Новости теория струн кратко и понятно

Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки.

Что такое теория струн?

А так — хвост пистолетом и искать точные уравнения. Квантовая гравитация[ править ] Основным результатом теории струн ну или М-теории, всем похуй принято считать возможность проквантовать гравитацию. Ясно дело , что кроме теории струн есть ещё и другие способы эту вашу гравитацию квантовать, которые убоги каждый в чем-то. Поэтому надо тут остановиться подробнее. Квантовая теория поля учит нас, что все взаимодействия между частицами можно представить в виде картинок, диаграмм Фейнмана. Например взаимодействие электрона и позитрона можно нарисовать в виде диаграммы справа, как обмен одним фотоном. Электрон и позитрон взаимодействуют, обмениваясь фотоном Но это только так называемое древесное приближение — на деле эта диаграмма даёт лишь классическую теорию, а квантовые эффекты появятся, если мы будем рисовать петли. Петлевые поправки к взаимодействию между электронами На этих диаграммах волнистая линия — фотон, прямые линии — электрон и позитрон. Но все это можно рисовать для любого взаимодействия.

Ты, анон, уже догадался, что этих петель можно рисовать чуть более, чем дохуя. А именно, бесконечно. Каждая такая картинка соответствует совершенно невменяемому выражению, включающему в себя интегралы, логарифмы и прочую матаническую поебень. Но самый пиздец в том, что каждое из этих выражений само по себе равно бесконечности. И тут хитрый расовый американский еврей Ричард Фейнман с дружками придумали, как обмануть общественность и бесконечности спрятать как он сам выразился, под ковер. Эта процедура наебки называется перенормировкой квантовой теории поля. И если теорию можно вот так вот перенормировать, то она считается адекватной и называется перенормируемой. Всю эту хреноту можно с успехом повторить и для ОТО ровно до момента перенормировки.

Ибо гравитации вообще до пизды все эти ваши процедуры, и бесконечности прут со все новой силой. Тут физики разом охуели и сделали Квантовую Гравитацию своим священным Граалем. Ясно дело, все остальные взаимодействия успешно квантуются и перенормируются, кроме гравитации это связано с тем, что у всех векторных бозонов спин равен 1, а у гравитона 2. Чтобы справиться с непокорной гравитацией, физики стали придумывать разные обходные пути к ее квантованию. Во-первых, напридумывали кучу других гравитаций с целью сделать формулы похожими на формулы в других теориях: калибровочная теория гравитации, теория Макдауэлла-Манзури-Штелле-Веста Macdowell-Mansoure-Stelle-West и т. А во-вторых, стали думать, как ее, родимую, квантовать правильно. Например, петлевая квантовая гравитация учит нас, что пространство на малых расстояниях состоит из маленьких ячеек-петель данное учение находится на полпути к фейлу — впрочем, что пытались опровергнуть опровергатели , они и сами толком не знают. Можно представить себе, например, двумерную поверхность, сотканную из треугольников.

Главная фишка этой самой петлевой квантовой гравитации в том, что пространство и время теперь становятся объектом квантования. Мы помним, что обычная квантовая механика пространство-время не трогает и рассматривает его как фон. А тут пространство само себя создает из этих треугольников. Причем интересно, что эта система сама может себе выбирать размерность, складываясь из двумерного листика в нечто объемное. Это можно увидеть дома, скомкав лист бумаги, он из двухмерной фигуры превратится в трехмерное тело. Перенормируемость а точнее уже конечность диаграмм гарантируется конечным размером этих петель. Другая возможность квантовать гравитацию — супергравитация. Как было уже сказано выше, суперсимметрия — это равное количество фермионов и бозонов.

И оказывается чудо! То есть, супергравитация вообще конечна. Зато она говорит о существовании каких-то новых фермионов, которых никто не видел и которых ищут на БАКе. Update: на самом деле давно известно, что супергравитация таки не является ни конечной, ни перенормируемой, а значит сама-по-себе в смысле квантования ничем не лучше обычной гравитации пруф: [1] Интересно, что супергравитация получается как предел низких энергий из М-теории. Алсо[ править ] Профессор Фарнсворт из Футурамы разбирается в сабже — в серии Mars University он читает курс лекций по предмету с подозрительным названием «Суперпуперсимметричная струнная теория», на который никто не ходит, кроме Фрая. Теория струн — направление исследований Шелдона Купера из сериала Теория большого взрыва. Шелдон свято верит, что теория станет в итоге Единой теорией, и люто, бешено ненавидит сторонников альтернативного подхода — теории петлевой квантовой гравитации в лице Лесли Уинкл. Миша Вербицкий в пояснительной записке к сочиненной им программе изучения математики утвеждает, что «математика лишь постольку интересна, поскольку она связана со струнной теорией; это базовое предположение, которое я не хочу сейчас обсуждать».

Небезызвестный Кастанеда , пребывая чуть более чем полностью в состоянии накурки, видел Вселенную как бесконечное скопище светящихся струн. В сабже хорошо разбирается Верданди — её родной мир десятимерен, о чём она не раз говорила. А разрушение суперструны, по её словам, может привести к БП. Этот момент попал и в аниме — см. Также присутствует эффект «сокращения света». В одной из книг А. Стругацких «За миллиард лет до конца света» герой Малянов придумывает М-полости, что кагбэ намекает нам буква М означает Малянов, то есть «полости Малянова», и к струнной теории имеет мало отношения. В их же расово верном романе « Пикник на обочине » с Зоны дербанили некие «черные брызги», которые предположительно представляли собой вселенные, пространство-время которых в гравитационном поле Земли сворачивается в комочек.

Энтони Гарретт Лиси — сёрфер-любитель, живущий в трейлере на острове Мауи — предложил « Исключительно простую теорию всего », без единой струны поясняющую почти весь мир. Многие суперструнные физики утверждают , что теория Лиси — говно, и что Лиси ничего не понимает в теориях всего. Теория струн упоминается в растаманской сказке Д. Гайдука «Про одинаковых людей». Один из героев внезапно врубился в то что «вообще весь мир состоит из усов, а точнее из суперструн» «захавав марку со штурвалом».

В этом, в двух словах, и заключается теория струн.

Струны, точки и квантовая гравитация Следует подчеркнуть три особо важных момента. Во-первых, когда учёные физики предлагают модель описания природы с помощью квантовой теории поля, они также выбирают поля, которые войдут в теорию. Этот выбор диктуется экспериментальными ограничениями, а также теоретическими предпосылками. Главным примером является Стандартная модель. Рассматриваемая как венец достижений физики частиц XX столетия благодаря своей способности правильно описывать большое количество данных, собранных на ускорителях частиц по всему миру, Стандартная модель является квантовой теорией поля. Стандартная модель, безусловно, крайне успешна, но многие физики полагают, что по-настоящему фундаментальное понимание не требует такого разношёрстного набора ингредиентов.

Впечатляющее свойство теории струн состоит в том, что частицы определяются самой теорией: разные типы частиц соответствуют разному вибрационному поведению струны. Тогда потенциал и перспективы теории струн заключаются в том, чтобы превзойти квантовую теорию поля путём получения всех свойств частиц математически. Теория струн строится непоследовательными приближениями к полному описанию природы. Она предлагает полное описание с самого начала. Во-вторых, среди возможных вибраций струны есть одна, обладающая всеми нужными свойствами для того, чтобы быть квантовой частицей гравитационного поля. Исследования выявили свойства, которыми будет обладать гипотетическая частица — получившая название гравитон, — соответствующая квантовому гравитационному полю.

Было показано, что гравитон должен быть безмассовым, не иметь заряда и обладать квантовомеханическим свойством, известным как спин-2. В-третьих, как бы ни была радикальна теория струн, она идёт по протоптанному пути, известному в истории физики. Специальная теория относительности расширяет наше понимание мира высоких скоростей; общая теория относительности идёт дальше и учитывает большие массы; квантовая механика и квантовая теория поля вводят нас в мир малых расстояний. Понятия, привлекаемые этими теориями, и предсказываемые ими свойства непохожи ни на что известное ранее. Более того, если применять эти теории в привычных рамках доступных нам скоростей, размеров и масс, они сведутся к описаниям, открытым до XX столетия — к классической механике Ньютона и классическим полям Фарадея, Максвелла и других. Теория струн могла бы претендовать на существенный отрыв от своих предшественников и отступить от нарисованной схемы ниже.

Замечательно, что этого не происходит. Теория струн достаточно революционна для преодоления барьеров физики двадцатого столетия. При этом она достаточно консервативна, чтобы прошедшие три столетия открытий смогли уютно разместиться в её математическом аппарате. Пространственные измерения В первые годы исследований по теории струн физики столкнулись с фатальными математическими изъянами, например, спонтанное возникновение или исчезновение энергии. В 1970-х многие думали, что от теории струн необходимо отказаться. Но некоторые исследователи упорно придерживались другой точки зрения.

В результате сложных исследований было выяснено, что проблемные свойства тесно связаны с числом пространственных измерений. В уравнениях теории струн нет изъянов во вселенной с девятью пространственными измерениями и одним временным, что в совокупности составляет десять измерений. Автор книги подмечает, что без технических подробностей будет тяжело или даже невозможно по крайней мере, для него объяснить, как это происходит. Так что здесь он дает некую техническую наводку. В теории струн есть одно уравнение, в котором присутствует вклад вида D - 10 умножить на проблему , где D — это число пространственно-временных измерений, а проблема — это некое математическое выражение, приводящее к проблемному физическому явлению, подобному ранее упомянутому нарушению закона сохранения энергии. Автор не может предложить никакого интуитивного, нетехнического объяснения, почему уравнение имеет именно этот вид.

Но в вычислениях возникает именно оно. Простое, но ключевое наблюдение состоит в том, что, если число измерений равно десяти, а не четырём, как можно было бы ожидать, вклад в уравнение становится 0 умножить на проблему. Поскольку умножение на ноль всегда даёт ноль, во вселенной с десятью пространственно-временными измерениями проблема исчезает. Именно поэтому физики, занимающиеся теорией струн, рассматривают вселенную, в которой более четырёх пространственно-временных измерений. В начале XX столетия в нескольких статьях математика Калуцы и физика Клейна было высказано предположение о существовании измерений, легко ускользающих от обнаружения. Они предсказывали, что в отличие от привычных пространственных измерений, простирающихся на большие или даже бесконечные расстояния, могут существовать дополнительные измерения, настолько малые и скрученные, что их очень трудно увидеть.

На рисунке поверхность высокой трубочки имеет два измерения; длинное вертикальное измерение легко увидеть, а малое круговое измерение обнаружить труднее. Из предложения Калуцы—Клейна следует, что похожее различие между одними измерениями, большими и легко видимыми, и другими, малыми и слабо различимыми, может иметь место и для структуры самого пространства. Причина, по которой мы всё знаем о привычных трёх пространственных измерениях, может быть в том, что их протяжённость велика может даже бесконечны. Однако если дополнительное пространственное измерение скручено и имеет чрезвычайно малый размер, то оно совершенно равноправно обычным нескрученным измерениям и при этом остаётся невидимым даже для самого мощного современного увеличивающего оборудования. Так начиналась теория Калуцы—Клейна, гипотеза о том, что наша Вселенная имеет больше трёх пространственных измерений. Если вернуться в 1920-е годы, откуда вообще возникла такая экзотическая идея?

Калуца заинтересовался этим, потому что вскоре после публикации Эйнштейном общей теории относительности ему на ум пришла одна идея. Он обнаружил, что может модифицировать уравнения Эйнштейна и применить их ко вселенной с одним дополнительным пространственным измерением. Результат изучения модифицированных уравнений оказался захватывающим. Среди модифицированных уравнений Калуца обнаружил уравнения, уже применённые Эйнштейном для описания гравитации в трёх пространственных и одном временном измерениях. Но поскольку новая формулировка включала одно дополнительное пространственное измерение, Калуца обнаружил дополнительное уравнение. Получив это уравнение, Калуца распознал в нём уравнение электромагнитного поля, обнаруженное Максвеллом полувеком ранее.

Как показал Калуца, во вселенной с одним дополнительным пространственным измерением гравитация и электромагнетизм могут быть описаны единым образом как пространственно-временные искривления. Но гравитация рябит в привычных трёх пространственных измерениях, а электромагнетизм — в четвёртом. Огромной проблемой для гипотезы Калуцы стало объяснение того, почему мы не видим четвёртое пространственное измерение. Именно тогда Калуца предложил описанное выше решение: дополнительные измерения, если они достаточно малы, могут ускользать от фиксации нашими органами чувств и оборудованием. Однако последующие исследования показали, что программа Калуцы—Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались различные способы обойти эту проблему.

Однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта.

Совместное использование уравнений для вычисления квантовой вероятности некоторых физических процессов — таких как вероятность того, что два электрона оттолкнутся друг от друга — как правило, приводит к ответу бесконечность. Но вероятности бесконечными быть не могут. По определению значение вероятности должно находиться между 0 и 1 между 0 и 100, если считать в процентах. Бесконечная вероятность шлёт очевидный математический намёк: совместное использование уравнений бессмысленно. Физики выяснили, что проблема кроется в дрожании и флуктуациях из-за квантовой неопределённости.

Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие. Они больше похожи на землетрясение. Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать.

В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым. Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва, или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать. Насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль.

Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка, сжатая до фантастически малого объёма примерно 10-99 кубического сантиметра грубо говоря, это сфера с радиусом 10-33 сантиметра с так называемой планковской длиной. Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё. Однако в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн. Теория струн Хотя теория струн имеет репутацию сложной теории, её основная идея очень простая. Стандартная точка зрения, до теории струн, состояла в том, что фундаментальные составляющие являются точечными частицами — точками без внутренней структуры, — которые описываются уравнениями квантовой теории поля.

Теория струн бросает вызов такому представлению, утверждая, что частицы не являются точечными. Вместо этого, предлагается рассматривать их как крошечные, струноподобные вибрирующие нити. При более детальном рассмотрении, говорит теория, вы увидите, что струны в частицах разного типа неразличимы, но вибрируют они по-разному. Электрон менее массивен чем кварк, и согласно теории струн, это означает, что струна электрона вибрирует менее энергично, чем струна кварка. Различные свойства частиц объясняются разным вибрационным поведением нитей в теории струн, подобно тому как разные вибрации гитарных струн порождают звучание разных музыкальных нот. По причине бесконечно малого размера струны, порядка планковской длины — 10-33 сантиметра, даже самые точные современные эксперименты не могут подтвердить или опровергнуть протяжённую структуру струны.

БАК, на котором частицы сталкиваются друг с другом при энергиях, превышающих в 10 триллионов раз энергию покоящегося протона, может добраться до расстояний примерно 10-19 сантиметра; это миллионная от миллиардной доли толщины волоса, но всё же оно слишком велико, на много порядков больше планковских расстояний. Поэтому струны выглядят как точки, даже если их изучать на самых мощных в мире ускорителях частиц. Тем не менее, согласно теории струн, частицы являются струнами. В этом, в двух словах, и заключается теория струн. Струны, точки и квантовая гравитация Следует подчеркнуть три особо важных момента. Во-первых, когда учёные физики предлагают модель описания природы с помощью квантовой теории поля, они также выбирают поля, которые войдут в теорию.

Этот выбор диктуется экспериментальными ограничениями, а также теоретическими предпосылками. Главным примером является Стандартная модель. Рассматриваемая как венец достижений физики частиц XX столетия благодаря своей способности правильно описывать большое количество данных, собранных на ускорителях частиц по всему миру, Стандартная модель является квантовой теорией поля. Стандартная модель, безусловно, крайне успешна, но многие физики полагают, что по-настоящему фундаментальное понимание не требует такого разношёрстного набора ингредиентов. Впечатляющее свойство теории струн состоит в том, что частицы определяются самой теорией: разные типы частиц соответствуют разному вибрационному поведению струны. Тогда потенциал и перспективы теории струн заключаются в том, чтобы превзойти квантовую теорию поля путём получения всех свойств частиц математически.

Теория струн строится непоследовательными приближениями к полному описанию природы. Она предлагает полное описание с самого начала. Во-вторых, среди возможных вибраций струны есть одна, обладающая всеми нужными свойствами для того, чтобы быть квантовой частицей гравитационного поля. Исследования выявили свойства, которыми будет обладать гипотетическая частица — получившая название гравитон, — соответствующая квантовому гравитационному полю. Было показано, что гравитон должен быть безмассовым, не иметь заряда и обладать квантовомеханическим свойством, известным как спин-2. В-третьих, как бы ни была радикальна теория струн, она идёт по протоптанному пути, известному в истории физики.

Специальная теория относительности расширяет наше понимание мира высоких скоростей; общая теория относительности идёт дальше и учитывает большие массы; квантовая механика и квантовая теория поля вводят нас в мир малых расстояний. Понятия, привлекаемые этими теориями, и предсказываемые ими свойства непохожи ни на что известное ранее. Более того, если применять эти теории в привычных рамках доступных нам скоростей, размеров и масс, они сведутся к описаниям, открытым до XX столетия — к классической механике Ньютона и классическим полям Фарадея, Максвелла и других. Теория струн могла бы претендовать на существенный отрыв от своих предшественников и отступить от нарисованной схемы ниже. Замечательно, что этого не происходит. Теория струн достаточно революционна для преодоления барьеров физики двадцатого столетия.

При этом она достаточно консервативна, чтобы прошедшие три столетия открытий смогли уютно разместиться в её математическом аппарате. Пространственные измерения В первые годы исследований по теории струн физики столкнулись с фатальными математическими изъянами, например, спонтанное возникновение или исчезновение энергии. В 1970-х многие думали, что от теории струн необходимо отказаться.

Сначала казалось, что эта теория может объяснить все процессы во Вселенной, но на деле она оказалась невероятно сложной. Теория струн — это идея теоретической физики о том, что реальность состоит из бесконечно малых вибрирующих струн — меньших, чем атомы, электроны или кварки. Согласно этой теории, когда струны вибрируют, скручиваются и сворачиваются, они производят эффекты во многих крошечных измерениях. Эти эффекты люди затем могут наблюдать во всем — от физики элементарных частиц до крупномасштабных явлений, таких как гравитация.

В чем смысл теории струн? Теория струн рассматривалась как возможная «теория всего», единая структура, которая могла бы объединить общую теорию относительности и квантовую механику, две теории, лежащие в основе современной физики.

Вы точно человек?

Физики решили эту загадку, рассматривая эти частицы как «точку» в нашем трехмерном мире. В сочетании с четвертым измерением времени они прослеживают «мировую линию». Более того, у этих точек есть квантовые состояния, которые мы называем массой, зарядом и т.

Абсолютно все частицы могут быть описаны через единый объект — струну. Это же самое полное воплощение мечты о единстве мира!

Все известные нам частицы и переносчики взаимодействий — колебательные моды с наименьшей энергией. Хотя число различных колебательных мод бесконечно, лишь немногим из них соответствуют малые массы и заряды. Остальные должны иметь гигантские массы порядка 10-5 грамм — это огромная величина в масштабах микромира! На наших ускорителях родить таких гигантов мы еще долго не сможем.

Но они рождались на ранних стадиях Вселенной , когда энергия была в избытке. Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном.

В двумерном пространстве можно двигаться как вверх-вниз, так и вперед-назад, даже по диагонали. Представьте себе любую игру-платформер, как, например, Mario, и вспомните, в каких направлениях вы могли там двигаться. В одномерном же пространстве мы можем двигаться только вперед или назад. Со временем все то же самое. Отличие одномерного времени от одномерного пространства лишь в том, что это луч, а не отрезок. И движется он только вперед, а значит назад во времени мы идти не можем.

А что с двумерным временем? Не знаю, может вы можете представить, каково это, пересекать время по диагонали? Струны Если вы до сих пор это читаете, то наверняка уже много раз задавались вопросом, когда уже будет что-нибудь про струны. Хоть мое объяснение и для чайников, это все же объяснение. Просто рассказать, что такое струны, было бы неправильно, да и теория в основном базируется именно на измерениях. И, чтобы наконец добраться до струн, нам придется хотя бы попытаться представить эти измерения. О первых четырех вы уже имеете представление. Грубо говоря, первые три измерения, это некая точка в четвертом.

А точка, как известно, измерений не имеет. То есть с точки зрения времени, вы и весь сегодняшний день — лишь точка на временном луче. Что есть пятое измерение? Аналогично тому, как мы сворачиваем условно двумерный лист бумаги, чтобы придать ему объем то есть третье измерение , нам придется «согнуть» четвертое, чтобы получить пятое. Да, нам нужно согнуть время, а вместе с ним, естественно и наше трехмерное пространство, ведь одно без другого никуда. Делаем мы это для того, чтобы свести две временные точки вместе. Путешествие во времени, скажете вы — пятое измерение, отвечу я. По сути мы просто помещаем наше одномерное время на двумерную временную плоскость.

Таким образом у нас получается два отрезка в пятом измерении, в которых живет наш избранный Нео. Об этом мы и говорили чуть выше, описывая двумерное время. Но как же нам перемещаться между этими отрезками, если мы живем в них одновременно? В пяти измерениях никак. Нужно снова согнуть нашу бумагу, чтобы отрезки соприкоснулись. Это шестое измерение. При этом все пять предыдущих измерений снова становятся лишь точкой в шестом. Если у вас еще не болит голова, идем дальше.

Мы уже близко. Возьмем несколько точек, существующих в шести измерениях, и сделаем из них прямую. Как вы уже догадались, это седьмое. По сути седьмое измерение — это набор параллельных Вселенных. Все они живут по разным законам, во всех их жизнь происходит по-разному. И та сущность, которая способна жить в семи измерениях, может существовать одновременно во всем этом многообразии миров. Отобразим семимерную прямую на плоскости, получим восьмое измерение. А девятое содержит несколько таких плоскостей.

Вот вы уже представили, какая вакханалия существует в семи измерениях. Теперь вообразите, что будет если такой мир, в котором множество миров, тоже не один. Это восьмое. А теперь возьмем всю эту матрешку, помножим бесконечность раз и получим девятое. А теперь вообразите себе нечто, что существует во всех девяти измерениях одновременно. То есть девятимерные точки собираются в прямую, которая находится на какой-то плоскости — десятом измерении. И такие точки, состоящие из девяти измерений, образуют бесконечно длинную прямую, на бесконечно длинной плоскости. Эти линии тянутся в каждой точке пространства, в каждый момент времени во всех мирах.

Как мы увидим в следующих главах, причина этого состоит в том, что теория струн является столь глубокой и сложной структурой, что даже несмотря на впечатляющий прогресс, достигнутый за два последних десятилетия, предстоит сделать еще очень много, прежде чем мы сможем заявить, что достигли полного понимания. Таким образом, теория струн должна рассматриваться как развивающееся направление, первые результаты которого уже продемонстрировали поразительное проникновение в сущность пространства, времени и материи. Главным успехом является гармоничный союз общей теории относительности и квантовой механики. Далее, в отличие от всех предшествующих теорий, теория струн отвечает на основополагающие вопросы, относящиеся к наиболее фундаментальным составным частям и взаимодействиям в природе. Не менее важным, хотя это труднее передать, является замечательное изящество как ответов, которые дает теория, так и самой теоретической основы, позволяющей получать эти ответы. Например, в теории струн многие аспекты мироздания, которые могут показаться произвольными техническими деталями, такие, как число независимых фундаментальных частиц и их свойства, являются следствием неотъемлемых характеристик геометрии Вселенной. Если теория струн справедлива, микроскопическая структура нашей Вселенной представляет собой сложно переплетенный, многомерный лабиринт, в котором струны Вселенной бесконечно закручиваются и вибрируют, ритмично отбивая законы космоса. Свойства основных кирпичиков мироздания, — будучи совсем не случайными, — глубоко связаны со структурой пространства и времени.

В конечном счете, однако, ничто не может заменить четко определенных, поддающихся проверке предсказаний, которые смогут показать, действительно ли теория струн в состоянии поднять завесу тайны, скрывающую глубочайшие истины нашей Вселенной. Может пройти некоторое время, прежде чем наш уровень понимания достигнет глубины, достаточной для достижения этой цели, хотя, как будет показано в главе 9, экспериментальные проверки могут дать сильную и всестороннюю поддержку теории струн в течение ближайшего десятилетия.

Современное состояние теории струн

Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты. 1) «Теория струн» в первоначальном виде сама по себе уже устарела и сейчас это название закрепилось не за первоначальной теорией, а за целым семейством – собственно теория струн, теория суперструн и М-теория. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. Тегичто такое теория струн для чайников, о чем теория струн кратко, m теория струн, теория струн и м теория современное введение, теория струн сумма всех натуральных чисел. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Теория струн кратко и понятно. В начале XX века учёные, благодаря классической физике, считали, что поняли, как устроен мир.

Что такое теория струн и может ли она открыть дверь в другие измерения

Теория струн кратко и понятно. Видео от пользователя. •Краткая история теории струн. Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни. Теория струн, имеет все шансы разрешить главный спор в физике XX века – включить гравитационное взаимодействие в Стандартную модель. Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты.

Теория струн кратко и понятно. Теория струн для чайников.

Тогда необходимо искать новый подход в описании системы, возвращающий ее в исходное состояние. Такая смена подходов в описании и является основным содержанием учения о фазовых состояниях и фазовых переходах. Традиционные разделы физики, посвященные этому предмету, ограничиваются простейшими случаями, когда имеется мало различных фазовых состояний и переходы между ними представляются довольно отчетливыми. Однако, в последнее время все больший интерес представляют собой системы, в которых это далеко не так. Открыты физические системы, в которых число различных фаз неограничено и, более того, существенны процессы перехода одной фазы в другую. Понятно, что описание таких систем должно строиться из каких-то иных, нетрадиционных соображений. Наиболее известные из таких систем — спиновые стекла системы хаотически ориентированных спинов и нейронные сети. Струнный подход к описанию таких систем основан на упомянутой выше переформулировке возникающей задачи в новых терминах, сглаживающих такие существенные различия между различными фазами и уравнениями, как число переменных, порядок и число уравнений и даже размерность пространства, в котором они записаны. Но тут сразу следует указать, что практического применения открывающихся в этом направлении возможностей пока дело не дошло.

Изучение этих возможностей находится на начальной стадии развития. Объединение фундаментальных взаимодействий Эта проблема заслуживает отдельного рассмотрения, вследствие своей особой роли в естествознании. И тем более, ее нельзя обойти, поскольку создание единой теории всех фундаментальных взаимодействий — самый амбициозный проект, связанный со струнами, у истоков которого стоял Альберт Эйнштейн. Фактически имеется целых два проекта, а не один, которые не исключают, а скорее дополняют друг друга. Однако каждый из проектов имеет смысл и сам по себе. И если один из них в итоге будет признан несостоятельным, это не приведет к автоматическому закрытию второго. Первый сценарий, который можно считать наивным и прямолинейным приложением теории струн, приписывает струнам фундаментальную природу — элементарными следует считать не точечные частицы, а одномерные протяженные объекты. Примером может служить фотон, который в терминах теории струн представляется как замкнутая струна без натяжения нуль-струна.

Отсутствие натяжения у нуль-струны соответствует отсутствию у фотона массы покоя. С точки зрения стандартной модели, активно используемой в современной физике элементарных частиц, это равносильно предположению о существовании бесконечно большого разнообразия частиц с упорядоченным определенным способом набором масс, спинами и структурой взаимодействия. Замечательно, что такая гипотеза не приводит не только к противоречиям с имеющимися экспериментальными данными. Более того, это предположение позволяет улучшить теорию поля, поскольку оно устраняет некоторые противоречия, характерные для квантовой теории поля. Главным же недостатком такого подхода является отсутствие критерия выбора такой теории. Струнных моделей оказывается ни сколько не меньше, чем обычных и при этом, отсутствуют критерии, позволяющие отдать какой-либо из них предпочтение. С попыткой избавиться от такого модельного многообразия связан второй сценарий Великого Объединения. Суть его состоит в попытке отождествления квантовой теории поля и струнных моделей с каким-то объединением этих моделей.

Другими словами, эти модели в рамках такого подхода отождествляются с различными фазами единой теории, в которые попадает система при определенных условиях. Следующим шагом должно быть создание динамики на этом пространстве. Есть надежда, что теория струн, по крайней мере, может предоставить принципиальную возможность реализации подобного сценария, хотя от этой возможности до ее реализации еще очень и очень далеко. И в последнюю группу задач, решаемых теорией струн можно выделить проблемы чисто математического характера, решение которых тоже носит принципиальный характер. Но на этих проблемах, в силу их достаточной математической сложности, абстрактности и специфичности останавливаться не будем.

Ваша эмоциональная реакция понятна. Но ЭМОЦИИ, позволяющие ориентироваться в мгновения настоящего с учётом всей бесконечности прошлого опыта полезны, но лишь в том случае, в котором они высвечивают направление по которому движение, вызвавшее данное эмоциональное СОСТОЯНИЕ будет эволюционировать и в дальнейшем. Эфир это та реальность, которая позволяет понять первоистоки многого. До Эйнштейна было множество ученых,которые успешно отвечали на вопрос" Как устроен этот мир? Все естественно.

Время меняется.

Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии. В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий.

Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория петлевой квантовой гравитации в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе. Квантование силы тяжести Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание силы тяжести в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий. Унификация сил В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия.

Из теории струн следует, что все они когда-то являлись проявлениями одной. Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня. Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии. Пять вариантов После суперструнной революции 1984 г. Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта. Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности. М-теория На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез.

Основываясь на недавно обнаруженой дуальности, все они стали частными случаями единой всеобъемлющей концепции, названной Виттеном М-теория суперструн. Одним из ключевых ее понятий стали браны сокращение от мембраны , фундаментальные объекты, обладающие более чем 1 измерением. Хотя автор не предложил полную версию, которой нет до сих пор, М-теория суперструн кратко состоит из таких черт: 11-мерность 10 пространственных плюс 1 временное измерение ; двойственности, которые приводят к пяти теориям, объясняющих ту же физическую реальность; браны — струны, с более чем 1 измерением. Следствия В результате вместо одного возникло 10500 решений. Для некоторых физиков это стало причиной кризиса, другие же приняли антропный принцип, объясняющий свойства вселенной нашим присутствием в ней. Остается ожидать, когда теоретики найдут другой способ ориентирования в теории суперструн. Некоторые интерпретации говорят о том, что наш мир не единственный.

Наиболее радикальные версии позволяют существование бесконечного числа вселенных, некоторые из которых содержат точные копии нашей. Теория Эйнштейна предсказывает существование свернутого пространства, которое называют червоточиной или мостом Эйнштейна-Розена.

Интересное Как устроена Вселенная? Из чего состоит всё Сущее? Бесконечно ли Пространство?

Чтио такое Время? Наступит ли Конец Света? Тысячелетиями Человечество искало ответы на эти вопросы. Одна теория сменяла другую, каждая была точнее и сложнее предыдущей, но Истина постоянно ускользала из рук. Что не устраивает в Стандартной Модели?

На деле всё не так просто, Теория струн работает не везде и с большими оговорками, но это не мешает ей вносить большой вклад в развитие физики и её реально можно назвать революционной. Однако самое интересное, что как только начинаешь разбираться с теорий, сталкиваешься с такими необычными вещами, как: частицы, движущиеся со скоростью больше света; дополнительные семь измерений; коллайдеры размером с Галактику; пульты для настройки Вселенной; двойники элементарных частиц; квантовая гравитация и многое другое... Чтобы разобраться в Теории Струн нужно понять - на каком этапе наука находится сейчас. В целом она развивается циклично, фундаментальные теории, объясняющие модель мира, сменяют одна другую - когда одна теория не может объяснить что-то и в то же время другая отлично это объясняет - следует смена. И так далее, и так далее.

Наример, ранее самыми фундаментальными считались тысячи различных веществ - вода, золото, серебро, стекло, глина и т. На смену им прило чуть более сотни химических элементов таблица Менделеева. Потом обнаружилось, что атомы любых элементов состоят из электронов, протонов и нейтронов. Ну и так далее. На данный момент есть 17 частиц, которые считаются фундаментальными: Некоторые являются крипичиками, из которыех состоит всё вокруг.

U и D-кварки образуют протоны и нейтроны, добавляете электроны - и получаются атомы из которых сделаны абсолютно ВСЁ, от неживой до живой природы, от звёзд до вируса... Глюлны, фотоны и бозоны - переносчики взаимодействий.

Теория струн для чайников

Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на •Краткая история теории струн. Действительно, теория струн способна объединить квантовую теорию и гравитацию, но сделать это, как оказалось, можно пятью способами. Теория струн может и не станет теорией всего, но это хотя бы теория чего-то. Теория струн для чайников, предполагает объединение идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Теория струн кратко и понятно.

Войти на сайт

Однако, в 1926 году на сцену вышел великий Вернер Гейзенберг со своим принципом неопределенности и все изменилось в одночасье. Благодаря развитию темы принципа неопределенности ученые смогли сформировать новую теорию струн. Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн.

Их размеры — масштаба планковской длины, то есть порядка 10-35 м. Все струны одинаковы, а все наблюдаемые частицы и кванты полей суть различные типы колебаний этих струн. Струна принципиально не может иметь размер меньше планковской длины. В теории точечных частиц физики привыкли, что чем больше энергия частицы, тем в меньшей области пространства частица может быть локализована. Совсем иное дело со струнами: дополнительная энергия приводит не к уменьшению, а к увеличению размера струны. Поэтому расстояние, которое меньше планковской длины, принципиально недостижимо. Струны бывают открытыми и замкнутыми. И те и другие имеют определённые устойчивые формы колебаний — моды.

Представьте себе любую игру-платформер, как, например, Mario, и вспомните, в каких направлениях вы могли там двигаться. В одномерном же пространстве мы можем двигаться только вперед или назад. Со временем все то же самое. Отличие одномерного времени от одномерного пространства лишь в том, что это луч, а не отрезок. И движется он только вперед, а значит назад во времени мы идти не можем. А что с двумерным временем? Не знаю, может вы можете представить, каково это, пересекать время по диагонали? Струны Если вы до сих пор это читаете, то наверняка уже много раз задавались вопросом, когда уже будет что-нибудь про струны. Хоть мое объяснение и для чайников, это все же объяснение. Просто рассказать, что такое струны, было бы неправильно, да и теория в основном базируется именно на измерениях. И, чтобы наконец добраться до струн, нам придется хотя бы попытаться представить эти измерения. О первых четырех вы уже имеете представление. Грубо говоря, первые три измерения, это некая точка в четвертом. А точка, как известно, измерений не имеет. То есть с точки зрения времени, вы и весь сегодняшний день — лишь точка на временном луче. Что есть пятое измерение? Аналогично тому, как мы сворачиваем условно двумерный лист бумаги, чтобы придать ему объем то есть третье измерение , нам придется «согнуть» четвертое, чтобы получить пятое. Да, нам нужно согнуть время, а вместе с ним, естественно и наше трехмерное пространство, ведь одно без другого никуда. Делаем мы это для того, чтобы свести две временные точки вместе. Путешествие во времени, скажете вы — пятое измерение, отвечу я. По сути мы просто помещаем наше одномерное время на двумерную временную плоскость. Таким образом у нас получается два отрезка в пятом измерении, в которых живет наш избранный Нео. Об этом мы и говорили чуть выше, описывая двумерное время. Но как же нам перемещаться между этими отрезками, если мы живем в них одновременно? В пяти измерениях никак. Нужно снова согнуть нашу бумагу, чтобы отрезки соприкоснулись. Это шестое измерение. При этом все пять предыдущих измерений снова становятся лишь точкой в шестом. Если у вас еще не болит голова, идем дальше. Мы уже близко. Возьмем несколько точек, существующих в шести измерениях, и сделаем из них прямую. Как вы уже догадались, это седьмое. По сути седьмое измерение — это набор параллельных Вселенных. Все они живут по разным законам, во всех их жизнь происходит по-разному. И та сущность, которая способна жить в семи измерениях, может существовать одновременно во всем этом многообразии миров. Отобразим семимерную прямую на плоскости, получим восьмое измерение. А девятое содержит несколько таких плоскостей. Вот вы уже представили, какая вакханалия существует в семи измерениях. Теперь вообразите, что будет если такой мир, в котором множество миров, тоже не один. Это восьмое. А теперь возьмем всю эту матрешку, помножим бесконечность раз и получим девятое. А теперь вообразите себе нечто, что существует во всех девяти измерениях одновременно. То есть девятимерные точки собираются в прямую, которая находится на какой-то плоскости — десятом измерении. И такие точки, состоящие из девяти измерений, образуют бесконечно длинную прямую, на бесконечно длинной плоскости. Эти линии тянутся в каждой точке пространства, в каждый момент времени во всех мирах. Начиная от Большого Взрыва, через время, через пространство, через все миры тянутся они — струны.

Но при этом потеря универсальности приводит к более точным предсказанием развития процессов в изучаемом явлении. Методы теории струн позволяют довольно эффективно выделять различного рода симметрии процесса, очень часто являющиеся внутренними для изучаемой физической системы и далеко не очевидными на первый взгляд. Выделение подобных симметрий и их использование в дальнейшем, позволяет довольно эффективно описывать нелинейные системы. Струнный подход к описанию нелинейных систем исходит из кардинальной переформулировки исходной задачи в терминах, характерных для струнной теории. В этом смысле, от теории струн следует ожидать создание теории классов универсальности, фрагментами которой являются такие теории, как теория катастроф и теория фазовых переходов. Последняя из этих теорий, а точнее, задача о классификации фазовых переходов в 2- и 3-мерных системах, привела к созданию двух важнейших разделов струнной теории: двумерные конформные модели, например, известная специалистам сигма-модель в магнетизме, и исчисление случайных поверхностей. Теория систем со многими фазами и межфазовыми флуктуациями Этот круг проблем напрямую связан с предыдущими проблемами. В самом деле, системы со многими фазами и множественными случайными переходами из одной фазы в другую являются характерным примером систем с сильными по интенсивности взаимодействиями. Эти системы могут быть удовлетворительно описаны, если мы знаем или хотя бы догадываемся, как найти такую точку зрения, с которой она выглядит как слабовзаимодействующая. Однако и тут изменение параметров системы снова может снова превратить слабо нелинейную систему в сильно нелинейную. Тогда необходимо искать новый подход в описании системы, возвращающий ее в исходное состояние. Такая смена подходов в описании и является основным содержанием учения о фазовых состояниях и фазовых переходах. Традиционные разделы физики, посвященные этому предмету, ограничиваются простейшими случаями, когда имеется мало различных фазовых состояний и переходы между ними представляются довольно отчетливыми. Однако, в последнее время все больший интерес представляют собой системы, в которых это далеко не так. Открыты физические системы, в которых число различных фаз неограничено и, более того, существенны процессы перехода одной фазы в другую. Понятно, что описание таких систем должно строиться из каких-то иных, нетрадиционных соображений. Наиболее известные из таких систем — спиновые стекла системы хаотически ориентированных спинов и нейронные сети. Струнный подход к описанию таких систем основан на упомянутой выше переформулировке возникающей задачи в новых терминах, сглаживающих такие существенные различия между различными фазами и уравнениями, как число переменных, порядок и число уравнений и даже размерность пространства, в котором они записаны. Но тут сразу следует указать, что практического применения открывающихся в этом направлении возможностей пока дело не дошло. Изучение этих возможностей находится на начальной стадии развития. Объединение фундаментальных взаимодействий Эта проблема заслуживает отдельного рассмотрения, вследствие своей особой роли в естествознании. И тем более, ее нельзя обойти, поскольку создание единой теории всех фундаментальных взаимодействий — самый амбициозный проект, связанный со струнами, у истоков которого стоял Альберт Эйнштейн. Фактически имеется целых два проекта, а не один, которые не исключают, а скорее дополняют друг друга. Однако каждый из проектов имеет смысл и сам по себе. И если один из них в итоге будет признан несостоятельным, это не приведет к автоматическому закрытию второго. Первый сценарий, который можно считать наивным и прямолинейным приложением теории струн, приписывает струнам фундаментальную природу — элементарными следует считать не точечные частицы, а одномерные протяженные объекты. Примером может служить фотон, который в терминах теории струн представляется как замкнутая струна без натяжения нуль-струна. Отсутствие натяжения у нуль-струны соответствует отсутствию у фотона массы покоя. С точки зрения стандартной модели, активно используемой в современной физике элементарных частиц, это равносильно предположению о существовании бесконечно большого разнообразия частиц с упорядоченным определенным способом набором масс, спинами и структурой взаимодействия. Замечательно, что такая гипотеза не приводит не только к противоречиям с имеющимися экспериментальными данными.

Похожие новости:

Оцените статью
Добавить комментарий