скорость и темп произнесения слов, интонационные признаки и артикуляцию — и спектральные характеристики звука. К примеру, в начале, до появления Алисы, в качестве модели мы обучали рекуррентную нейросеть RNN с предсказанием длительности. Она достаточно хорошо подходит для задач, где нужно просто последовательно проговаривать фонемы и не надо рисовать глобальную интонацию.

Затем данные передаются на второй блок — вокодер — который и генерирует звук то есть создаёт условный wav по его параметрическому представлению. Вокодер определяет низкоуровневые свойства звука: sampling rate, громкость, фазу в сигнале. Наш вокодер в первой системе был детерминированным DSP-алгоритмом не обучался на данных — подобно декодеру mp3, он «разжимал» параметрическое представление звука до полноценного wav. Естественно, такое восстановление сопровождалось потерями — искусственный голос не всегда был похож на оригинал, могли появляться неприятные артефакты вроде хрипов для очень высоких или низких голосов. Схема параметрического синтеза Это стандартная архитектура для любой ранней параметрики со своими достоинствами и недостатками. Главный плюс — для обучения модели нужно мало данных нам хватило 5-10 часов записей человеческой речи. Можно синтезировать любой произвольный текст, который даже будет плавно звучать. К сожалению, слишком плавно: недостатком раннего параметрического синтеза было то, что полученный голос звучал неестественно. Он был слишком гладким, лишённым интонаций и эмоций, звенел металлом. Люди так не говорят.

Вот как звучал голос при раннем параметрическом синтезе: Причина неестественности синтезированного голоса кроется в самой архитектуре. У акустической модели мало информации о тексте в целом. Даже рекуррентная нейросеть, которая, казалось бы, умеет запоминать предыдущие состояния, очень быстро забывает их и фактически не учитывает полный текст. При этом человек обычно произносит речь, понимая, что только что прозвучало и что будет дальше по тексту. Кроме того, человеческая речь мультимодальна — есть несколько способов произнести текст, каждый из которых описывается сигналом и звучит более-менее нормально. Но среднее между этими способами звучит неестественно. Проблема стандартных регрессионных методов глубокого обучения в том, что они ищут одну моду — «хорошее среднее» — и попадают в такие «провалы неестественности». В результате оказывается, что лучше случайно выбрать один из двух способов, чем попасть в среднее между ними. Впрочем, даже если акустическая модель и смогла бы разобраться в контексте и выдать обогащённое информацией промежуточное состояние, то с ним уже не мог справиться примитивный вокодер. Поэтому мы не остановились и стали искать более совершенные решения.

Конкатенативный синтез: рождение Алисы В 2016 году мы решили создать Алису — сразу было понятно, что это более амбициозная задача, чем всё, чем занимались раньше. Дело в том, что в отличие от простых TTS-инструментов, голосовой помощник должен звучать человечно, иначе люди просто не станут с ним или с ней общаться. Предыдущая архитектура совершенно не подходила. К счастью, был и другой подход. Точнее, даже два. Тогда как раз набирал обороты нейропараметрический подход, в котором задачу вокодера выполняла сложная нейросетевая модель. Например, появился проект WaveNet на базе свёрточной нейросети, которая могла обходиться и без отдельной акустической модели. На вход можно было загрузить простые лингвистические данные, а на выходе получить приличную речь. Первым импульсом было пойти именно таким путём, но нейросети были совсем сырые и медленные, поэтому мы не стали их рассматривать как основное решение, а исследовали эту задачу в фоновом режиме.

Низкочастотный же звук проходит вглубь. Поэтому люди хорошо различают низкочастотные звуки, но высокочастотные сливаются. Мел-спектрограмма как раз позволяет представить звук, акцентируясь на той части спектра, которая значимо различается слухом. Это полезно, потому что мы генерируем звук именно для человека, а не для машины. Вот как выглядит мел-спектрограмма синтеза текста «Я — Алиса»: У мел-спектрограммы по одному измерению [X на рисунке выше] — время, по другому [Y] — частота, а значение [яркость на рисунке] — мощность сигнала на заданной частоте в определенный момент времени. Проще говоря, эта штуковина показывает, какое распределение по мощностям было у различных частот звука в конкретный момент. Мел-спектрограмма непрерывна, то есть с ней можно работать как с изображением. А так звучит результат синтеза: 3. Новый вокодер Вероятно, вы уже догадались, что мы перешли к использованию нового нейросетевого вокодера. Именно он в реальном времени превращает мел-спектрограмму в голос. Наиболее близкий аналог нашего первого решения на основе нейросетей, которое вышло в 2018 году — модель WaveGlow. Архитектура WaveGlow основана на генеративных потоках — довольно изящном методе создания генеративных сетей, впервые предложенном в статье про генерацию лиц. Сеть обучается конвертировать случайный шум и мел-спектрограмму на входе в осмысленный wav-сэмпл. За счёт случайного шума на входе обеспечивается выбор случайной wav-ки — одной из множества соответствующих мел-спектрограмме. Как я объяснил выше, в домене речи такой случайный выбор будет лучше детерминированного среднего по всем возможным wav-кам. В отличие от WaveNet, WaveGlow не авторегрессионен, то есть не требует для генерации нового wav-сэмпла знания предыдущих. Его параллельная свёрточная архитектура хорошо ложится на вычислительную модель видеокарты, позволяя за одну секунду работы генерировать несколько сотен секунд звука. Главное отличие, за счёт которого HiFi-GAN обеспечивает гораздо лучшее качество, заключается в наборе подсетей-дискриминаторов. Они валидируют натуральность звука, смотря на сэмплы с различными периодами и на различном масштабе. Как и WaveGlow, HiFi-GAN не имеет авторегрессионной зависимости и хорошо параллелится, при этом новая сеть намного легковеснее, что позволило при реализации ещё больше повысить скорость синтеза. Кроме того, оказалось, что HiFi-GAN лучше работает на экспрессивной речи, что в дальнейшем позволило запустить эмоциональный синтез — об этом подробно расскажу чуть позже. Схема HiFi-GAN из статьи авторов модели Комбинация этих трёх компонентов позволила вернуться к параметрическому синтезу голоса, который звучал плавно и качественно, требовал меньше данных и давал больше возможностей в кастомизации и изменении стиля голоса. Параллельно мы работали над улучшением отдельных элементов синтеза: Летом 2019 года выкатили разрешатор омографов homograph resolver — он научил Алису правильно ставить ударения в парах «зАмок» и «замОк», «белкИ» и «бЕлки» и так далее. Здесь мы нашли остроумное решение. В русском языке эти слова пишутся одинаково, но в английском написание отличается, например, castle и lock, proteins и squirrels. Из этого представления легко выделить информацию о том, как произносить омограф, ведь перевод должен различать формы для корректного подбора английского варианта. Буквально на 20 примерах можно выучить классификатор для нового омографа, чтобы по эмбеддингу перевода понимать, какую форму нужно произнести. Летом 2020 года допилили паузер для расстановки пауз внутри предложения. Язык — хитрая штука. Не все знаки препинания в речи выражаются паузами Например, после вводного слова «конечно» на письме мы ставим запятую, но в речи обычно не делаем паузу. А там, где знаков препинания нет, мы часто делаем паузы. Если эту информацию не передавать в акустическую модель, то она пытается её выводить и не всегда успешно. Первая модель Алисы из-за этого могла начать вздыхать в случайных местах длинного предложения. Для этого мы взяли датасет, разметили его детектором активности голоса, сгруппировали паузы по длительности, ввели класс длины паузы, на каждое слово навесили тэг и на этом корпусе обучили ещё одну голову внимания из тех же нейросетевых эмбеддингов, что использовались для детекции омографов. Осенью 2020 года мы перевели на трансформеры нормализацию — в синтезе она нужна, чтобы решать сложные случаи, когда символы читаются не «буквально», а по неким правилам. Например, «101» нужно читать не как «один-ноль-один», а как «сто один», а в адресе yandex. Обычно нормализацию делают через комбинацию взвешенных трансдьюсеров FST — правила напоминают последовательность замен по регулярным выражениям, где выбирается замена, имеющая наибольший вес. Мы долго писали правила вручную, но это отнимало много сил, было очень сложно и не масштабируемо. Тогда решили перейти на трансформерную сеть, «задистиллировав» знания наших FST в нейронку. Теперь новые «правила раскрытия» можно добавлять через доливание синтетики и данных, размеченных пользователями Толоки, а сеть показывает лучшее качество, чем FST, потому что учитывает глобальный контекст. Итак, мы научили Алису говорить с правильными интонациями, но это не сделало ее человеком — ведь в нашей речи есть еще стиль и эмоции. Работа продолжалась. С чувством, толком, расстановкой: стили голоса Алисы Один и тот же текст можно произнести десятком разных способов, при этом сам исходный текст, как правило, никаких подсказок не содержит. Если отправить такой текст в акустическую модель без дополнительных меток и обучить её на достаточно богатом различными стилями и интонациями корпусе, то модель сойдёт с ума — либо переусреднит всё к металлическому «голосу робота», либо начнёт генерировать случайный стиль на каждое предложение. Это и произошло с Алисой: в начале она воспроизводила рандомные стили в разговоре. Казалось, что у неё менялось настроение в каждом предложении. Вот пример записи с явными перебоями в стилях: Чтобы решить проблему, мы добавили в акустическую модель стили: в процессе обучения нейросети специально ввели «утечку». Суть в том, что через очень lossy-пространство всего 16 чисел на всё предложение разрешаем сетке посмотреть на ответ — истинную мел-спектрограмму, которую ей и нужно предсказать на обучении. За счёт такой «шпаргалки» сеть не пытается выдумывать непредсказуемую по тексту компоненту, а для другой информации не хватит размерности шпаргалки. На инференсе мы генерируем стилевую подсказку, похожую на те, что были в обучающем сете. Это можно делать, взяв готовый стиль из обучающего примера или обучив специальную подсеть генерировать стили по тексту. Если эту подсеть обучить на особом подмножестве примеров, можно получить специальные стили для, скажем, мягкого или дружелюбного голоса. Или резкого и холодного. Или относительно нейтрального. Чтобы определиться со стилем по умолчанию, мы устроили турнир, где судьями выступали пользователи Толоки. Там не было разметки, мы просто нашли кластеры стилей и провели между ними соревнование. Победил кластер с очень мягкой и приятной интонацией.

8 новых фишек «Яндекс Станций» и «Яндекс ТВ Станций», которые появились в апреле

Голосовой помощник «Алиса» для смарт-колонок «Яндекса» научился вести утренние шоу. В компании обещают персонализированные программы с полезной информацией, любимой музыкой, новостями и прочим интересным каждому пользователю контентом. Что сказать: «Алиса, запусти утреннее шоу», «Алиса, включи утреннее шоу». Эти программы помогают узнать нужную информацию в начале дня или рассказать о том, что вы могли пропустить. Обновление Алисы также включает в себя улучшенное утреннее шоу: теперь там не только новости и музыка, но и короткие подкасты, даты в истории, мудрости и комплименты. Настроить Утреннее шоу Алиса. В последнее время я отказался от соцсетей и почти не читаю новостей о том, что происходит в мире, не считая спорта. В конце 2020 года утреннее шоу Алисы стало персонализированным. Это означает, что вы можете настроить его в соответствии с вашими интересами, указав предпочтительные темы новостей и подкастов.

Как проверить статус заказа ВкусВилл

  • Команды и сценарии для Алисы: покоряем умного помощника
  • Утреннее шоу — бодрящий навык Алисы
  • Как запустить Утреннее шоу Алисы | Как спросить, фишки навыка
  • Категория Новости | Улучшенный каталог навыков Алисы

Место под большое лого и рекламу навыков

Шаг 3: Выберите раздел «Новости». Слушать утреннее шоу Алисы Утреннее шоу Алисы поможет настроиться на день и не забыть о важном. Друзья Алисы и пользователи сервисов Яндекса, общаясь с Алисой, смогут узнавать актуальные новости из мира мотоциклов. Алиса с каждым днем становится лучше, и теперь у нее появилось собственное утреннее шоу! Каждое утро вас ждет коктейль из рассказа о погоде, персональной подборки новостей, выпуска классного подкаста и, специально подобранных под вас треков с комментариями Алисы! Команды и сценарии для Алисы: покоряем умного помощника. Поэтому мы учим её следить за новостями, развлекать пользователей и создавать приятную атмосферу в доме, и утреннее шоу — первый шаг в этом направлении», — говорит руководитель продукта Андрей Законов.

Шёпот и эмоции в Алисе: история развития голосового синтеза Яндекса

Настроить Утреннее шоу Алиса. В последнее время я отказался от соцсетей и почти не читаю новостей о том, что происходит в мире, не считая спорта. «Алиса, включи шоу» — для начала воспроизведения выбранного видео. первый шаг в этом направлении". Мы расскажем, что такое сценарии для Алисы, чем они отличаются от команд и какие хорошие команды уже придумали пользователи. «Алиса» научилась персонализировать «Утреннее шоу». Настройка частоты получения новостей позволит вам сделать использование навыка Алисы более удобным и эффективным, подстроив его под ваш ритм жизни. Чтобы настроить «Новости колонка Алиса», вам нужно открыть мобильное приложение или сайт Яндекс.

Похожие новости:

Оцените статью
Добавить комментарий