Чёрная дыра Гаргантюа – это фантазия создателей «Интерстеллара», которая во многом соответствует реальным космическим объектам.
Новая ночная схема Москвы, версия Гаргантюа (4.1)
Ее отличной особенностью также является и музыка, используемая в качестве звукового сопровождения. Это композиция "First step" от Hans Zimmer. Как поставить видео обои для Wallpaper Engine Скачайте и распакуйте 827148653. Но если Вы используете пиратку, путь будет другой.
Куда делись пульсары? Неожиданная гипотеза была разработана в попытке ответить на вопрос: почему, несмотря на тщательные поиски, ученым так и не удалось обнаружить в центральном секторе нашей галактики Млечный путь ни одного пульсара? Пульсарами называют один из типов нейтронных звезд, образующихся после сверхновых. Его отличает очень быстрое вращение: некоторые делают оборот вокруг оси за доли секунды. Из-за этого излучение от таких звезд исходит, как свет от маяка, и наблюдателями на Земле считывается как мерцание отдельных импульсов. Несмотря на то, что пульсаров нет в радиусе примерно 25 парсеков от ядра галактики, до недавнего времени это ученых не слишком смущало: многие просто считали, что пока нет техники, способной их обнаружить, ведь как и все нейтронные звезды, пульсары по размерам сравнимы с небольшим городом на Земле, хоть и обладают массой больше, чем у Солнца. По одной из уже существующих версий, в космосе есть «неработающие» пульсары, которые лишились возможности вращаться.
В том случае, если вы уберёте все частицы во вселенной на бесконечно большое расстояние от нужной вам точки, если вы уберёте факт расширения пространства из уравнений, если вы также устраните все виды излучений, и присущую космосу кривизну - вы сможете заявить, что создали плоское пустое пространство. Но когда вы начинаете принимать во внимание, что живёте во вселенной, где всеми частицами и их взаимодействиями управляет квантовая теория поля, вам придётся признать, что даже в отсутствие физических частиц, физические поля, управляющие их взаимодействиями, никуда не денутся. Одним из последствий этого будет то, что сущность, которую мы представляем себе, как "Плоское Пустое Пространство", не избавлено от энергии. Вместо этого нужно представлять себе плоское пустое пространство как квантовый вакуум, где повсюду есть квантовые поля. Вам может быть знакомой идея, что на квантовых масштабах во вселенной существуют присущие пространству неопределённости конкретных параметров. Мы не можем одновременно знать расположение и импульс частицы, и чем лучше измеряем один из них, тем больше неопределённость у второго. Такое же взаимоотношение неопределённостей свойственно энергии и времени, что для нас сейчас важно. Только в том случае, если вы наблюдаете за тем, что представляете себе, как пустое пространство, но при этом наблюдаете за этим в определённый момент времени, вам нужно учесть, что момент - это бесконечно малый промежуток времени. Из-за этого взаимоотношения неопределённостей существует огромная неопределённость в общем количестве энергии, содержащемся даже в пустом пространстве в это время. Это значит, что там может, в принципе, быть несколько пар из частиц и античастиц, существующих на очень кратких промежутках времени, пока они подчиняются известным законам сохранения, действующим в физической вселенной. Мы часто слышим объяснение вроде "Пары Частица - Античастица Возникают и Исчезают в Квантовом Вакууме", и хотя такое объяснение довольно наглядно, на самом деле происходит не совсем это. Там нет настоящих частиц, в том смысле, что если вы запустите фотон или электрон через эту область пространства, они никогда не отразятся от частицы квантового вакуума. Это описание даёт нам возможность заглянуть в присущую квантовому вакууму "Дрожь", и показывает, что там есть резервуар виртуальных частиц, позволяющий нам трактовать присущую пустому пространству энергию как сумму всех этих виртуальных частиц. Повторюсь, так как это важно: существует энергия, присущая самому пустому пространству, и её можно представить, как сумму квантовых флуктуаций, присущих этому пространству. Пойдём дальше. Представим, что пространство, вместо того, чтобы быть плоским и пустым, всё ещё пустое, но уже искривлено - то есть, в гравитационном поле космоса существуют отклонения. Как будут выглядеть наши квантовые флуктуации? В частности, если мы позволим пространству искривляться из-за присутствия чёрной дыры, как они будут выглядеть снаружи и внутри горизонта событий? Но эти пары частиц и античастиц не являются реальными, а представляют собою лишь способ визуализации и подсчёта энергии, присущей пространству. Дело в том, что при искривлённом пространстве, как вы помните, существуют отклонения гравитационного поля. Мы используем флуктуации для помощи в визуализации энергии, присущей пустому пространство, но могут возникать флуктуации, начинающиеся снаружи горизонта событий, которые попадут внутрь горизонта, не успев ре - аннигилировать. Но нельзя украсть энергию у пустого пространства - что-то должно случиться, чтобы её сохранить. Поэтому каждый раз, когда виртуальная частица или античастица падает внутрь, настоящий фотон или их набор должен появиться для компенсации. И этот реальный фотон, покидающий горизонт событий, и уносит энергию от чёрной дыры. Тот способ, который мы ранее использовали для визуализации процесса, когда одна из пары частиц падала, а другая - убегала, слишком наивен, чтобы быть полезным, поскольку уменьшению чёрных дыр способствуют не частицы или античастицы, а фотоны, соответствующие спектру чёрного тела. Я предпочитаю картинку получше, хотя она всё равно ещё довольно наивна. Представьте квантовые флуктуации, при которых каждый раз, когда у вас появляется пара частица - античастица, из которых одна падает внутрь, появляется ещё одна пара частица - античастица, у которой внутрь падает другая. Это всё ещё не идеальная аналогия потому что это всего лишь аналогия , но, по крайней мере горизонт событий в ней покидают фотоны, что соответствует предсказаниям излучения хокинга. Фактически - хотя вам придётся провести подсчёты квантовой теории поля в искривлённом пространстве - времени, чтобы это выяснить - излучение хокинга предсказывает, что спектр фотона будет соответствовать абсолютно чёрному телу с температурой, заданной: Что даст температуру меньше одного микрокельвина для чёрной дыры массой равной массе солнца, меньше одного пикокельвина для чёрной дыры в центре нашей галактики, и всего лишь несколько десятых от аттокельвина для самой крупной из известных чёрных дыр. Скорость уменьшения, которому соответствует это излучение, настолько мало, что чёрные дыры будут расти, даже если они будут поглощать один протон за промежуток времени, сравнимый с возрастом нашей вселенной - это будет продолжаться ещё примерно 1020 лет. После этого чёрные дыры массой с солнце, наконец, начнут терять из-за излучения хокинга в среднем больше энергии, чем поглощают, и полностью испарятся через 1067 лет, а самые крупные из них - через 10100 лет. Это может сильно превышать возраст вселенной, но это и не вечность. А уменьшаться они будут благодаря излучению хокинга, испуская фотоны. В итоге: у пустого пространства есть энергия нулевого уровня, которая не равна нулю, а в искривлённом пространстве на горизонте событий чёрной дыры появляется низкоэнергетический спектр излучения абсолютно чёрного тела. Это излучение отнимает массу у чёрной дыры и слегка сжимает горизонт событий со временем. Тогда частица от одной пары и античастица от другой аннигилируют, создавая реальные фотоны, покидающие чёрную дыру, а другая виртуальная пара частиц падает в дыру и забирает её энергию или массу. Источник: Geektimes. Гаргантюа черная дыра. Вращающаяся черная дыра в космосе Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры. Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название — сингулярность. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию. Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.
Тем же образом вторичные изображения звезд циркулируют вокруг вторичных изображений полярных звезд например, вдоль двух желтых кривых. Почему в случае невращающейся черной дыры рис. На самом деле они все же циркулируют вдоль замкнутых кривых, но внутренний край этих кривых находится так близко к краю тени, что его невозможно увидеть. Вращение Гаргантюа завихряет пространство, и этот вихрь сдвигает внутреннее кольцо Эйнштейна наружу, проявляя его и показывая полный путь движения вторичных изображений желтые кривые на рис. В пределах внутреннего кольца Эйнштейна движения узора звезд еще более сложны. Звезды в этой области являются изображениями третьего и более высоких порядков для всех звезд во Вселенной — звезд, первичные изображения которых видны снаружи внешнего кольца Эйнштейна, а вторичные — между внутренним и внешним кольцами. На рис. Этот луч формирует для камеры изображение звезды, на которую указывает синяя стрелка.
Фильм “Интерстеллар” помог ученым раскрыть новые свойства черных дыр
Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена. Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие звездные скопления. Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус. Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей. Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы. Гравитационный радиус этого квазара в 10 раз меньше основного диаметра. При таких показателях, естественно, материя просто не сможет сингулировать до тех пор, пока непосредственно не пересечет горизонт событий. Парадоксальные факты Галактика Млечный Путь относится к разряду молодых и новых звездных скоплений. Об этом свидетельствует не только ее возраст, параметры и положение на известной человеку карте космоса, но и мощность, которой обладает ее сверхмассивная черная дыра. Однако, как оказалось, «смешные» параметры могут иметь не только молодые космические объекты.
Множество квазаров, которые обладают невероятной мощностью и гравитацией, удивляют своими свойствами: Обычный воздух зачастую имеет большую плотность, чем сверхмассивные черные дыры. Попадая на горизонт событий, тело не будет испытывать приливных сил. Дело в том, что центр сингулярности находится достаточно глубоко, и дабы достичь его, придется проделать долгий путь, даже не подозревая, что обратной дороги уже не будет. Гиганты нашей Вселенной Одним из самых объемных и старых объектов в космосе является сверхмассивная черная дыра в квазаре OJ 287. Это целая лацертида, расположенная в созвездии Рака, которая, к слову, очень плохо видна с Земли. В ее основе лежит двойная система черных дыр, следовательно, имеется два горизонта событий и две точки сингулярности. Больший объект имеет массу 18 миллиардов масс Солнца, практически как у небольшой полноценной галактики. Этот компаньон статичен, вращаются лишь объекты, которые попадают в его гравитационный радиус. Меньшая система весит 100 миллионов масс Солнца, а также имеет период обращения, который составляет 12 лет.
Опасное соседство Галактики OJ 287 и Млечный Путь, как было установлено, являются соседями — расстояние между ними составляет примерно 3,5 миллиарда световых лет.
Источник: kinopoisk. Но мы в 2023-м до сих пор не наблюдаем ничего похожего возле Сатурна. И очень странно, что, судя по словам героев, такому интересному космическому объекту было уделено мало внимания — за все годы с ее открытия по гравитационным волнам от черной дыры туда отправилась всего одна экспедиция, да и то колонизаторская. И почему профессор так уверенно говорит о том, что кротовая нора ведет именно в другую галактику в нашей Вселенной? Есть модели «червоточин», которые позволяют отправиться в другую Вселенную, а отличить отдаленную часть нашего мира от чужого будет непросто. Марс все-таки ближе, а Сатурн — намного дальше В одном из эпизодов Купер просит напарника-робота озвучить маршрут путешествия.
Робот отвечает, что путь до Марса займет восемь месяцев, а до Сатурна всего 14 месяцев. В действительности до Марса можно добраться всего за шесть месяцев при идеальном раскладе по расчетам NASA , а вот эффективность химических ракетных двигателей не позволяет быстро летать до Сатурна — быстрее трех лет и двух месяцев туда не добраться этот рекорд поставил аппарат Кассини, совершивший для этого пять гравитационных маневров — изменений траектории и скорости полета за счет гравитационных полей космических объектов. Людей в этом ограничивает длительность полета, набор скорости при помощи гравитационных маневров занимает гораздо больше времени. Источник: kinomania. И вот при подлете к «червоточине» знания Купера о ней испаряются. Ромилли приходится объяснять ему, что она выглядит как сфера, а не как дыра из-за сгибов в пространстве.
Несмотря на то что астрономы не могли наблюдать черную дыру непосредственно, в их существовании никто не сомневался. Но саму черную дыру все равно не увидеть Поскольку черная дыра ничего не излучает, ее нельзя увидеть просто так. Но зато можно увидеть вещество, которое с большой скоростью падает на черную дыру. Если поставить рядом с ней звезду или поместить черную дыру в облако газа и пыли, то за счет гравитации она начнет притягивать вещество. Оно будет падать на черную дыру, вокруг дыры сформируется аккреционный диск, который разогреется до сотен миллионов градусов и начнет светиться. Это свечение мы и видим». Светлые участки на фотографии — вещество, которое падает на дыру, а темный участок в центре снимка — тень черной дыры, место, где она находится и откуда не выходит свет.
Звездный узор на рис. Для Гаргантюа рис. Снаружи внешнего кольца звёзды «движутся» вправо в частности, вдоль двух пар красных кривых , так же как и для невращающейся черной дыры на рис. Однако у заднего края тени пространственный вихрь сжимает поток движения в узкие полосы, которые довольно резко изгибаются у экватора, и ускоряет его. Также вихрь образует в потоке «водовороты» замкнутые красные кривые. Эффект перетекания звезд рядом с быстровращающейся черной дырой, подобной Гаргантюа, «вид через камеру». В этой модели студии Double Negative дыра вращается со скоростью в 99,9 процента от предельной, а камера движется по круговой экваториальной орбите, окружность которой в шесть раз превышает окружность горизонта. Здесь есть две особенные звезды, для которых гравитационное линзирование не действует.
Комментарии:
- Око Саурона или пончик? В интернете обсуждают фото чёрной дыры
- Астрофизики впервые показали изображение черной дыры
- Познание тьмы: как наука проникает в тайны черных дыр | Вокруг Света
- Черные дыры. Kак умирают чёрные дыры? | Наука для всех простыми словами
- Обои: черная дыра, Гаргантюа, темный - 3840x2160
- Черная дыра из фильма «Интерстеллар»
Линзирование быстровращающейся черной дыры – Гаргантюа
1) Почему черная дыра Гаргантюа в фильме выглядит именно так? Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т. е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в том же "Интерстелларе".
Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом?
Это повышает целесообразность использования больших вращающихся черных дыр в качестве порталов для гиперпространственных путешествий. Мэллари также обнаружил особенность, которая не была полностью оценена ранее: эффект сингулярности в контексте вращающейся черной дыры привел бы к быстро увеличивающимся циклам растяжения и сжатия космического корабля. Но для очень больших черных дыр, таких как Гаргантюа, сила этого эффекта была бы очень мала. Поэтому космический корабль и все находящиеся на его борту люди не смогут его обнаружить.
Важным моментом является то, что эти эффекты не увеличиваются беспредельно; фактически, они остаются конечными, хотя напряжения на космическом корабле имеют тенденцию к неограниченному росту по мере приближения к черной дыре. В контексте модели Мэллари есть несколько важных упрощающих предположений и вытекающих из них предостережений. Главное допущение заключается в том, что рассматриваемая черная дыра полностью изолирована и поэтому не подвержена постоянным возмущениям со стороны такого источника, как другая звезда в ее окрестностях или даже падающее излучение.
Хотя это предположение допускает важные упрощения, стоит отметить, что большинство черных дыр окружены космическим материалом - пылью, газом, излучением. Поэтому естественным продолжением работы Мэллари было бы проведение аналогичного исследования в контексте более реалистичной астрофизической черной дыры.
Ее отличной особенностью также является и музыка, используемая в качестве звукового сопровождения.
Это композиция "First step" от Hans Zimmer. Как поставить видео обои для Wallpaper Engine Скачайте и распакуйте 827148653. Но если Вы используете пиратку, путь будет другой.
Увы, если бы фантасты знали о современной физике чуть больше, они бы не были столь несправедливы к черным дырам. Дело в том, что коллапсары фактически защищают Вселенную от гораздо более грозных монстров... Сингулярностью называется точка пространства, в которой его кривизна неограниченно стремится к бесконечности, - пространство-время как бы рвется в этой точке. Современная теория говорит о существовании сингулярностей как о неизбежном факте 3 - с математической точки зрения, решения уравнений, описывающие сингулярности, также равноправны, как и все прочие решения, описывающие более привычные объекты Вселенной, которые мы наблюдаем. Есть тут, однако, очень серьезная проблема. Дело в том, что для описания физических явлений необходимо не только иметь соответствующие уравнения, но нужно также задать граничные и начальные условия. Так вот, в сингулярных точках эти самые условия задать нельзя в принципе , что делает предсказательное описание последующей динамики невозможным.
А теперь представим, что на раннем этапе существования Вселенной когда она была достаточно малой и плотной образуется множество сингулярностей. Тогда в областях, которые находятся внутри световых конусов этих сингулярностей иными словами, причинно-зависимых от них никакое детерминистское описание невозможно. Мы имеем абсолютный и бесструктурный хаос, без намека на какую-либо причинность. Далее, эти области хаоса расширяются со временем по мере эволюции Вселенной. В результате к настоящему времени подавляющая часть Вселенной была бы совершенно стохастичной случайной и ни о каких "законах природы" не могло бы быть и речи. Не говоря уже о блондинках, планетах и прочих неоднородностях вроде нас с вами. К счастью, ситуацию спасают наши ненасытные обжоры.
Математическая структура уравнений фундаментальной теории и их решений указывает на то, что в реальных ситуациях пространственные сингулярности должны появляться не сами по себе, а исключительно внутри черных дыр. Как тут не вспомнить мифологических титанов, пытавшихся воцарить Хаос на Земле, но низвергнутых Зевсом и Ко в Тартар и благополучно заключенных там навеки… Таким образом, черные дыры отделяют сингулярности от остальной Вселенной и не позволяют им влиять на ее причинно-следственные связи. Этот принцип запрета существования "голых" англ. Пенроузом в 1969 году, получил название гипотезы космической цензуры. Как это часто бывает с фундаментальными принципами, полностью он не доказан, но принципиальных нарушений пока замечено не было - Космический цензор на пенсию пока не собирается. Стало быть, фундаментальная квантовая теория с учетом ОТО также принадлежит к этому типу? Так какая же из формул верна: 4 , базирующаяся на ОТО и свойствах черных дыр в квазиклассическом приближении, или 5 , основанная на экстраполяции обычной квантовой теории поля до планковских масштабов?
В настоящее время имеются весьма сильные аргументы в пользу того, что "мертва" скорее формула 5 , чем 4. Это, в свою очередь, может означать, что подлинно фундаментальная теория материи не просто очередная модификация квантовой теории поля, сформулированной "по объему", а некая теория, "живущая" на определенной поверхности, ограничивающей этот объем. Гипотеза получила название голографического принципа , по аналогии с оптической голограммой, которая, будучи плоской, тем не менее дает объемное изображение. Принцип сразу же вызвал большой интерес, ибо теория "на поверхности" - это нечто принципиально новое, вдобавок сулящее упрощение математического описания: ввиду понижения пространственной размерности на единицу, поверхности имеют меньшее число геометрических степеней свободы. Первое дает рецепт вычисления статистической энтропии 4 для общего случая материального тела, как определенной величины, вычисляемой на светоподобных мировых поверхностях, ортогональных поверхности тела да простит меня неискушенный читатель за эту фразу. Общая идея состоит в следующем. Что принять за меру энтропии в искривленном пространстве-времени, то есть как ее посчитать правильно?
Например, в случае распределения шара по ящикам см. Но в четырехмерном пространстве-времени объем чего бы то ни было величина не абсолютная помните лоренцево сокращение длин? Ну а понятие "ящика", сами понимаете, несколько выходит за рамки элементарных понятий фундаментальной науки. В общем, необходимо определить меру энтропии через элементарные понятия дифференциальной геометрии, которые были бы ковариантными , то есть значения которых менялись бы в зависимости от положения наблюдателя четко определенным образом. Пусть N - светоподобная гиперповерхность обобщенный световой конус некоторой совокупности пространственных точек S. Грубо говоря, N - это множество фотографий S, сделанных через бесконечно малые промежутки времени. Возьмем два пространственных среза N, сделанных в различные моменты времени две "фотографии" , назовем их S1 и S2.
Тогда принцип ковариантного ограничения на энтропию вещества, находящегося в S, гласит, что поток энтропии через гиперповерхность N между срезами S1 и S2 меньше модуля разности их площадей, деленного на четыре с точностью до размерного коэффициента, равного 1 в планковской системе единиц , или равен ему. Легко видеть, что по сути это та же формула 4 , только сформулированная более корректно с точки зрения геометрии. Второе - так называемое соответствие между пространством анти-де Ситтера adS и Конформной теорией поля CFT - это реализация голографии для некоего частного случая пространств постоянной отрицательной кривизны, тесно связанная с теорией струн. Соответствие гласит, что Конформная теория поля, определенная на границе пространства-времени анти-де Ситтера то есть на пространстве с размерностью на единицу меньше размерности самого adS , эквивалентна квантовой гравитации внутри самого анти-де Ситтера. Фактически это доказанное соответствие между высокоэнергетическими квантовыми состояниями в CFT и квантовыми возмущениями гравитационного поля в пространстве-времени постоянной отрицательной кривизны. Не забудьте, что теория струн - один из частных случаев двухмерной конформной теории поля, так что напрашиваются далеко идущие приложения. Если предположить, что наша четырехмерная Вселенная необязательно анти-деситтеровского типа вложена в, скажем, пятимерное пространство отрицательной кривизны AdS5 , то получаются так называемые космологические модели " мем бранных миров" англ.
Последнее означает, что некоторые свойства Вселенной экспериментально проверяемые могут быть предсказаны посредством прямых вычислений, а пункты а и б можно будет подтвердить или опровергнуть экспериментально. Черные дыры и предел делимости материи На заре прошлого века вождь мирового пролетариата, вероятно, находясь под впечатлением открытий Резерфорда и Милликена, рождает знаменитое "электрон так же неисчерпаем, как и атом". Этот лозунг висел в кабинетах физики почти всех школ Союза. Увы, слоган Ильича так же неверен, как и некоторые его политэкономические воззрения.
Это, в свою очередь, может означать, что подлинно фундаментальная теория материи не просто очередная модификация квантовой теории поля, сформулированной "по объему", а некая теория, "живущая" на определенной поверхности, ограничивающей этот объем. Гипотеза получила название голографического принципа , по аналогии с оптической голограммой, которая, будучи плоской, тем не менее дает объемное изображение. Принцип сразу же вызвал большой интерес, ибо теория "на поверхности" - это нечто принципиально новое, вдобавок сулящее упрощение математического описания: ввиду понижения пространственной размерности на единицу, поверхности имеют меньшее число геометрических степеней свободы.
Первое дает рецепт вычисления статистической энтропии 4 для общего случая материального тела, как определенной величины, вычисляемой на светоподобных мировых поверхностях, ортогональных поверхности тела да простит меня неискушенный читатель за эту фразу. Общая идея состоит в следующем. Что принять за меру энтропии в искривленном пространстве-времени, то есть как ее посчитать правильно? Например, в случае распределения шара по ящикам см. Но в четырехмерном пространстве-времени объем чего бы то ни было величина не абсолютная помните лоренцево сокращение длин? Ну а понятие "ящика", сами понимаете, несколько выходит за рамки элементарных понятий фундаментальной науки. В общем, необходимо определить меру энтропии через элементарные понятия дифференциальной геометрии, которые были бы ковариантными , то есть значения которых менялись бы в зависимости от положения наблюдателя четко определенным образом.
Пусть N - светоподобная гиперповерхность обобщенный световой конус некоторой совокупности пространственных точек S. Грубо говоря, N - это множество фотографий S, сделанных через бесконечно малые промежутки времени. Возьмем два пространственных среза N, сделанных в различные моменты времени две "фотографии" , назовем их S1 и S2. Тогда принцип ковариантного ограничения на энтропию вещества, находящегося в S, гласит, что поток энтропии через гиперповерхность N между срезами S1 и S2 меньше модуля разности их площадей, деленного на четыре с точностью до размерного коэффициента, равного 1 в планковской системе единиц , или равен ему. Легко видеть, что по сути это та же формула 4 , только сформулированная более корректно с точки зрения геометрии. Второе - так называемое соответствие между пространством анти-де Ситтера adS и Конформной теорией поля CFT - это реализация голографии для некоего частного случая пространств постоянной отрицательной кривизны, тесно связанная с теорией струн. Соответствие гласит, что Конформная теория поля, определенная на границе пространства-времени анти-де Ситтера то есть на пространстве с размерностью на единицу меньше размерности самого adS , эквивалентна квантовой гравитации внутри самого анти-де Ситтера.
Фактически это доказанное соответствие между высокоэнергетическими квантовыми состояниями в CFT и квантовыми возмущениями гравитационного поля в пространстве-времени постоянной отрицательной кривизны. Не забудьте, что теория струн - один из частных случаев двухмерной конформной теории поля, так что напрашиваются далеко идущие приложения. Если предположить, что наша четырехмерная Вселенная необязательно анти-деситтеровского типа вложена в, скажем, пятимерное пространство отрицательной кривизны AdS5 , то получаются так называемые космологические модели " мем бранных миров" англ. Последнее означает, что некоторые свойства Вселенной экспериментально проверяемые могут быть предсказаны посредством прямых вычислений, а пункты а и б можно будет подтвердить или опровергнуть экспериментально. Черные дыры и предел делимости материи На заре прошлого века вождь мирового пролетариата, вероятно, находясь под впечатлением открытий Резерфорда и Милликена, рождает знаменитое "электрон так же неисчерпаем, как и атом". Этот лозунг висел в кабинетах физики почти всех школ Союза. Увы, слоган Ильича так же неверен, как и некоторые его политэкономические воззрения.
Действительно, "неисчерпаемость" подразумевает наличие бесконечного количества информации в любом сколь угодно малом объеме вещества V. Однако максимум информации, которую может вместить V, согласно 4 ограничен сверху. Каким же образом существование этого предела "информационной емкости" должно проявляться на физическом уровне? Начнем немного издалека. Что такое современные коллайдеры, то есть ускорители элементарных частиц? По сути, это очень большие микроскопы, задача которых - увеличение разрешения по длинам Dx. А как можно улучшить разрешение?
И вот представим, что некто получил в свое распоряжение коллайдер неограниченной мощности. Сможет ли он, открывая все новые и новые частицы, бесконечно извлекать информацию? Увы, нет: непрерывно увеличивая энергию сталкивающихся частиц, он рано или поздно достигнет стадии, когда расстояние между какими-нибудь частицами из них в области столкновения станет сравнимо с соответствующим радиусом Шварцшильда, что немедленно повлечет рождение черной дыры. Начиная с этого момента вся энергия будет ею поглощаться, и, сколько ни увеличивай мощность, новой информации уже не получишь. Сама же черная дыра при этом станет интенсивно испаряться, возвращая энергию в окружающее пространство в виде потоков субатомных частиц. Таким образом, законы черных дыр, вкупе с законами квантовой механики, неизбежно означают существование экспериментального предела дробления материи. В этом смысле достижение "чернодырного" порога на коллайдерах будущего будет неизбежно означать конец старой доброй физики элементарных частиц - по крайней мере, в том виде, как она понимается сейчас то есть как непрерывное пополнение музея элементарных частиц новыми экспонатами.
Но вместо этого откроются новые перспективы. Ускорители будут служить нам уже как инструмент исследования квантовой гравитации и "географии" дополнительных измерений Вселенной против существования которых на данный момент пока не выдвинуто каких-либо убедительных аргументов. Фабрики черных дыр на Земле? Итак, мы выяснили, что ускорители элементарных частиц в принципе способны производить микроскопические черные дыры. Вопрос: какую они должны развивать энергию, чтобы получать хотя бы одно такое событие в месяц? До недавнего времени считалось, что эта энергия чрезвычайно велика, порядка 1016 тераэлектронвольт для сравнения: LHC сможет дать не больше 15 ТэВ. Однако если окажется, что на малых масштабах менее 1 мм наше пространство-время имеет число измерений больше четырех, порог необходимой энергии значительно уменьшается и может быть достигнут уже на LHC.
Причина заключается в усилении гравитационного взаимодействия, когда вступят в игру предполагаемые дополнительные пространственные измерения, не наблюдаемые при нормальных условиях.
Гаргантюа: Гигант в малютке
Потом начались диванные баталии о том, что ученые получили фотографии аккреционного диска, а затемнение в центре и есть горизонт событий, откуда не исходит и не отражается свет. Но некоторых пользователей все равно не удалось убедить, что открытие важно. Зажгите свечку Сотрудник отдела релятивистской астрофизики Астрономического института имени Штернберга Константин Постнов объяснил «360», почему черная дыра, которая не позволяет свету выйти, все равно светится. Она не светится. Светится вещество вокруг нее. Свечка у вас есть, зажгите.
Почему горит? Потому что там идет химическая реакция и частички, которые там вылетают, они горячие. Чем горячее, тем белее свет. То же самое и там. Когда газ падает вокруг черной дыры, он из-за трения нагревается до высоких температур и светится, как любое раскаленное тело Константин Постнов.
Астрофизик отметил, что светятся плазма и газ, которые нагреты до огромных температур в окрестностях черной дыры. Постнов объяснил, что черная дыра — это очень глубокая «потенциальная яма», компактный объект с большой массой. Туда падает газ, нагревается до высоких температур и светится в разных диапазонах света. Другими словами, если в земле выкопать яму и что-то туда бросить, то чем глубже будет отверстие, тем больше скорость падающего объекта, то есть он будет выделять больше энергии. Результат на Нобелевскую премию Ведущий научный сотрудник Института ядерных исследований РАН Вячеслав Докучаев в беседе с «360» объяснил, что современная астрофизика считает черные дыры самыми важными объектами во вселенной.
До сих пор ученые имели только косвенные доказательства, что эти черные дыры существуют.
Челябинск, Юлия Малецкая Челябинск. Другие новости 07. Челябинская Дума проведет первое заседание 2017 года лишь в марте.
С помощью специальных телескопов фиксировали рентгеновское излучение, которое создавало падающее в черные дыры вещество, и получали не такие красивые изображения , но зато находили места, где черные дыры есть. Еще один метод — долгое время наблюдать за поведением звезд в определенном регионе и сделать вывод, что там находится еще один объект, который не видно. И по движению этих звезд получалось, что в центре галактики есть черная дыра массой 3 миллиона масс Солнца». Чтобы сделать этот снимок черной дыры, астрономы вели наблюдение в течение 10 дней в апреле 2017 года, потом еще два года обрабатывали полученные данные, которые хранились на специальных жестких дисках. Поскольку телескопы создавали огромное количество данных — примерно по 350 терабайт в день, — информацию нельзя было передать по интернету, поэтому ученые хранили их на десятках жестких дисков. И это снимок с невероятным масштабом Галактика M87. Для сравнения: масса сверхмассивной черной дыры в центре Млечного Пути оценивается в 4,3 миллиона масс Солнца.
Только в 1960 году Дж. Оорт и Г. В 1966 году Д. Даунс и А. Максвелл, обобщив данные по радионаблюдениям в дециметровом и сантиметровом диапазонах, пришли к выводу, что малое ядро Галактики представляет собой объект диаметром 10 пк, связанный с источником Стрелец-А [19]. К началу 1970-х годов благодаря наблюдениям в радиоволновом диапазоне было известно, что радиоисточник Стрелец-А имеет сложную пространственную структуру. В 1974 году Б. Балик и С. Сандерс провели на 43-метровом радиотелескопе Национальной радиоастрономической обсерватории NRAO картографирование радиоисточника Стрелец-А на частотах 2,7 и 8,1 ГГц с разрешением 2" [21]. Было обнаружено, что оба радиоисточника представляют собой компактные образования диаметром менее 10" 0,4 пк , окружённые облаками горячего газа. Начало наблюдений в инфракрасном диапазоне править Вплоть до конца 1960-х годов не существовало эффективных инструментов для изучения центральных областей Галактики, поскольку плотные облака космической пыли, закрывающие от наблюдателя галактическое ядро, полностью поглощают идущее из ядра видимое излучение и значительно осложняют работу в радиодиапазоне. Ситуация коренным образом изменилась благодаря развитию инфракрасной астрономии, для которой космическая пыль практически прозрачна. Ещё в 1947 году Стеббинс и А. Уитфорд, используя фотоэлемент, сканировали галактический экватор на длине волны 1,03 мкм, однако не обнаружили дискретного инфракрасного источника [22]. Мороз в 1961 году провёл аналогичное сканирование окрестностей Sgr A на волне 1,7 мкм и тоже потерпел неудачу. В 1966 году Е. Беклин сканировал район Sgr A в диапазоне 2,0-2,4 мкм и впервые обнаружил источник, по положению и размерам соответствовавший радиоисточнику Стрелец-А.
Обои: черная дыра, Гаргантюа, темный - 3840x2160
Живые обои «Космическая черная дыра, туманный круг». это название одной из чёрных дыр в фильме "Интерстеллар", то есть это не физический термин, а, тысызыть, литературный (сценарий фильма - это всё ж литературное произведение. Мда). Группа международных астрономов, используя космический телескоп Gaia, обнаружила огромную черную дыру, расположенную относительно недалеко от Земли. Термин «черная дыра» появился только в 1969 году с легкой руки физика Джона Уилера. Узнайте о влиянии черной дыры Гаргантюа на время и пространство и как это можно соотнести с нашим миром.
Сценарий 2008 года
- Черная дыра из фильма «Интерстеллар»
- Гаргантюа: самая большая Солнечная система во Вселенной
- Путешествие среди чёрных дыр. Cтатьи. Наука и техника
- Око Саурона или пончик? В интернете обсуждают фото чёрной дыры
- Что даст человечеству изучение процесса добычи энергии от черных дыр?
Гаргантюа черная дыра - 85 фото
Система состоит из массивной звезды, которая примерно в 100 раз больше нашего Солнца, и меньшей звезды-компаньона, которая примерно в 10 раз больше нашего Солнца. И это еще не все — вокруг массивной звезды вращаются еще две планеты-гиганты. Другая планета примерно в 10 раз больше Юпитера. Обе эти планеты вращаются очень далеко от своей родительской звезды, поэтому они могут существовать, не поглощаясь интенсивным теплом и излучением звезды.
Но что делает Гаргантюа действительно замечательным, так это расстояние между двумя звездами.
Ученые: Использовать черные дыры для космических путешествий можно, но только осторожно 11. Многие астрофизики утверждают, что в настоящих условиях такое попросту невозможно. Однако группа исследователей из Университета штата Массачусетс в Дортмунде США считает, что эта фантазия на самом деле не так уж и далека от реальности.
Черные дыры являются, возможно, самыми загадочными объектами во Вселенной. Они — результат гравитационного коллапса сверхмассивных звезд, приводящего к созданию настоящей сингулярности — объекта бесконечной плотности, появившегося вследствие сжатия целой звезды до крошечной точки. Эти горячие точки бесконечной плотности обладают настолько мощной гравитацией, что способны в буквальном смысле разрывать пространство-время. Согласно предположениям, этот факт открывает возможность использовать эти объекты для гиперпространственных путешествий.
Конечно же, более ранние научные исследования на этот счет говорили о том, что любой объект, например, космический корабль, или живое существо, которые решат использовать черную дыру в качестве портала, очень быстро об этом пожалеют. Бесконечная гравитационная сингулярность и высокие температуры приведут к тому что объект будет растягиваться и сжиматься до тех пор, пока полностью не испарится. Путешествие сквозь черную дыру Научная команда профессора физики Гаурава Ханна из Университета штата Массачусетс в Дортмунде США и их коллеги из Колледжа Гвиннетт в штате Джорджия смогли показать, что не все черные дыры одинаковы.
Мы с моим коллегой Лиором Бурко исследуем физику черных дыр уже более двух десятилетий. В 2016 году моя аспирантка Кэролайн Мэллари, вдохновленная блокбастером Кристофера Нолана "Интерстеллар", решила проверить, сможет ли Купер герой Мэтью Макконахи выжить после падения в глубины Гаргантюа - вымышленной сверхмассивной, быстро вращающейся черной дыры, масса которой в 100 миллионов раз больше массы нашего Солнца.
Фильм "Интерстеллар" был основан на книге лауреата Нобелевской премии астрофизика Кипа Торна, и физические свойства Гаргантюа занимают центральное место в сюжете этого голливудского фильма. Даже не трясет? Она обнаружила, что при всех условиях объект, падающий во вращающуюся черную дыру, не будет испытывать бесконечно больших эффектов при прохождении через так называемую сингулярность внутреннего горизонта дыры. Это сингулярность, которую объект, входящий во вращающуюся черную дыру, не может обойти или избежать. Мало того, при правильных обстоятельствах эти эффекты могут быть пренебрежимо малы, что позволяет пройти через сингулярность довольно комфортно.
На самом деле, падающий объект может вообще не испытывать никаких заметных воздействий. Это повышает целесообразность использования больших вращающихся черных дыр в качестве порталов для гиперпространственных путешествий.
Сверхмассивная чёрная дыра в центре Галактики м87. Кэти Бауман. Телескоп Хаббл Квазар Квазар. Квазар в центре Галактики. Первое фото чёрной дыры. Фото тени черной дыры. Черная дыра реальное фото.
Черные дыры белые пятна. Чёрная дыра в галактике Млечный путь. Ядро Галактики Млечный путь. Галактика NGC 1068. Черная дыра излучение Хокинга. Испарение Хокинга. Кевин 11 черная дыра. Гаргантюа Интерстеллар 4к. Черная дыра 2022.
Аккреционный диск сверхмассивной черной дыры. Аккреционный диск Квазара. Аккреционный диск вокруг Квазара. Чёрные дыры средней массы. Черная дыра картинки. Массивная черная дыра. Космос черный дыра слияние. Притяжение черной дыры. Сверхмассивная чёрная дыра образование.
Черная дыра из телескопа. Самые загадочные планеты в чёрной дыре. Смерть черной дыры. Столкновение двух черных дыр. Темная материя черная дыра. Мираж четырехмерной черной дыры теория. Чёрные дыры в космосе настоящие. Черная дыра в реальности. Сверхмассивная чёрная дыра Млечный путь.
Блазар магнетар. Блазар и Квазар. Гамма излучение Вселенной. Нашли черную дыру. Саратов дыра.
Что даст человечеству изучение процесса добычи энергии от черных дыр?
- Гаргантюа черная дыра - 85 фото
- Путешествие сквозь черную дыру
- Слухи: Galaxy Watch 7 сможет измерять уровень сахара в крови
- Гаргантюа черная дыра
- Черная дыра из фильма «Интерстеллар»
Наука в фильме "Интерстеллар": кротовые норы, черные дыры, пространство-время
Forwarded from ДПС контроль Благовещенск (@dpskontrol_28rus) Сканер портамур амурлайф новости ДТП аварии autoroadblg народный. В Белогорске автомобиль засосало в Гаргантюа (черную дыру). Невероятное приключение автомобиля на ул. Гастелло. Согласно Научным Данным Она Образовалась Из Тёмной Звезды в Тёмные Века Во Времена Когда Не Было Времени и Если Залетит в Нашу Солнечную Систему Нас Ждут Бо. По расчетам, черная дыра в тысячи раз больше, чем в Млечном пути, и насчитывает не 0,1% от массы балджа галактики, а все 59%. Для установки двигающихся обоев «Черная дыра Gargantua» на рабочий стол windows 11/10 или более ранних версий воспользовавшись одной из программ. Помните, как черная дыра Гаргантюа искривляет лучи света, искажая вид звездного неба? По расчетам, черная дыра в тысячи раз больше, чем в Млечном пути, и насчитывает не 0,1% от массы балджа галактики, а все 59%.
Вращающиеся черные дыры могут служить удобными порталами для гиперпространственных путешествий
При этом ученые выяснили, что аппетит дыры стабильно выше так называемого предела Эддингтона – количества материи, которую может поглотить черная дыра. Поздравления. ДТП. Новости. Сериалы. Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков. Во многом это благодаря тому, что Гаргантюа – сверхмассивная черная дыра, массой не менее 100 миллионов масс солнца, с радиусом в одну астрономическую единицу.
Гаргантюа: самая большая Солнечная система во Вселенной
Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в том же "Интерстелларе". Новости развлекательной игровой тематики и индустрии кино. Поздравления. ДТП. Новости. Сериалы. Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков. Черная дыра в центре галактики M87, очерченная излучением раскаленного газа, который, вращаясь вокруг нее, образует кольцо. Живые обои «Космическая черная дыра, туманный круг». Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше.