Новости термоядерная физика

В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного.

Американские физики повторно добились термоядерного зажигания

Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд.
Ученые в США провели третий успешный эксперимент с ядерным синтезом Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание.

Ракетчики начали строить термоядерный двигатель

В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад. Что же касается той новости, которую вы пересказываете сейчас, то это типичная армия Венка, которая вот-вот придет и спасет Берлин;.

Главной задачей JET было подготовить сценарий технических характеристик, близкий к запланированному для постройки международного термоядерного экспериментального реактора ИТЭР. На реакторе JET было достигнуто первое в мире контролируемое выделение мощности синтеза на дейтерий-тритиевой реакции 1991 год , этому же реактору принадлежит мировой рекорд мощности управляемого термоядерного синтеза — 16 МВт 1997 год. При таких колоссальных температурах ядра изотопов водорода сталкиваются и, преодолевая кулоновский барьер, сливаются, образуя ядра атомов гелия. В результате каждого акта такого синтеза должно выделиться 17,6 МэВ энергии. При нагревании топливная смесь приходит в состояние полностью ионизированной плазмы, словно в солнечном ядре, где каждую секунду сгорают тонны водорода, также превращаясь в гелий. Сверхпроводящие тороидальная и полоидальная катушки совместно с центральным соленоидом удерживают плазму внутри вакуумного сосуда реактора. Эти катушки генерируют магнитное поле, которое формирует плазму в тор.

В 1950-х годах считалось, что MFE можно достичь относительно легко. Шла настоящая гонка: кто первым создаст подходящую установку. К концу 1950-х годов стало ясно, что турбулентность и нестабильность в плазме — серьезные проблемы. В 1968 году советская команда изобрела токамак, который показал производительность в 10 раз выше, чем альтернативные способы. Курчатова под руководством академика Льва Арцимовича. С тех пор считается наиболее перспективной идея токамаков с магнитным плазменным удержанием. Однако есть и другая концепция термоядерного синтеза — инициирование цепных реакций внутри реактора путем нагревания и сжатия топливной мишени с помощью мощного лазерного излучения так называемый инерционный синтез. Применяются мощные лазеры для того, чтобы зажечь небольшую мишень — ампулу, содержащую топливо, и быстро менее чем за одну миллиардную долю секунды достичь условий термоядерного синтеза.

Лазер используется для генерации импульса инфракрасного света, который длится несколько миллиардных долей секунды с миллиардными долями джоуля энергии. У этой технологии есть свои подводные камни. Лазеры с высоким КПД должны интенсивно, а главное — однородно облучать мишени; при этом важны сверхточная фокусировка лазеров, скрупулезное соблюдение размеров мишеней, их строго сферическая форма. Несколько ампул за секунду должны быть загружены в реактор с фиксированным положением по центру — это особенно сложно осуществить, учитывая масштабы реактора. Самая крупная экспериментальная установка, работающая по принципу инерционного синтеза, — это Национальный центр зажигания National Ignition Facility , расположенный в США, в Ливерморской национальной лаборатории им. NIF — самая мощная лазерная система в мире, насчитывающая 192 лазерных пучка. Принцип работы тот же, но в LMJ 176 лазерных луча. ТОП-7 событий в области термояда в 2018 году: В марте специалисты отдела оптики низкотемпературной плазмы ФИАН представили систему контроля концентрации водяного пара в плазме, которая обеспечит безопасность водяной системы охлаждения термоядерного реактора.

В апреле ученые Института ядерной физики им. Будкера представили технологию, позволяющую в реальном времени наблюдать поведение конструкционных материалов при термоядерном синтезе. В июле американская Lockheed Martin запатентовала дизайн компактного реактора CFR, прототипы которого были представлены еще в 2017 году. В августе в Оксфордском университете запущена импульсная установка FLF. В сентябре специалисты Токийского университета представили устройство для создания магнитного поля с полностью контролируемыми параметрами, причем магнитное поле экспериментально удается продержать 100 мкс — это абсолютный рекорд.

Потому что образуются неустойчивые элементы, период полураспада которых исчисляется сотнями лет, а некоторые — и тысячей лет. К проблеме наземных термоядерных испытаний и любых взрывов, связанных с выделением термоядерной энергии, ядерной энергии, надо относиться очень ответственно, — подчеркнул Анатолий Локоть. RU, что термоядерный взрыв — это подрыв сразу двух бомб. Сначала взрывается атомная бомба, которая в итоге является запалом водородной бомбы. И сила у того взрыва колоссальная. Например, в Хиросиме США взорвали только относительно небольшую атомную бомбу, и последствия были ужасающие. Понять я это не могу. Может быть, если на какой-то огромной высоте, если взорвать, то людей массово сразу не убьет, но всё равно радиоактивные осадки будут перемещаться в атмосфере по Земле и в конце концов выпадут вместе с дождями, с пылью на головы всех людей, — отметил физик. Заражение может распространиться по всей Земле и выпасть осадками в другом регионе, стране — это негативные последствия, которые возможны повсеместно. А катастрофические — локальны, — ответили на запрос корреспондента NGS. RU в институте. От такого взрыва могут погибнуть миллионы людей. Просчитать точно все последствия просто невозможно. Но вопрос об угрозе ядерной зимы всё же остается открытым. Электронику отрубит, а вот со спутниками — вопрос У любого взрыва есть свой радиус. RU Вероятность выхода из строя электроприборов после термоядерного взрыва очень высока, так как даже большая вспышка на солнце может оставить людей без гаджетов и электричества. Всё вырубилось вообще из-за сильной вспышки на Солнце. Но опять же это локальные вещи, — отметил физик. И это всё равно что подключить неожиданно к проводу колоссальный источник с огромным напряжением, на которое вся система не рассчитана. И всё это просто вырубается, если не сгорает. Все чипы могут сгореть навсегда. Но есть важное уточнение — влияние на весь мир, а тем более на спутники, термоядерный взрыв над Сибирью не окажет.

Термоядерная реакция позволяет звездам генерировать огромные объемы энергии, однако на Земле ее крайне трудно воспроизвести, так как для поддержания такой реакции требуется чрезвычайно высокоэнергетическая среда. Для этого ученым необходимо обеспечить стабильное «зажигание», которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта «зажигания», команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча.

Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики

Хорошие новости продолжают поступать в области исследований ядерного синтеза. Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии.

Российский инженер рассказала о значении термоядерного прорыва американских ученых

Одно из таких направлений - термоядерные исследования и плазменные технологии. Это третий федеральный проект внутри РТТН - комплексной программы развития техники, технологий и научных исследований в области использования атомной энергии. Он третий по важности, срочности, ожиданиям? Виктор Ильгисонис: Он просто один из пяти, по порядку. Не следует придавать нумерации какое-либо значение. Но если говорить о числе вовлеченных в проект организаций вне контура "Росатома", то термоядерный проект - однозначно первый. Его масштабность, широта охвата, многообразие ожидаемых результатов и их применений в значительной степени обусловили причисление всей программы РТТН к числу национальных проектов. Самой дорогостоящей частью "термоядерного" федерального проекта, как и всей программы РТТН, принято считать модернизацию существующей инфраструктуры и создание новых экспериментальных установок. Что тут в приоритетах? Где и на каких площадках уже ведутся такие работы?

Виктор Ильгисонис: В действующей версии программы главный приоритет - это вывод на рабочие режимы токамака Т-15МД в Национальном исследовательском центре "Курчатовский институт", который должен быть оснащен различными системами дополнительного нагрева плазмы, диагностики, сбора и обработки данных, генерации тока и другими современными элементами. Осуществляются поддержка и развитие экспериментальной базы термоядерных исследований на площадках Физико-технического института имени Иоффе в Санкт-Петербурге, Института ядерной физики имени Будкера в Новосибирске, Национального исследовательского ядерного университета МИФИ в Москве. Серьезные "задельные" работы по развитию инфраструктуры, ориентированные на следующий до 2030 года этап реализации федерального проекта, ведутся в научном центре ТРИНИТИ в Троицке. Год назад вы говорили о 110 контрольных точках по этому проекту, на 2023-й их в полтора раза больше. Как продвигаетесь по маршруту и что требует особого внимания? Виктор Ильгисонис: Движемся по плану, скрупулезно выполняя намеченное. Трудности, конечно, есть. Серьезный момент - заметное удорожание любого строительства в связи с известными причинами. Это может привести к смещению графика завершения строек на следующий этап проекта и к "заморозке" сооружения новых запланированных объектов.

Чтобы этого избежать и обеспечить полноценное продление РТТН на период до 2030 года, как это определено Указом Президента Российской Федерации, абсолютно необходима поддержка правительства, всех вовлеченных в процесс федеральных органов исполнительной власти. Без этого, если финансирование федерального проекта и РТТН в целом будет вестись по остаточному принципу и подвергаться периодическому "обрезанию", наши амбициозные цели останутся таковыми лишь на бумаге. Токамак - это тот редкий случай, когда название научной установки, созданной в нашей стране, разошлось по миру и стало международным брендом.

И вот недавно я случайно узнал, что, в каком-то роде, пошел прямо по дедушкиным стопам!

Перебирая домашний архив, я обнаружил грамоту более, чем 40-летней давности, которую в свое время вручили моему деду за вклад в автоматизацию экспериментов на токамаках ФТИ, где я сейчас работаю! Так что, в науку я попал неслучайно В школе я любил алгебру, геометрию и физику. С девятого класса я учился в специализированном лицее с физико-математическим уклоном. А потом поступил на кафедру экспериментальной ядерной физики в Политехнический тогда еще институт в Санкт-Петербурге.

Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им.

И тогда на стенку камеры идет очень высокий поток частиц, который ее разрушает. Проблема первой стенки — одна из важнейших для энергетического реактора. Если вы снизите требования к интенсивности реакции, то эти потоки уменьшаются и проблема защиты стенки перестает быть такой острой. Но возникает вопрос: а где мы можем применять эти нейтроны? Оказывается, мы можем их использовать в целях создания топлива для обычных атомных реакторов. Это так называемые гибридные системы «синтез — деление», и они сейчас здесь очень активно обсуждаются и развиваются. Практическая реализация таких систем важна. Но чего сейчас здесь удалось достичь?

Каков сегодня мировой рекорд ее удержания, где он достигнут? Первый токамак со сверхпроводящими магнитными системами был построен в Курчатовском институте. Потом, в силу ряда обстоятельств, эта система не получила развития. Точнее, она получала развитие в токамаке Т-15, который создавался в Курчатовском институте, но из-за слома Советского Союза дело не было доведено до конца. На Западе и Востоке довели. Надо понимать, что, помимо времени удержания, еще есть требования на плотность, температуру, и вообще для того, чтобы термоядерный реактор работал, необходимо, чтобы тройное произведение — время удержания, плотность и температура — было выше некоторой величины. Длительность удержания разряда в высокотемпературной плазме на китайском токамаке — более 100 с. Требуемые температуры также достигнуты. Реализовать их одновременно в одной установке предполагается в ITER.

Сегодня здесь лидеры китайцы. У них разряд в высокотемпературной плазме держится больше сотни секунд. В ITER будет два режима. Один — режим удержания в течение пяти часов, другой, более короткий — в течение нескольких десятков секунд. Если мы говорим о системах с магнитным удержанием, а только о них мы и должны говорить, все-таки их придется периодически перезаряжать. То есть система работает несколько часов, потом она останавливается, прочищается за час и потом опять работает. В этом смысле коэффициент использования мощности будет высоким. Мы все живем благодаря термоядерной энергетике — не только в смысле зарплаты, а в смысле создания практически не ограниченного топливными ресурсами энергетического источника. Термоядерная реакция — такой источник энергии.

Человечество жаждет овладеть такой энергией. В конечном счете человечеству нужно практическое применение. И первое такое применение будет на гибридных системах. Можно получать топливо, облучая уран и превращая его в изотоп, используемый в атомных реакторах. Можно также облучать торий, которого больше на Земле, чем урана, и из него тоже нарабатывать топливо. Это одно направление. А второе направление, может быть, не менее важное, связано вот с чем. Радиоактивные отходы получаются даже при энергетике, основанной на быстрых реакторах. Их нужно убирать, организуя так называемую трансмутацию — перевод радиоактивного ядра в спокойное при нейтронном облучении в гибридном реакторе.

И термоядерные установки тоже могут использоваться для выжигания радиоактивных отходов. Например, эти отходы сегодня могут быть активно использованы для продуктовой промышленности. Сейчас наш институт НИИТФА поставляет такие установки на внутренний и зарубежный рынки для стерилизации пищевых продуктов. В этих установках пищевые или медицинские продукты, например шприцы, проходят через поле излучения радиоактивных изотопов и в результате оказываются стерилизованными. Действительно, а можно ли облучать пищевые продукты? Так вот, в соответствии с американскими исследованиями этой идеи — да, можно, если брать определенные дозы. Насколько я понимаю, в космос берут пищу, которая стерилизована именно таким образом. Другое дело, что здесь играет роль еще и экономика. Что дешевле?

Одно из построенных решений представлено ИТЭР, ранее известным как Международный термоядерный экспериментальный реактор, который строится с 2010 года в Карадаше, Франция. Первые эксперименты, первоначально запланированные на 2018 год, были перенесены на 2025 год.

Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии

«Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки.

Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца

Американцы произвели термоядерный прорыв к 100-летию советского академика Басова - МК Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил.
Прототип российского термоядерного реактора: для чего он необходим? Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5.
˜˜˜˜˜ и ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜ Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия.

Термоядерный синтез

Китайский термоядерный реактор поставил рекорд в ядерной энергетике. Хорошие новости продолжают поступать в области исследований ядерного синтеза. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. Американцы совершили прорыв в изучении термоядерной энергии. Пара слов о физике плазмы: на волне Волна боянов, Наука, Физика, Термоядерный синтез, Термоядерный реактор, Плазма, Токамак, Длиннопост. На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс.

Ученые в США провели третий успешный эксперимент с ядерным синтезом

И люди учатся — и ученые, и не ученые, руководители — учатся работать вместе, имея в виду учет интересов партнера. Причем это разные ментальности, разные цивилизации, империи, если хотите, участвуют в проекте ИТЭР». Главное сейчас — чтобы в этом проекте не было никакого протекционизма или энергетических воин. Чтобы Европейский союз, который имеет в этом проекте 45 процентов, не стал бы заставлять Россию играть по своим правилам, используя так называемый Европейский энергетический пакет, а США, у которых в ИТЭР, как и у России, 9 процентов, не стали бы потом шантажировать европейские компании, участвующие в строительстве газопровода «Северный поток — 2». Впрочем, главное отличие термоядерной энергетики — именно в неисчерпаемости топлива. И в этом смысле ИТЭР создает тот энергоресурс, который может использоваться бесконечно.

А борьба за него может стать очень жесткой. Картина дня.

Это открывает невероятные перспективы, в теории позволяя обеспечить человечество почти неисчерпаемым источником энергии.

Источник изображения: Lawrence Livermore National Laboratory Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии, чем затрачивалось на запуск реакции синтеза. Это могло бы стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и, конечно, избавиться от вредных выбросов в атмосферу. В Ливерморской национальной лаборатории воспроизвели т. Эксперимент проходил в минувшие две недели.

В Министерстве энергетики США уже назвали результаты эксперимента «крупным научным прорывом».

Какие именно технологии и системы для этого нужны? Виктор Ильгисонис: Это инновационные разработки магнитных систем, конструктивных элементов бланкета, дивертора, первой стенки. Это оригинальные системы топливного цикла, нагрева плазмы и отвода энергии и многое другое. Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике А разве этого нет в проекте ИТЭР? Виктор Ильгисонис: В том-то и дело. Наши решения оригинальны, таких нет ни в проекте ИТЭР, ни в национальных проектах зарубежных коллег. Абсолютно закономерно, что проект ТРТ возник в России - он способен вернуть нашей стране прежнее лидерство, во многом утраченное за постсоветское время. Так что ТРТ - не мутант, а, скорее, естественный продукт эволюции. И его перспективы будут зависеть от той поддержки со стороны правительства в финансировании программы РТТН, о которой мы уже говорили.

К концу 2024 года планируем завершить разработку эскизного проекта и отработать ряд ключевых элементов технического проекта. Так что при одобрении "сверху" сооружение ТРТ к 2030 году - вполне реальная задача. У "Росатома" есть действующее соглашение с РАН. Как оцениваете участие академических институтов в совместной реализации федерального проекта "Термоядерные и плазменные технологии"? Виктор Ильгисонис: Как абсолютно необходимое. Дело в том, что все академические институты - участники проекта "Термоядерные и плазменные технологии" - имеют собственные уникальные компетенции, освоение которых в контуре "Росатома" заведомо нецелесообразно, если мы исповедуем государственный подход. О других и не говорим… Виктор Ильгисонис: Так вот: уже упомянутый мною Институт прикладной физики в Нижнем Новгороде разрабатывает и производит лучшие в мире гиротроны - специальные устройства для мощного нагрева электронной компоненты плазмы. Новосибирский ИЯФ создает источники ионов и нейтральных атомов высокой энергии, которые приобретаются всеми ведущими мировыми лабораториями. Санкт-Петербургский физтех - признанный авторитет в методах высокочастотного нагрева плазмы… Список можно продолжать. И сказанное в полной мере относится не только к институтам РАН, но и к организациям НИЦ "Курчатовский институт", к вовлеченным в проект университетам.

Какие риски здесь можно и должно прогнозировать с учетом нарастающих антироссийских санкций? Виктор Ильгисонис: Вопрос о пользе нашего участия задают уже лет пятнадцать - с того момента, как проект стартовал. Очевидная и главная польза - это ожидаемое появление в мире уникального экспериментального устройства, создание которого оказалось непосильным ни для одной страны.

Это все равно что создать аналог Солнца на Земле, запустив в нем такие же реакции, но в миниатюре, и при этом абсолютно управляемые. О том, каких успехов добились ученые ко второму десятилетию XXI века, есть ли будущее у огромного «бублика» — Международного экспериментального термоядерного реактора — токамака ITER, мы узнали, поговорив с российскими физиками-ядерщиками. Страна готовится к запуску большой программы развития термоядерной энергетики. В связи с этим хотелось бы понять, на какие типы реакторов сейчас делают ставку ученые во всем мире и в России. В отличие от ядерной энергетики, которую человечество «приручило» для мирных целей всего через пять лет после создания и испытания ядерной бомбы, термояд — аналог солнечных реакций — оказался не так прост. Со времени взрыва первой водородной термоядерной бомбы в 1953 году прошло уже 68!

Не получается у людей «зажечь» свое земное «солнце», чтобы питало бесплатной энергетикой весь мир. Ходят, конечно, разговоры, что это просто невыгодно нефтяным магнатам — вот термоядерные технологии и не продвигаются вперед. Но отбросим конспирологию. Тем более что ископаемых запасов углеводородов осталось менее чем на полвека, а потому, как ни крути, надо доводить до ума мирный атом. Как объединить необъединяемое Если в ядерных реакциях ядрам урана, плутония, тория выгодней распадаться для запуска цепной взрывной реакции, то при термоядерном варианте, наоборот, балом правит реакция объединения легких ядер изотопов водорода, гелия и бора. Зачем нам вообще понадобилась термоядерная энергия, если у нас есть уже атомные станции, работающие на принципе распада ядерного вещества? Во-первых, термоядерный синтез более безопасный, во-вторых, перспективный — на земле неисчерпаемые запасы дейтерия, который можно бесконечно добывать в Мировом океане. Классическая термоядерная реакция происходит следующим образом: берется ядро дейтерия изотоп водорода, состоящий из 1 протона и 1 нейтрона и ядро трития 1 протон и 2 нейтрона. Оба положительно заряжены и друг от друга, естественно, отталкиваются.

Но физики народ упрямый — им надо во что бы то ни стало их объединить, принудительно разогнать до сверхскоростей при высочайшей температуре и сблизить настолько, чтобы было преодолено электростатическое отталкивание. Тогда и возникнет ядерная реакция с выделением энергии. Атомы трития и дейтерия ионизируются и образуют плазму, которую до определенного времени нужно поддерживать в активном состоянии при очень высоких температурах, измеряемых в сотнях миллионов градусов, а в идеале прийти к тому, что реакция будет энергетически поддерживать саму себя. Цель — получить «положительный выход», чтобы выделившейся энергии в итоге оказалось больше, чем вы получили от розетки на разогрев той самой плазмы. Реактор должен дать больше, чем взял. И этого до сих пор, за десятки лет работы ядерщиков, не достиг еще никто ни в одной стране мира. Токамак или дырка от бублика? Ученые постоянно находятся в поиске. Возьмем, к примеру, изобретенный в России самый традиционный способ получения плазмы — в устройстве под названием токамак тороидальная, или бубликообразная, камера с магнитными катушками.

Кстати, слово «токамак» — это один из немногих русизмов, уже вошедший в обиход ученых всего мира. Плазма в этом реакторе удерживается в торе магнитным полем, не контактируя с материальной стенкой. По принципу токамака с начала 90-х годов прошлого века создается самый большой термоядерный реактор в мире — IТER.

Похожие новости:

Оцените статью
Добавить комментарий