В фокусе: технологии искусственного интеллекта (ИИ) в здравоохранении и системы поддержки принятия врачебных решений (СППВР). Мы убедились в этом на примере внедрения искусственного интеллекта в работу службы лучевой диагностики", – заявил Собянин. Искусственный интеллект приносит значительные инновации в медицину в России. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Рассматриваем применение ИИ в здравоохранении на примере интеллектуальной системы «Джейн», которая помогает врачам ставить верные диагнозы.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Все люди совершают ошибки. Поэтому неудивительно, что созданный людьми искусственный интеллект тоже может их совершать. С врачебной ошибкой все ясно — ответственность несет тот, кто совершил неверное действие, а вот с ИИ зона ответственности непонятна. Обеспечение работы искусственного интеллекта связано с применением вычислительных мощностей, которых нет во многих медицинских учреждениях. Также остается открытым вопрос предоставления и хранения личной информации пациента. Поскольку кибермошенники не дремлют, данный вопрос требует особой проработки. Могу сказать точно, что никакие технологии не смогут заменить человеческого общения.
Искусственный интеллект никогда не научится сострадать человеку и морально поддерживать в трудную минуту. Общение врача с пациентами имеет большое значение. Однажды был случай, когда врач в Калифорнии послал робота в палату к 78-летнему пациенту и его родственникам, чтобы с помощью видеосвязи сообщить им о том, что тот умрет. Конечно же родные пациента, да и сам пациент были в шоке, хотя они и знали, что смерть неминуема. Однако это не означает, что подобные новости можно преподносить таким образом. Искусственный интеллект нельзя научить эмпатии, поэтому он не может работать в одиночку.
На мой взгляд, идеальное будущее медицины и здравоохранении заключается в тандеме ИИ и доктора.
Это означает, что все заключения, выданные искусственным интеллектом, проходят строгий контроль медицинских специалистов. В России любое программное обеспечение, созданное для применения в медицинских целях, считается медицинским изделием.
Обращение медицинских изделий на территории РФ возможно только при условии государственной регистрации. С 2020 по 2022 год перечень отечественных зарегистрированных медизделий на основе ИИ постепенно пополнялся, и к концу 2022 года включал в себя 16 программ. Также в указанном перечне присутствуют: программный модуль для анализа флюорограмм и рентгенограмм грудной клетки человека, система для диагностики ковида, нейросеть для анализа маммографии, нейросеть для определения продольного плоскостопия, системы для принятия врачебных решений и многое другое.
В России медизделия на основе искусственного интеллекта применяются во многих регионах, однако не во всех.
Значительную роль в этом сыграл московский опыт внедрения ИИ в здравоохранение. Как рассказали «Ведомости. Городу» в столичном депздраве, сегодня в Москве реализуются четыре крупнейших проекта использования ИИ в здравоохранении. Компьютерные алгоритмы находят патологии уже по 21 клиническому направлению.
Нейросети помогают врачам определять на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, а также рака молочной железы, грыж позвоночника, артроза, плоскостопия и других заболеваний. О совершенно новой области применения ИИ в московском здравоохранении «Ведомости. Городу» рассказала заммэра по вопросам социального развития Анастасия Ракова. Это опасное неврологическое заболевание обычно начинает развиваться в молодом возрасте и со временем может привести к тяжелой инвалидности. Технологии ИИ позволят медикам повысить скорость и точность его диагностики на МРТ головного мозга», — объяснила Ракова.
Алгоритмы отмечают области возможных патологий цветовыми подсказками и ранжируют медицинские снимки по степени вероятности патологии. Окончательный диагноз в любом случае ставит врач, но технологии значительно ускоряют постановку диагноза и повышают его точность. На сегодняшний момент нейросети обработали уже больше 9 млн лучевых исследований пациентов. Москва первой в стране ввела специальный тариф в рамках ОМС на анализ результатов профилактических маммографических исследований с помощью ИИ. Таким образом, был завершен первый этап внедрения в систему здравоохранения и рутинную медицинскую практику технологий компьютерного зрения.
Этот инструмент помогает на основе жалоб пациента подобрать наиболее вероятные диагнозы, а врач уже решает, соглашаться ли с ними. Третий — чат-бот, собирающий жалобы пациентов на самочувствие перед посещением врача. Он опрашивает пациента и передает данные врачу.
Также созданы равные условия для всех участников: постоянно обновляется каталог решений на базе искусственного интеллекта, ежемесячно составляется лидерборд сервисов. С этого года Москва первой в стране ввела специальный тариф в рамках ОМС на анализ результатов профилактических маммографических исследований с помощью систем искусственного интеллекта. Сейчас алгоритмы доступны рентгенологам 150 медицинских учреждений, в том числе детских. Искусственный интеллект помогает находить на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, легочной гипертензии, гидроторакса, а также рака молочной железы, грыж позвоночника, плоскостопия и других заболеваний.
Москва уже более 10 лет занимается цифровизацией системы здравоохранения. Использование компьютерного зрения в медицине позволяет сократить время, затрачиваемое на диагностические процедуры, а также предоставляет медперсоналу информацию для постановки более точных диагнозов и назначения более эффективного лечения.
«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
В случае наступления осложнений вряд ли можно переложить ответственность на ИИ. Поэтому за каждым алгоритмом ML пока что всегда будет стоять врач. ИИ позволяет вместо проведения ресурсоёмких опытов по взаимодействию молекул для получения необходимых свойств соединения использовать генеративные и рекомендательные модели. За счёт этого сокращается время и затраты на подбор идеальной рецептуры лекарства. Например, компании применяют технологии ИИ на стадии поиска и разработки ключевой молекулы drug discovery. С помощью собственной ИИ-платформы фармпроизводитель определил два препарата для лечения фиброза. Один из них уже находится на первой стадии клинических исследований.
По данным исследований ВЦИОМ и Pew Research Center, прогноз эффективности искусственного интеллекта ИИ в медицине в российском и американском обществе находится примерно на одном уровне. Более оптимистичное отношение россиян коррелирует с высшим образованием, материальным положением и доступом к интернету.
По оценкам Национального центра развития искусственного интеллекта НЦРИИ , сегодня более половины технологий ИИ в области здравоохранения находятся на стадии экспериментального запуска. Наиболее успешно развиваются направления, связанные с компьютерной диагностикой: скрининг и более глубокий анализ симптомов на базе изучения медицинских изображений — рентгеновских или КТ-снимков. Это подтвердила и врач МРТ Ольга Козловская, отметив, что ИИ уже сейчас становится хорошим помощником рентгенологам благодаря автоматизации рутинной работы и поддержке врачебных решений.
По его словам, работы много, но все поставленные цели конкретны и достижимы. Мэр напомнил, что еще 10—15 лет назад цифровизацию здравоохранения рассматривали как вспомогательную технологию, чтобы решить организационные проблемы — сократить очереди к врачам, наладить контроль, навести порядок с ведением документации. Но далеко не главное. Главное — современные цифровые технологии реально спасают жизни и радикально повышают качество лечения людей. Мы убедились в этом на примере внедрения искусственного интеллекта в работу службы лучевой диагностики", — заявил Собянин.
Одна из крупнейших фармацевтических компаний — Novartis — совместно с Microsoft открыла ИИ-лабораторию, чтобы использовать "умные" алгоритмы в создании лекарственных препаратов. Подобными проектами занимается и Google: в 2018 году DeepMind смог лучше биологов предсказать форму свертывания белка. Это потенциально способно существенно ускорить процесс разработки новых лекарств. Основные препятствия Несмотря на большие перспективы, существует целый спектр ограничений для развития ИИ в медицине. Эти стоп-факторы должны стать основным объектом для совместной работы технологических компаний и медицинских организаций, так как их минимизация способна существенно расширить возможности применения этой технологии в здравоохранении. Нехватка компетенций и сотрудников. Для эффективного внедрения технологии искусственного интеллекта необходимы квалифицированные специалисты, наличие ресурсов для тестирования гипотез и разработки эффективных бизнес-моделей. Это касается рынка систем ИИ в целом, и медицинские организации не меньше других сталкиваются с дефицитом кадров, недостатком квалификации уже работающих сотрудников, а также нехваткой ресурсов для внедрения технологии. Недостаток структурированных данных. Далеко не во всех сферах здравоохранения достигнуты такие результаты, как, например, в борьбе с раком. Действительно, в медицине очень много неструктурированных данных, но для использования в системах машинного обучения их необходимо сначала структурировать и разметить. Это большая работа для Data Scientists специалистов по классификации данных. Недостаточный уровень доверия.
Искусственный интеллект в медицине
Хочется помочь, и есть надежда. А если не получится? Ухудшим показатели. Это моральные и организационно-методические проблемы людей. Но может ли здесь помочь искусственный интеллект? А это зависит от того, как настроен этот инструмент, на какой результат он нацелен. И не забываем, что инструмент — просто набор алгоритмов, зависящий от объема и качества данных «на входе», настройки, обучения и целеполагания.
В некоторой степени он лишен моральных критериев. Они задаются человеком. Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации. Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов.
Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ. Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать. И здесь возникает вызов — как научиться делать это быстро.
Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм.
BionMax — сервис на основе ИИ, который помогает в профилактике здоровья. Она предположила, что у него кариес или начали прорезываться зубы, но стоматолог исключил эти варианты. Помимо этого, Алекс жаловался на болевые ощущения и головокружение во время прыжков на батуте. Стоматолог отправил семью к ортодонту, специализирующемуся на обструкции дыхательных путей. Но и он не помог ребенку. Другие специалисты — невролог и врач-отоларинголог, тоже не нашли причину болей Алекса. Спустя три года и безуспешное посещение 17-ти различных врачей диагноз так и не был поставлен. Женщина решила обратиться к ChatGPT. ИИ предположил, что Алекс может страдать от синдрома фиксированного спинного мозга — это когда спинной мозг растягивается из-за того, что его нижняя часть, каудальный конец, фиксируется и не может двигаться нормально. Это натяжение и вызывает боль. Диагноз был подтвержден. По данным Центров по контролю и профилактике заболеваний США , медицинское состояние Алекса считалось «скрытым», то есть его было трудно диагностировать. Как ИИ справился лучше 17 врачей в постановке диагноза ребенку? После операции по устранению фиксации спинного мозга, состояние Алекса улучшилось. Сейчас с ним все хорошо. Эндрю Бим, доктор философии и доцент кафедры эпидемиологии в Гарварде: «ChatGPT может стать хорошим партнером в наших диагностических одиссеях. Он прочесывает буквально весь Интернет и у него нет таких же слепых зон, как у врача-человека». Как еще ИИ используется в диагностике заболеваний? Вот несколько примеров: Помогает в медицинской сортировке: быстро определяет, каким пациентам нужна срочная помощь. Например, так делает ИИ от Enlitic : он анализирует данные пациентов, а затем направляет их к подходящему врачу. Компания Babylon Health разработала ИИ, который предоставляет информацию о здоровье на основе симптомов пациента. Предсказывает, как изменения в геноме могут повлиять на организм.
На сегодняшний день компания: создала собственную научно-производственную базу, опираясь на накопленные знания и инновационные разработки, а также передовой опыт внедрения высоких технологий; ведет активную работу по дальнейшему развитию и совершенствованию продуктов MVS; разрабатывает новые высокотехнологичные продукты с учетом потребностей врачей и администрации клиник; патентует ряд собственных разработок в сфере телемедицины; реализует проекты согласно плану мероприятий Правительства РФ по развитию телемедицины. Ключевыми клиентами компании являются медицинские организации, интенсивно использующие операционные. Компания запустила более 130 умных операционных, включая проекты в 16 крупнейших федеральных и частных медицинских центрах от Калининграда до Хабаровска, а с 2020 г. Решение для операционных Интегрированные операционные MVS помогут тратить меньше времени на оборудование и сконцентрироваться на самом важном — заботе о пациентах.
ИИ в частных клиниках: как помогает врачам и пациентам
2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Диагнозы уже ставит искусственный интеллект, мгновенно анализируя все обследования пациента.
ИИ в частных клиниках: как помогает врачам и пациентам
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек | Платформа Искусственного интеллекта Минздрава России — первый национальный проект, объединяющий медицинское сообщество и разработчиков решений на основе технологий машинного обучения и искусственного интеллекта (ИИ). |
ИИ-революция в генной инженерии: OpenCRISPR-1 открывает новую эру в редактировании ДНК / Хабр | Мы активно развиваем искусственный интеллект в медицине. |
Искусственный интеллект в медицине: применение и перспективы | Платформа Искусственного интеллекта Минздрава России — первый национальный проект, объединяющий медицинское сообщество и разработчиков решений на основе технологий машинного обучения и искусственного интеллекта (ИИ). |
Эксперт объяснил провал искусственного интеллекта в медицине | На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. |
Искусственный интеллект и машинное обучение в медицине | Специалисты с помощью искусственного интеллекта поставили свыше 8 миллионов диагнозов. |
Применение искусственного интеллекта в медицине
В ряде зарубежных исследований было показано, что прогностические модели искусственного интеллекта со временем могут оказаться ненадежными в клинических условиях. Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине. Технологии на базе искусственного интеллекта становятся все более востребованными в медицине и здравоохранении. В 2024 году технологии искусственного интеллекта будут более глубоко и масштабно внедряться в здравоохранении.
Эксперимент
Медико-технологические достижения, произошедшие в этот полувековой период, позволили вывести здравоохранение на новый уровень. Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных. Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования. К 2019 году для специального исследования будут отобраны 1 миллион добровольцев. Исследование направлено на то, чтобы показать связь между состоянием здоровья, образом жизни, окружающей средой, а также социальным и экономическим статусом.
Со ссылкой на последние исследования и данные становится очевидной тенденция усиления значимости искусственного интеллекта в обеспечении здоровья нации. В этих целях всем медицинским организациям в субъектах РФ в 2024 году предписано внедрить не менее трех решений с ИИ , об этом сообщил заместитель министра здравоохранения РФ Павел Пугачев. Cтратегия также опубликована на сайте Правительства — Искусственный интеллект РФ , а также на ai.
В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины. Медико-технологические достижения, произошедшие в этот полувековой период, позволили вывести здравоохранение на новый уровень. Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных. Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования. К 2019 году для специального исследования будут отобраны 1 миллион добровольцев.
Об уязвимости разведывательно-ударных беспилотников Reaper говорит и эксперт в области беспилотной авиации Денис Федутинов. При этом они малоскоростные и неманевренные. Совокупность этих факторов делает их несложными целями для средств ПВО», — указал он. Собеседник напомнил, что БПЛА Reaper использовались американскими военными в ходе всех конфликтов последних почти двух десятков лет, а также применялись в отдельных операциях ЦРУ. Сейчас США также используют Reaper в числе прочих пилотируемых и беспилотных средств разведки вблизи наших границ на Черном море, добавил Федутинов. Тем не менее их использование, очевидно, связано с решением Украины собственных военных задач. В этом вопросе они буквально балансируют на грани casus belli», — подчеркнул он. Федутинов в этой связи вспомнил события, повлекшие потерю одного из Reaper над акваторией Черного моря. Сейчас все возвращается обратно. Чтобы память наших визави не подводила, необходимо, чтобы такие вещи повторялись чаще», — заключил эксперт. Ранее йеменские хуситы сбили американский беспилотник MQ-9 Reaper. Об этом сообщили представители движения «Ансар Алла». Цель была поражена в воздушном пространстве провинции Саада. Кроме того, с помощью противокорабельных ракет им удалось нанести удар по британскому нефтяному танкеру Andromeda Star. Издание CBS News пишет, что стоимость одного экземпляра равна примерно 30 млн долларов. Подчеркивается, что американские дроны, базирующиеся в регионе, призваны защищать международную торговлю в акватории Красного моря. Так, MQ-9 Reaper был уничтожен хуситами в ноябре. Тогда представитель движения Яхья Сариа сообщил, что силами ПВО удалось сбить беспилотник Штатов, «осуществлявший враждебные разведывательные действия» над территориальными водами страны для «поддержки израильского режима». В феврале заместитель пресс-секретаря Пентагона Сабрина Сингх подтвердила , что хуситы сбили второй дрон. По ее словам, ликвидация аппарата происходила с помощью ракеты класса «земля-воздух». Между тем, по данным открытых источников, всего йеменским повстанцам начиная с 2019 года удалось сбить четыре MQ-9 Reaper. Напомним, американский аппарат является модульным разведывательно-ударным дроном, разработанным компанией General Atomics Aeronautical Systems. Первый экспериментальный полет состоялся в 2001 году. От предшественника он отличается большей скоростью. Максимальная высота движения — 15 тыс. Наибольшая продолжительность непрерывного полета — 24 часа. Салливан сказал, что Украина находится в «глубокой яме». По его словам, это произошло из-за задержки американской помощи, передает ТАСС. Напомним, Маск заявил, что боится отсутствия стратегии выхода из украинского конфликта. Как пишет Interia , Украина стала первой, кто заполучил их в свой арсенал, бомбы были переданы в феврале этого года, но только они оказались совершенно бесполезными, передает РИА «Новости».
Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом
Минздрав рассказал о распространении искусственного интеллекта для медицины в России. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. В российской системе здравоохранения большие возможности для применения искусственного интеллекта (ИИ), он уже активно внедряется по всей стране. Технологии искусственного интеллекта (ИИ) всё шире проникают в различные сферы жизни, меняя и ускоряя привычные процессы. Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения.
Эксперт объяснил провал искусственного интеллекта в медицине
Участник дискуссии, доктор медицинских наук, профессор Владислав Шафалинов считает, что в ситуации с применением ИИ в существующей системе здравоохранения первичным должен быть вопрос безопасности , а уже потом — эффективности. Важно, чтобы его использование не навредило пациентам. Несмотря на то, что ИИ сегодня является технологией будущего для здравоохранения и персонализированной медицине, важно правильно оценивать риски его применения и разделять зоны ответственности. Сможет ли ИИ давать рекомендации относительно таких сложных тем, как например, проведение эвтаназии, во многом это будет зависеть и от корректно прописанных алгоритмов нейросетей. Если у компьютера появится возможность исполнения рекомендаций, тогда мы все окажется в огромной опасности, поэтому важнейшими являются вопросы этических и моральных устоев разработчиков, — рассуждает Ян Власов.
Платформа специализируется на диагностике онкологических патологий и наследственных заболеваний. На основании анализа ДНК можно получить информацию о предрасположенности к различным заболеваниям. Область применения этого сервиса — фармакогеномика. Это подбор эффективного препарата и дозировки в лечении различных заболеваний на основе анализа генетического теста. Врачи при лечении чаще всего используют стандартные схемы медикаментозной терапии.
ИИ помогает создать индивидуальный план с учетом индивидуальных особенностей пациента. Надежный виртуальный помощник для врачей и пациентов, мгновенно отвечает на все вопросы. ИИ ежедневно собирает все новшества в области здравоохранения и оперирует только актуальными данными. Сервис помогает разработать алгоритм для эффективного лечения диабетической ретинопатии, спрогнозировать риск развития сердечно-сосудистых заболеваний. Приложение распознает человеческую речь, может интересоваться самочувствием, отвечать на любые вопросы, связанные со здоровьем.
Это приложение предназначено для распознавания симптомов и формирования общей клинической картины. Оно предполагает диагнозы, исходя из полученных данных, подсказывает, к какому специалисту нужно обратиться. Это помогает пациенту внимательно следить за состоянием своего здоровья, быстро получать нужную врачебную помощь без нерациональной траты времени на запись, ожидание и посещение непрофильных специалистов. Снижается нагрузка на медперсонал, увеличивается время общения доктора с пациентом. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний.
Любой человек может получить точную информацию о том, как скорректировать образ жизни, питания, чтобы избежать проблем со здоровьем. Для врачей ИИ стал надежным помощником при установлении наиболее вероятного диагноза и разработке эффективной схемы лечения. Применение искусственного интеллекта в медицине для разработки новых препаратов Чтобы разработать вакцину или новое лекарственное средство, требуется много времени и средств на дорогостоящие исследования и испытания. ИИ помогает сократить время на разработку новых препаратов в несколько раз. Искусственный интеллект анализирует структуру существующих медикаментов на молекулярном уровне, предлагает новые, с учетом заданных требований.
В 2019 году компания Insilico Medicine при помощи ИИ создала несколько препаратов для эффективного лечения мышечного фиброза. Раньше для этого назначали множество медикаментов, терапия не всегда была эффективной.
Один из них уже находится на первой стадии клинических исследований.
В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года. Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями. Это позволяет исследователям фокусироваться на наиболее перспективных стратегиях для дальнейшего изучения, а также снизить риски во время испытаний препаратов.
В 6 раз уменьшается время от обнаружения лекарства до проведения испытаний В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года. В 6 раз уменьшается время от обнаружения лекарства до проведения испытаний Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями. Камила Зарубина,.
В 2023 г. В целом, к сентябрю 2023 г. Почти половина из них были успешными.