Новости электростанция по составу

В состав электростанции входит четыре ГДЭС контейнерного исполнения типа «Энерго-ГД400/0,4КН31» мощностью 400 кВт, напряжением 0,4 кВ на базе ДГУ Cummins С550D5. Также в состав электростанции входит единственная на реке Урал гидроэлектростанция — Ириклинская ГЭС, которая играет огромную роль в водоснабжении и регулировании водных ресурсов региона. А теперь посмотрим какие же еще электростанции строятся в России на данный момент. Установленная мощность электростанций, входящих в состав "Русгидро", включая Богучанскую ГЭС, составляет 38 ГВт.

Архив новостей

  • В Новосибирске начали производство гибридных электростанций для удаленных районов
  • Holtec представила проект комбинированной атомно-солнечной электростанции | Атомная энергия 2.0
  • Федор Опадчий: «Татарстану в наименьшей степени сейчас нужна АЭС»
  • В Новосибирске начали производство гибридных электростанций для удаленных районов

В Петербурге завершают испытания новой российской мегаваттной электростанции

Территория распространения: Российская Федерация, зарубежные страны. Учредитель: Гомзина Елена Борисовна. Главный редактор: Гомзина Елена Борисовна. Электронная почта редакции: editor kolomna-spravka.

Бизнес-стратегия компании предусматривает также экспорт гибридных установок в объеме до 10 МВт в год в Южную Африку, Индию, Пакистан, Чили и другие страны, в которых наблюдаются проблемы с энергоснабжением удаленных районов. Объем мирового рынка в данном сегменте составляет 200-250 МВт в год. Следует отметить, что первая в мире промышленная автономная дизель-солнечная энергоустановка мощностью 1 МВт с использованием накопителей электроэнергии была построена в Южной Африке в декабре прошлого года и предназначена для создания бесперебойного источника энергоснабжения работ горнодобывающей компании. Читайте также:.

Распределение различных технологий накопления электрической энергии по основным характеристикам Атомная энергетика — это отрасль, которая балансирует на грани использования консервативных, проверенных временем технических решений, с одной стороны, и концептуально новых и прогрессивных достижений науки и техники, с другой. Для отечественной атомной отрасли практически неизменными являются подходы к проектированию и сооружению систем аварийного электроснабжения САЭ. К достоинствам таких накопителей энергии можно отнести хорошую масштабируемость энергоемкости, высокие показатели надёжности референтность в общей мировой промышленности , высокую скорость реакции на возникнувшую потребность в запасённой энергии, хорошие удельные характеристики, приемлемый ресурс и постоянно снижающаяся цена. К недостаткам ЛИА-накопителей энергии можно отнести малые емкости единичного аккумулятора, что приводит к необходимости собирать батареи из большого количества элементов, и, следовательно, к увеличению общей площади застройки. При этом возрастает доля неосновных подсистем, как в стоимости, так и массогабаритных показателях всего изделия. С другой стороны, большое количество параллельных модулей СНЭЭ повышает надёжность системы в целом. Предварительные проработки в части оценки стоимости альтернативы ДГУ в виде СНЭЭ аналогичных параметров, обеспечивающей надежным электроснабжением энергоблок в течение не менее 72 часов, показывают десятикратное увеличение капитальных затрат. Внешний вид модуля СНЭЭ в контейнерном исполнении В отношении замены СКАБ на СНЭЭ на базе ЛИАБ, наоборот, аналитические исследования [6] показывают абсолютное преимущество над традиционными решениями как со стороны экономической целесообразности капитальные и эксплуатационные затраты , так и с точки зрения сокращения размеров помещений аккумуляторного хозяйства. Кроме того, при отказе от традиционных решений на основе СКАБ исключается проблема обеспечения водородной взрывопожаробезопасности. В качестве еще одного направления применения СНЭЭ может рассматриваться расширение функциональных возможностей проектов АЭС в части оказания услуг по обеспечению системной надежности энергосистем. Системная надежность — способность электроэнергетической системы ЭЭС выполнять функции по производству, передаче, распределению электроэнергии и электроснабжению потребителей в требуемом количестве и нормируемого качества путем технологического взаимодействия системного оператора Единой энергетической системы СО ЕЭС , генерирующих установок, магистральных электрических сетей, центров питания электрических сетей региональных электросетевых компаний и крупных потребителей [11]. В частности, под системной надежностью понимается способность удовлетворять в любой момент времени общий спрос на электроэнергию в соответствии с техническими условиями поставки в отношении качественных и количественных показателей надежности и качества поставляемой электроэнергии мощности. Одним из основных общесистемных и критически важных параметров является частота электрического тока. Частота оказывает влияние на режимы работы энергетического оборудования электростанций вибрации, износ турбин и т. Регулирование частоты и перетоков мощности осуществляется непрерывно с использованием первичного общего и первичного нормированного, вторичного и третичного регулирования. Требования к допустимым отклонениям частоты для первой и второй синхронных зон, настройки «мертвых зон» регуляторов, области недопустимых отклонений частот и действия противоаварийной автоматики представлены на рис.

Она подается снизу в активную зону реактора с помощью главных циркуляционных насосов. Именно теплоноситель передает тепло за пределы реактора. Он обращается в замкнутой системе труб — контуре. Первый контур нужен для того, чтобы отобрать тепло у разогретого реакцией деления реактора охладить его и передать его дальше. Первый контур является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть, преимущественно ядерный реактор. В активной зоне ядерного реактора находится ядерное топливо и, за редким исключением, так называемый замедлитель. Как правило, в большинстве типов реакторов в качестве топлива применяется уран 235 или плутоний 239. Для того чтобы можно было использовать ядерное топливо в реакторе, его первоначально помещают в тепловыделяющие элементы — твэлы. Это герметичные трубки из стали или циркониевых сплавов внешним диаметром около сантиметра и длиной от нескольких десятков до сотен сантиметров, которые заполнены таблетками ядерного топлива. При этом в качестве топлива выступает не чистый химический элемент, а его соединение, например оксид урана UO2. Все это происходит еще на предприятии, где ядерное топливо производится. Для упрощения учета и перемещения ядерного топлива в реакторе твэлы собираются в тепловыделяющие сборки по 150—350 штук. Одновременно в активную зону реактора обычно помещается 200—450 таких сборок. Устанавливают их в рабочих каналах активной зоны реактора. Именно твэлы — главный конструктивный элемент активной зоны большинства ядерных реакторов. В них происходит деление тяжелых ядер, сопровождающееся выделением тепловой энергии, которая затем передается теплоносителю. Конструкция тепловыделяющего элемента должна обеспечить отвод тепла от топлива к теплоносителю и не допустить попадания в теплоноситель продуктов деления. В ходе ядерных реакций образуются, как правило, быстрые нейтроны, то есть нейтроны, имеющие высокую кинетическую энергию. Если не уменьшить их скорость, то ядерная реакция со временем может затухнуть. Замедлитель и решает задачу снижения скорости нейтронов. В качестве замедлителя, широко используемого в ядерных реакторах, выступают вода, бериллий или графит. Но наилучшим замедлителем является тяжелая вода D2O. Здесь нужно добавить, что по уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые на тепловых нейтронах и быстрые на быстрых нейтронах. Сегодня в мире только два действующих реактора на быстрых нейтронах и оба находятся в России. Они установлены на Белоярской АЭС. Однако использование реакторов на быстрых нейтронах является перспективным, и интерес к этому направлению энергетики сохраняется. Скоро реакторы на быстрых нейтронах могут появиться и в других странах. Так вот, в реакторах на быстрых нейтронах в замедлителе нет необходимости, они работают по другому принципу. Но и систему охлаждения реактора здесь тоже нужно выстраивать иначе. Вода, применяемая в качестве теплоносителя в тепловых реакторах, — хороший замедлитель, и ее использование в этом качестве в быстрых реакторах невозможно. Здесь могут применяться только легкоплавкие металлы, например ртуть, натрий и свинец.

Все новости

  • Что еще почитать
  • Holtec представила проект комбинированной атомно-солнечной электростанции | Атомная энергия 2.0
  • Новости партнеров
  • В Омске построят солнечную электростанцию «под ключ» - АБН 24

Вторая очередь энергоцентра для производителя пластмассовых изделий в Нижегородской области

Как раз работа в составе «большой» ЕЭС позволяет наиболее эффективно вырабатывать электроэнергию на тех электростанциях, которые в настоящий момент работают в сети и готовы нести нагрузку. Электростанция состоит из двух газовых турбин SGT-800 Siemens мощностью 45 МВт каждая, работающих по простому термодинамическому циклу. АО «Концерн Титан-2» (50% акций принадлежит АО «Концерн Росэнергоатом», входящему в состав Росатома) войдет в число участников проекта сооружения АЭС «Аккую» (Турция) и выполнит ряд работ в качестве подрядчика АО «Атомстройэкспорт». «Росатом» построит плавучие электростанции для Приморского края «Росатом» планирует к 2029 году построить для Приморского края первую плавучую электростанцию. На электростанции будет установлено три энергоблока в составе паросиловых установок единичной мощностью 185 МВт. Главная» Новости» Тэс ударная новости.

электроэнергетика и теплоэнергетика, генерация и электросети, предприятия и специалисты энергетики

  • Торжественный старт производства реактора для венгерской АЭС «Пакш» дали в Петербурге
  • Самарская солнечная электростанция готова работать на полную мощность - YouTube
  • Немецкий стартап построит вертикальную плавучую солнечную ферму
  • Владимир Потанин анонсировал строительство АЭС

Утверждён первый стандарт по техническим требованиям к солнечным электростанциям

Сейчас на Нововоронежской АЭС функционируют четыре энергоблока (№ 4, 5, 6 и 7) общей электрической мощностью 3778 МВт. ли Россия строить АЭС в Казахстане, раз российской стороне передали строительство ТЭЦ."Это параллельные проекты. При этом на электростанциях не выполняются самостоятельно следующие операции. Специалисты ОАО «СЭМ» приступили к основному этапу работ — монтажу оборудования систем автоматического управления технологическими процессами газотурбинной электростанции Новоуренгойского газохимического комплекса (Новоуренгойский ГХК). Электростанция состоит из двух газовых турбин SGT-800 Siemens мощностью 45 МВт каждая, работающих по простому термодинамическому циклу.

В Республике Алтай построена одна из первых в мире гибридных дизель-солнечных электростанций

Территория распространения: Российская Федерация, зарубежные страны. Учредитель: Гомзина Елена Борисовна. Главный редактор: Гомзина Елена Борисовна. Электронная почта редакции: editor kolomna-spravka.

Масса электростанции с кунгом — 15750 кг. Мы работаем с понедельника по пятницу с 9:00 до 17:30.

Начинается реакция — атомные ядра дробятся на части. При расщеплении атомного ядра выделяется тепло. Его избыток нужно отвести, и с этой задачей справляется теплоноситель — жидкое или газообразное вещество, которое проходит через активную зону. Здесь находится система управления и защиты, которая следит за тем, как протекает реакция, и может остановить её, если что-то пойдёт не по плану. Снаружи — корпус реактора: герметичная оболочка из бетона, которая выдерживает любую внешнюю угрозу, например землетрясение, ураган, пыльную бурю, пикирующий самолёт. Тепловую энергию, возникающую во время реакции, перегоняют в турбинный зал, где парогенератор, внешне похожий на огромную бочку, превращает её в водяной пар. Падая с высоты, как в обычном душе, часть воды испаряется, происходит необходимое охлаждение. Но не все АЭС с градирнями — это лишь один из способов охладить системы станции.

Изначально ее планировали перезапустить к середине 2023 года, однако так и не запустили: выдавать электроэнергию ей некуда из-за уходящих на Украину линий электропередачи. Мироновская ТЭС очень старая и в последние годы перед началом СВО работала в режиме котельной, производя тепло, а не электроэнергию. Власти ДНР пытались её восстановить, однако прогресс был остановлен метким прилётом артиллерийского снаряда на территорию электроподстанции. Вопрос с запуском станции теперь решается на федеральном уровне, и он может случиться, если начнётся восстановление Артёмовска и Соледара. ЛуТЭС в период с 2017 по 2022 год обеспечивала подконтрольную киевской власти часть Луганской области, которая на время превратилась в энергоостров. В это время в ЛНР был жёсткий кризис с электричеством, так как связи с энергосистемой ДНР у республики не было — линии передачи и подстанции остались на подконтрольной Украине территории, а перетоки из России не позволяли покрыть все потребности республики в силу неразвитости сетей. Но уже в мае 2022 года ЛуТЭС разминировали и перезапустили часть газовых блоков, а к осени 2023 года в работу пойдут и угольные. Таким образом республики к началу СВО уже были в целом интегрированы в единую энергосистему России, хотя расчёты за электроэнергию внутри них проводились в изолированном режиме. Перетоки извне ежегодной стоимостью около 3,5 млрд рублей считались технологическими потерями и перекрывались за счёт промышленных потребителей. С Запорожской и Херсонской областями дела обстоят несколько сложнее. Заодно регулировался объём воды в Каховском водохранилище, откуда подпитывался пруд — охладитель ЗАЭС. Какое-то время АЭС обеспечивала электроэнергией как Украину, так и перешедшую под контроль России часть Запорожской области. Но по мере развития кризиса вокруг станции стало очевидно, что областям нужны резервные источники. Уже к середине лета 2022 года были восстановлены ЛЭП на юге Херсонской области их в 2015 году подорвала украинская сторона , и Крым благодаря строительству двух ТЭС впервые в своей истории превратился из донора в поставщика электроэнергии. Кроме того, в каждом из новых субъектов России есть свои объекты возобновляемой энергетики — солнечные СЭС и ветряные ВЭС электростанции. Часть из них работает, только здесь эффективность зависит от погоды, «ветряки» производят «грязный» с прыгающей частотой переменный ток, который приходится дополнительно обрабатывать.

На Нововоронежской АЭС построят новые энергоблоки

«Коломенский завод является единственным в России производителем двигателей, которые могут быть использованы в составе резервных дизель-генераторных установок (ДГУ) атомных электростанций. В портфеле зарубежных заказов на АЭС – 33 проекта в 10 странах мира, 22 из них – в стадии сооружения. Уровень удельной выработки электростанции — 1 400 кВт•ч / кВт пик — один из самых высоких в России. Новости. ООО «Внешнеэкономическое объединение «Технопромэкспорт» (входит в структуру «Ростеха») объявило тендер на строительство тепловой электростанции (ТЭС) «Ударная» в Тамани. Плавучие солнечные электростанции в Германии по-прежнему остаются редкостью и, как правило, имеют небольшие размеры. После обнаружения нарушений экологических стандартов, Ириклинская ГРЭС, крупнейшая электростанция в Оренбургской области, была оштрафована за вред, причиненный водохранилищу.

На кубанской ТЭС заработал энергоблок с первой отечественной турбиной

Данная система позволяет проводить сбор и обработку информации со всех систем комплекса, а затем централизованно отображать эти сведения на главном пульте управления НГХК. В рамках этих работ специалисты ОАО «СЭМ» проведут монтаж 200 шкафов систем автоматического управления, установку и подключение более 5 тысяч датчиков КИПиА, а также прокладку более 400 километров кабеля и 10 километров импульсных трубопроводов.

Но наши, тогда еще американские и немецкие партнеры нам отказали в этом. Мы нашли выход — сейчас работаем совместно с «Росатомом» над проектом установки там мини-ядерных реакторов наземного или, возможно, наводного базирования, которые за горизонтом 2030 года нам обеспечат как раз большую долю производства электроэнергии по отношению к тепловой энергии», — поделился новостью Потанин. Он добавил, что неэффективность, заложенная отказом немецких и американских компаний в сотрудничестве, преодолевается за счет перспективного сотрудничества с «Росатомом». Несмотря на то, что у госкорпорации пока не все поставлено на поток, они активно принимают заказы от якорных инвесторов, развивают свои компетенции и уже сейчас могут дать «Норникелю» то, что не могут западные партнеры.

До этого момента о таком виде генерации электроэнергии в Норильске речи не шло. Впрочем, «мирный атом» уже показал себя в условиях Крайнего Севера. Любопытные предпосылки Исторически в технологически изолированном от Единой энергосистемы России России Норильском промышленном районе у «Норникеля» сложилось уникальное сочетание газовой и гидрогенерации — около половины мощности энергосистемы приходится на две крупные ГЭС — Усть-Хантайскую и Курейскую, а остальная — на три ТЭЦ, работающих на природном газе газоконденсатных месторождений Таймыра. На ТЭЦ-2 в Талнахе идет замена энергоблоков. При этом ранее компания намеревалась построить первые в Норильске парогазовые установки на территории ТЭЦ-3, сообщал в конце 2021 года вице-президент «Норникеля» по энергетике Евгений Федоров.

Есть основания полагать, что эта станция к 2027 году уже будет в работе. Но пока отбор не проведён, в действующей нормативной базе мы не можем учитывать эту мощность в составе предложений на 2027 год. К порядку определения прогноза потребления у участников тоже есть вопросы. Для определения спроса в КОМ используются прогнозы потребления по субъектам Российской Федерации, утверждённые в составе схем и программ развития СиПР на соответствующий год.

В СиПР прогноз потребления формируется исходя из средней температуры, при которой в данном субъекте регистрируется годовой пик потребления. И эта прогнозная цифра достаточно точна. Для примера возьмём прошлый 2020 год, конкурентный отбор мощности на который мы проводили в 2016 году. Понятно, что такая точность — это реализация всех влияющих на прогноз факторов, но тем не менее точность региональных прогнозов достаточно высокая.

При проведении КОМ необходимо учитывать, что температура может быть ниже среднестатистической, и, соответственно, потребление будет выше учтённого в СиПР. В существующей модели мы пересчитываем прогнозные цифры потребления в каждом субъекте РФ на температуру так называемой холодной пятидневки, и сумма этих величин идёт в расчёт спроса на КОМ. В настоящее время прорабатываются предложения об изменении подходов к формированию величины спроса в КОМ. Например, можно посмотреть на распределение температур по ценовой зоне за предшествующие годы и сформировать прогноз потребления исходя из фактического распределения экстремально низких температур, то есть вероятности одновременного наступления холодов.

Ровно тот же подход, о котором мы говорили в начале при рассмотрении вопросов резервов, — параметры потребления целесообразно определять исходя из разумной вероятности наступления событий. Если по статистике событие наступает раз в 100 лет, то экономически вряд ли обоснованно поддерживать соответствующий такому событию уровень резервов. В этом году широко обсуждался вопрос роста цен на мощность в Сибири, который был обусловлен оптимистичными предположениями крупных потребителей об увеличении объёма производства. Оптимизм не оправдался, а цены КОМ, сформированные ещё в 2017 году, остались.

Возможно ли в принципе точное планирование производственных программ на шестилетний период и надо ли вводить механизмы ответственности? Это ещё один вопрос, который существует на сегодняшний момент. Вопрос, который активно обсуждается рыночным сообществом, — определение коэффициента резервирования, учитываемого при проведении КОМ. Как мы уже говорили в начале беседы, при прогнозировании потребления и при определении требуемых для его покрытия объёмов генерации целесообразно применять не логику нормативного установления конкретных цифр, а рассчитывать параметры спроса и предложения с использованием вероятностных характеристик, исходя из фактической статистики работы генерирующего оборудования, длительности ремонтов и готовности оборудования к несению нагрузки.

Необходимость перехода к такому принципу формирования величины резерва особенно актуальна в условиях ввода новых типов оборудования, появления системно значимых объёмов управляемого спроса, систем накопления энергии. Если паросиловой блок своей установленной мощностью может быть учтён в балансе как зимой, так и летом, то мощность энергоблока ПГУ будет значимо отличаться в зимний период и в период экстремально высоких температур. В этой связи подход, который позволяет учитывать фактическую готовность каждого типа оборудования, позволит приблизиться к «физичности» определения величины объёма генерации, требуемой для покрытия потребления при проведении конкурентных отборов. Кроме вопросов КОМ есть ряд вопросов, связанных с реализацией программы модернизации.

Обсуждаются вопросы целесообразности выделения специальных квот для отдельных видов оборудования, например небольших ТЭЦ или ПГУ. Как будет сочетаться работа агрегаторов, ЦЗСП крупных потребителей? Но целевая модель, к которой мы будем идти в ближайшие годы, представляется достаточно чётко. Ресурс управления спросом должен стать полноценным элементом во всех секторах рынка — начиная с рынка мощности до балансирующего рынка.

Сегодня учёт ресурса управляемого спроса в РСВ позволяет снижать неэффективную выработку включённого оборудования. Учёт этого ресурса при выборе состава оборудования в ВСВГО позволит не включать наименее эффективное оборудование в работу и соответственно увеличить долю загрузки эффективной генерации. Учёт объёмов управляемого спроса создаст дополнительный стимул к выводу неэффективной генерации. С развитием технологий управления спросом будут появляться потребители, которые смогут предложить свой ресурс изменения нагрузки не только в режиме на сутки вперёд, но и внутри операционных суток, соответственно, агрегаторы станут полноценными участниками балансирующего рынка.

Важно помнить, что потребители, участвующие в программах управления спросом, в своём абсолютном большинстве не снижают потребление электроэнергии, а перераспределяют его между часами суток и делают график потребления более ровным. Именно поэтому механизмы управления спросом выгодны не только потребителям, но и эффективным генераторам, которые за счёт перераспределения потребления получают дополнительную загрузку. Что касается вопроса участия агрегаторов и крупных потребителей в программах управления спросом. Конечно, для участников, которые работают на оптовом рынке и готовы сами себя представлять, такая возможность останется и в целевой модели.

Крупный потребитель, представленный на оптовом рынке, может самостоятельно участвовать в программах управления спросом или воспользоваться помощью профессиональных участников — агрегаторов. Если мы говорим про малых потребителей — их участие возможно через агрегаторов управления спросом. Договорные модели участия могут быть разными, но важно, чтобы участники, предоставляющие ресурс регулирования, находились в общей конкурентной среде. Это принципиально важный момент, и мы с самого начала стремились к тому, чтобы все правила, все требования были технологически нейтральны.

В настоящее время мы видим, что экономически эффективные объёмы управляемого спроса в российской энергосистеме могут составлять от 4 до 6 ГВт. При этом однозначно ответить на вопрос, что такое экономически эффективные объёмы, просто нельзя. Всё зависит от того, в каком направлении будет развиваться энергосистема. Если она будет развиваться с ориентацией на рост ВИЭ-генерации, это приведёт к растущей востребованности ресурса регулирования, его стоимость будет расти.

Чем выше будет оцениваться ресурс, тем больше участников будет приходить на этот рынок, и мы увидим большую конкуренцию между генерирующими компаниями и потребителями. Если стоимость будет падать, будет снижаться востребованность ресурса регулирования, желающих участвовать будет меньше.

Его избыток нужно отвести, и с этой задачей справляется теплоноситель — жидкое или газообразное вещество, которое проходит через активную зону. Здесь находится система управления и защиты, которая следит за тем, как протекает реакция, и может остановить её, если что-то пойдёт не по плану. Снаружи — корпус реактора: герметичная оболочка из бетона, которая выдерживает любую внешнюю угрозу, например землетрясение, ураган, пыльную бурю, пикирующий самолёт. Тепловую энергию, возникающую во время реакции, перегоняют в турбинный зал, где парогенератор, внешне похожий на огромную бочку, превращает её в водяной пар. Падая с высоты, как в обычном душе, часть воды испаряется, происходит необходимое охлаждение. Но не все АЭС с градирнями — это лишь один из способов охладить системы станции. В отличие, например, от угля, уран-235 выгорает не полностью и его можно использовать повторно — но для этого нужно провести очистку от радиоактивных изотопов.

Этот процесс называется регенерацией.

Похожие новости:

Оцените статью
Добавить комментарий