У звёзд с массой порядка солнечной в конце фазы красного гиганта ожидается сброс планетарной туманности без взрыва и превращение звезды в белый карлик. Этот процесс способствует выходу жара из недр Солнца в космос, обеспечивая тепло, необходимое для жизни на Земле. Причиной взрыва стала звезда, в десяток раз тяжелее Солнца. Однако взрыв оказался беспрецедентно плоским, что является очень необычным явлением, поскольку звезды обычно взрываются в сферической форме из-за своей формы.
Астрономы зафиксировали крупнейший в истории наблюдений космический взрыв
Перенос вещества приводит к сложной эволюции звездной пары. Менее массивная звезда захватывает материю «соседки» и увеличивает свой угловой момент. Чтобы сохранить суммарный момент инерции бинарной системы, звезды сближаются. Если вторая звезда успевает выйти за границы своей полости Роша, она тоже оказывается обреченной на потерю плазмы. Эти превращения чреваты различными исходами. Часть выброшенной материи выходит на орбиты, целиком окружающие звездную пару. В особых обстоятельствах звездная пара может утонуть в шарообразном газовом облаке, порожденном ушедшей в пространство плазмой. Возможны и более экзотические сценарии такие как столкновение и слияние звезд или же съедание соседки более крупной звездой , но в такие дебри мы не станем заглядывать. До сих пор речь шла о нормальных звездных парах, но это не обязательно. Для запуска аккреции достаточно, чтобы лишь один из партнеров обладал газовой оболочкой, способной раздуться и уйти сквозь горловину полости Роша. Поэтому аккреция возникает и в бинарнных системах, объединяющих обычную звезду с компактным телом из вырожденной материи белым карликом либо нейтронной звездой или даже с черной дырой.
Кстати, аккреционные диски впервые обнаружили при наблюдении белых карликов, имеющих в компаньонах обычные звезды. Такие процессы нередко приводят к очень экзотическим исходам: например, рождению рентгеновского пульсара при аккреции на сильно намагниченную нейтронную звезду. Однако нас интересуют только различные сценарии рождения новых звезд. Они практически всегда реализуются при аккреции вещества водородной оболочки звезды-донора на белый карлик. Это тесные бинарные системы, состоящие из не утратившей активности звезды и белого карлика. Аккреционный диск всегда нагревается внутренним трением и охлаждается собственным излучением. При сбалансированности этих процессов он находится в тепловом равновесии, при нарушении которого в диске могут возникнуть волны тепловой нестабильности, резко увеличивающие генерацию фотонов. Светимость диска за несколько месяцев может вырасти на один-три порядка, составив от одной до десяти светимостей Солнца. Эти «внутридисковые» катаклизмы называются карликовыми новыми. Первая карликовая новая была замечена в созвездии Близнецов еще в 1855 г.
Куда эффектней классические новые звезды, или просто новые. Они вспыхивают в результате падения со скоростью порядка тысячи км в секунду на поверхность белого карлика вещества аккреционного диска. Поскольку при термоядерных реакциях интенсивно выделяется энергия, на поверхности белого карлика возникают ударные волны, которые буквально взрывают его внешний слой и выбрасывают сверхгорячую плазму в окружающее пространство. Светимость системы в течение нескольких суток возрастает на три-шесть порядков, достигая 100 тыс. Согласно теории, классические новые могут периодически загораться с интервалом в 10 тыс. Эти весьма редкие «звери» космического «зоопарка» в нашей Галактике их известен всего десяток увеличивают свою яркость в среднем не больше, чем тысячекратно, зато вспыхивают каждые 10—100 лет. Механизм этих вспышек пока в точности неизвестен. Предполагается, что они возникают при интенсивной до одной десятимиллионной солнечной массы в год аккреции водорода на поверхность самых массивных белых карликов, масса которых лишь немногим меньше предела Чандрасекара. Они возникают в звездных парах, состоящих из пульсирующего красного сверхгиганта на последней стадии своей эволюции и молодого, а потому очень горячего белого карлика средней массы. Звезда-донор в заключительной фазе интенсивно сбрасывает вещество своей оболочки и приближается к превращению через несколько миллионов лет в белый карлик.
Считается, что именно этот процесс лежит в основе специфического характера спектра симбиотических новых, хотя многие детали еще не ясны. Самый блистательный и в прямом, и в переносном смысле! Согласно стандартному сценарию а есть и другие , она происходит, когда приток аккретированного вещества доводит массу карлика-акцептора до предела Чандрасекара. Поскольку в этом случае давление вырожденного электронного газа уже не может противостоять гравитации, карлик сжимается примерно в три раза, и температура его центральной зоны резко возрастает. Когда она достигает 400 млн К, начинается термоядерное горение углерода, которое дополнительно нагревает ядро. Поскольку при этом давление вырожденного газа не увеличивается вспомним, что оно не зависит от температуры! Фронт термоядерного горения движется от ядра карлика к его поверхности, скорее всего, сначала с дозвуковой, а потом и со сверхзвуковой скоростью. В результате карлик взрывается без остатка, разбрасывая «новорожденную» если угодно, новосинтезированную материю по окружающему пространству. В этом смысле его взрыв похож на взрыв коллапсирующей звезды с начальной массой 130—250 солнечных масс, хотя физические механизмы совершенно различны. Поскольку углеродно-кислородный карлик лишен водорода, линии этого элемента в спектре излучения сверхновой отсутствуют, из-за чего ее и относят к I типу, а конкретно, к подтипу Ia.
К подтипам Ib и Ic, напротив, относят бедные водородом коллапсирующие сверхновые а сверхновым Ic не хватает еще и гелия. Принято считать, что эти звезды лишились внешних слоев еще до взрыва, что и объясняет их спектральные аномалии. Сверхновые подтипа Ia очень эффектны. При распаде ядер никеля и кобальта возникает гамма-излучение, которое нагревает остатки взорвавшейся звезды и заставляет их интенсивно светиться в рентгеновском и видимом диапазонах. Эти сверхновые обладают замечательной особенностью, за которую их очень любят астрономы и космологи: у них примерно одинаковая пиковая светимость, в четыре миллиарда раз превышающая солнечную. Поэтому наблюдение таких сверхновых сыграло первостепенную роль в открытии ускоренного расширения Вселенной, состоявшемся два десятилетия назад. Но это уже совсем другая история. Исследование звездных вспышек сейчас ведется весьма активно: и посредством наблюдений, и через обсчет моделей. Так, в 2010 г. Уже зарегистрировано полтора десятка таких звезд, но механизм их появления на свет пока неизвестен.
В наши дни эти исследовательские программы осуществляются на базе новейшей многоканальной астрономии multimessenger astronomy с широким использованием ресурсов астроинформатики. Эта новая научная дисциплина, возникшая в последнем десятилетии, стимулировала очень плотную кооперацию между астрономами и специалистами по вычислительным системам и компьютерным кодам. Перефразируя великого Булгакова, не побоюсь предречь, что этот научный «роман» принесет еще сюрпризы. Литература Сурдин В. Шкловский И.
И ученые считают, что в будущем из них сформируются новые звезды и планеты.
Hobart На кадрах, собранных из наблюдений 2000-2019 годов, видно, как внешняя область туманности расширяется — как и положено взрывной волне. Она состоит из волн, подобных звуковым ударам, создаваемым сверхзвуковым самолетом. Эти волны — места, где частицы ускоряются, превышая энергию самого мощного ускорителя на Земле — Большого адронного коллайдера. Но когда поток этих ускоренных частиц сталкивается с окружающей средой, наполненной космической пылью, он замедляется и начинает откатываться обратно. Так создается вторая волна. Второй объект, для которого собран таймлапс из кадров 2000-2022 годов, — Крабовидная туманность Crab Nebula.
Это остаток сверхновой, взрыв которой был таким ярким, что в 1054 году ее заметили астрономы в Китае.
Анализ показал, что ученые впервые наблюдали редкий случай гигантской вспышки магнетара за пределами Млечного Пути. Всего через несколько секунд после обнаружения вспышки данные были переданы на Землю и программы автоматически определили местоположения взрыва. Астрономы нацелили на галактику Сигары космические и наземные телескопы, чтобы определить источник излучения. Рентгеновский телескоп XMM-Newton, подключившийся к наблюдению, показал только газ и звезды. Это исключило версию о возможном столкновении нейтронных звезд: такое событие может создать вспышку гамма-излучения, но должно сопровождаться послесвечением в рентгеновском спектре и гравитационные волны. Яркая вспышка гамма-излучения и отсутствие послесвечения в рентгеновском и оптическом спектре.
Если у вас есть чёрная дыра с меньшей массой, которая находится в плотной среде, где много звёзд, и одна из этих звезд подходит очень близко, даже чёрная дыра массой от 10 до 100 раз больше массы Солнца всё равно смогла бы потенциально разорвать и поглотить одну из звёзд Но команда пока не исключает и более захватывающий сценарий. Возможно, LFC может быть результатом работы чёрной дыры «средней» или промежуточной массы, которая находится между чёрными дырами массы звезды и сверхмассивными чёрными дырами, обладая массой от 100 до нескольких тысяч масс Солнца. Это весьма захватывающий сценарий: не только потому, что чёрные дыры с промежуточной массой до сих пор остаются единичной находкой, но и потому, что изучение их может помочь объяснить, как сверхмассивные чёрные дыры достигли таких размеров в ранней космической истории. Изображение художника разрушения звезды, проходящей рядом со сверхмассивной чёрной дырой. Kornmesser Считается, что чёрные дыры промежуточной массы поглощают звёзды, при этом, они не обязательно должны быть центром галактик, потому что их могли вытолкнуть из центра более крупные чёрные дыры. LFC могут потенциально быть связаны с чёрными дырами промежуточной массы, и если это так, то они дадут новый способ обнаруживать чёрные дыры среднего размера. Команда уже значительно продвинулась в расследовании LFC, отыскав в архивных данных два «старых дела», которые похожи на AT2022aedm, что указывает на то, что этот класс мощных космических взрывов регистрировали и раньше, но они остались незамеченными в данных. Следующим шагом для учёных будет исследование шаровых звёздных скоплений — густых группировок звёзд, которые могут создать условия для разрушения звезды и запуска LFC малыми или средними чёрными дырами. Я думаю, что такие находки действительно захватывающе, потому что они напоминают нам, что у Вселенной всё ещё много сюрпризов в запасе. Когда мы построим новый телескоп, мы совершим новые открытия, и это поможет нам лучше понять нашу Вселенную», — заключил Николл.
Al Arabiya: сильнейшее гамма-излучение от взрыва звезды достигло атмосферы Земли
Он оказался настолько сильным, что высвободившаяся энергия затронула верхние слои атмосферы Земли. Такое событие происходит только раз в тысячу лет. Предположительно, он был вызван взрывом, причем настолько мощным, что высвободившаяся энергия затронула верхние слои атмосферы Земли. Его источник находится в 2,4 миллиардах световых лет от нашей планеты. Взрыв, за послесвечением которого до сих пор наблюдают астрономы всего мира, высвободил больше энергии, чем Солнце с момента своего появления 4,6 миллиарда лет назад.
Согласно исследованию, опубликованному в журнале Nature , помимо выброса гамма-всплеска, в результате слияния возникла килоновая звезда — редкий взрыв, который происходит, когда нейтронная звезда сливается с другой нейтронной звездой или черной дырой. Читайте также.
Находится она в созвездии Большой Медведицы — чуть вышке конца ручки «Ковша». Найти её несложно — она образует со звездами Бенетнаш и Мицар почти равносторонний треугольник Кстати, с другой стороны ручки «Ковша» притаилась другая вертушка — галактика «Водоворот» или M51 — тоже доступная и популярная, но чуть менее яркая. Вертушкой этот «звёздный город» называется неслучайно, потому что даже в телескопы средних размеров опытный наблюдатель может заметить её спиральную структуру — это классическая спиральная галактика, во многом напоминающая Млечный путь. Наблюдая «Вертушку» M101 мы словно в зеркало смотримся. Примечательно, что оттуда наша Галактика — Млечный путь — выглядит примерно в том же ракурсе — практически плашмя. Это потому, что расположена «Вертушка» в направлении от нас близком к галактическому полюсу Млечного пути. Яркость галактики M101 соответствует 7,5 звёздной величине — можно заметить даже в хороший бинокль.
Но чтобы рассмотреть подробности, уже нужен телескоп с апертурой от 4 дюймов. Сверхновая SN 2023ixf существенно слабее — её яркость на момент открытия оценивалась на уровне 15-й звездной величины как Плутон , и чтобы её заметить в одном из спиральных рукавов M101, потребовался бы телескоп с диаметром объектива сантиметров 20, а то и более. За прошедшие ночи блеск вспышки заметно поднялся — предположительно до 11m, и она стала более легким для наблюдения объектом. Но все равно, отличить её от подобных и многочисленных звездообразных на вид светил не так просто.
Ученый Филип Уайзман отмечает, что событие оставалось незамеченным в течение года, поскольку постепенно становилось ярче. Источник фото: Фото редакции Астрономы дали взрыву название AT2021lwx и продолжают анализировать данные, чтобы получить более полное представление о происходящем. Один из главных вопросов, которые ставят перед собой ученые, - какие последствия может иметь такой взрыв для космической экологии и существования жизни во Вселенной. Несмотря на то, что взрыв произошел на огромном расстоянии от Земли, он все равно является примером того, какие угрозы могут возникать в космическом пространстве.
Телескоп Джеймса Уэбба сфотографировал фееричные последствия сверхновой
Просмотр в реальном времени Новости космоса и астрономии Взрыва сверхновой не будет: затемнение гигантской звезды Бетельгейзе произошло из-за облака пыли. Примерно с начала апреля и по сентябрь в ночном небе на расстоянии 3 000 световых лет можно будет увидеть мощный взрыв. В NASA сообщили о взрыве звезды в 2024 году. звезда бетельгейзе взорвалась, взрыв бетельгейзе, бетельгейзе взорвалась Бетельгейзе – звезда в созвездии Ориона, одна из ярчайших на ночном небосклоне. В NASA сообщили о взрыве звезды в 2024 году. вспышку звезды (явление, когда звезда резко увеличивает свою яркость) в соседней галактике.
Астрономы из Крыма первыми сняли взрыв звезды в соседней галактике
Ученых встревожил странный взрыв в космосе, произошедший в восьми миллиардах световых лет от. На этих снимках астрономам не удалось обнаружить характерных вспышек и послесвечения, которые должны были возникнуть, если бы вспышка GRB 231115A появилась в результате слияния нейтронных звезд, взрыва сверхновой или других космических катаклизмов. В последний раз сверхновая взрывалась неподалеку в 1572 году, это была звезда в нашей Галактике, и всего в 7500 световых лет от нас. В 2008 году столкнулись две звезды, и их взрыв породил звезду, которая называется Red Nova. В 2024 году в трех тысячах световых лет от Земли произойдет взрыв уникальной звезды.
Астрономы зафиксировали мощнейший взрыв в истории Вселенной
Новость о зафиксированном учеными огромном взрыве в космосе, который стал самым большим за всю историю наблюдений, вызвала широкий резонанс в научном сообществе. Последний раз Тау взрывалась в 1946 году, и недавно астрономы заметили новые признаки скорого взрыва. Ученые предполагают, что «Тасманийский дьявол» произошел из-за «неудавшихся» сверхновых — то есть звезд, которые превратились в черную дыру или нейтронную звезду, прежде чем взорваться. Взрыв вспыхнул, когда Вселенной было 6 миллиардов лет. Последний раз Тау взрывалась в 1946 году, и недавно астрономы заметили новые признаки скорого взрыва.