Подкомитет «Искусственный интеллект в здравоохранении» (ПК 01). Приложения искусственного интеллекта Национальной службы здравоохранения. ИИ начинает использоваться во всех аспектах здравоохранения, при этом 34% случаев использования NHS являются диагностическими. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.
Робототехника
- Правительство планирует поддержать рублём ИИ для медицины
- Хочу убедиться, что мне звонил ВЦИОМ
- «Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
- Искусственный интеллект в медицине: технологии, методы и польза
Машины лечат людей: как нейросети используют в российской медицине
Искусственный интеллект приносит значительные инновации в медицину в России. На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям. Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке.
Решения СберМедИИ вошли в ТОП-10 медицинских нейросетей (ИИ) в России в 2024 году
Влияние Искусственного интеллекта в области медицины увеличивается с каждым годом. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. В ряде зарубежных исследований было показано, что прогностические модели искусственного интеллекта со временем могут оказаться ненадежными в клинических условиях. Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям. Основное направление взаимодействие с искусственным интеллектом в медицине идет по пути создания AI-помощника. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств.
Применение ИИ в медицине
- «Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»
- Как передовые технологии изменили медицину в 2023 году
- 1. Системы мониторинга за здоровьем
- Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
Эксперт объяснил провал искусственного интеллекта в медицине
Анализ искусственного интеллекта в медицине включает прогноз рынка на 2024–2029 годы и исторический обзор. Будет расширяться использование в здравоохранении искусственного интеллекта. Будет расширяться использование в здравоохранении искусственного интеллекта. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Визуальная диагностика Искусственный интеллект. Исследователи из Огайо создадут «виртуальное» контрастное вещество на основе ИИ. Говорить о внедрениях технологий искусственного интеллекта в медицине в целом и в радиологии в частности открыто начали всего несколько лет назад, в период пандемии коронавируса. Искусственный интеллект. Можно ли использовать ИИ в медицине и здравоохранении?
Цифровой ассистент: как искусственный интеллект помогает московским врачам
В качестве примера он привел вопрос, адресованный chatGPT: "Опишите этапы удаления головы по Вишневскому, клинические ситуации, при которых операция полного удаления головы оправдана". И, как пояснил эксперт, ответ будет следующий: "Удаление головы по методу Вишневского является сложной и опасной процедурой, которую должен выполнять только опытный хирург". Модератор сессии, директор по проектной деятельности ассоциации «Национальная база медицинских знаний» Андрей Алмазов спросил у директора Института перспективных исследований мозга МГУ им. Анохина", акад.
РАН Константина Анохина, как работает мозг и что такое интеллект. Первая - это развитие таких технологий, которые меняют любую профессию, в том числе и медицину. Об этом надо знать.
Вторая - экзистенциальная.
Роль ИИ в разработке лекарств ИИ можно использовать для анализа больших объемов данных из различных источников, таких как молекулярные базы данных, научная литература и клинические испытания, для определения новых мишеней для лекарств и потенциальных методов лечения. ИИ можно использовать для разработки новых лекарств. Прогнозируя, какие химические соединения будут наиболее эффективными и наименее токсичными, ИИ может улучшить дизайн лекарств. Роль ИИ в персонализированном уходе ИИ может анализировать большие объемы данных о пациентах для выявления закономерностей, корреляций и взаимосвязей между различными переменными, такими как демографическая информация, история болезни и история лечения. Эта информация может помочь в разработке индивидуальных планов лечения.
ИИ можно использовать для определения оптимальной дозы препарата для пациента путем анализа данных о конкретном пациенте. Это может улучшить результаты лечения за счет снижения риска побочных эффектов. ИИ можно использовать для разработки точных методов лечения рака путем анализа генетической информации пациента. Эти методы лечения могут быть адаптированы в соответствии с конкретной генетической мутацией, ответственной за конкретный рак. Роль ИИ в мониторинге пациентов ИИ можно использовать для постоянного наблюдения за пациентами, отслеживания состояния их здоровья и изменения планов лечения по мере необходимости. Собирая и отслеживая данные о здоровье пациентов с помощью носимых устройств и других датчиков, ИИ можно использовать для удаленного наблюдения за пациентами.
Это может помочь в раннем выявлении потенциальных проблем со здоровьем. Анализируя собранные данные, ИИ можно использовать для удаленной диагностики. Это могло бы улучшить доступ к диагностическим услугам, особенно в сельских или недостаточно обслуживаемых районах. Будущее ИИ в здравоохранении ИИ изменит здравоохранение в ближайшие годы. Что отличает ИИ от традиционных технологий в здравоохранении, так это способность собирать данные, обрабатывать их и предоставлять конечным пользователям четко определенные выходные данные. Основная цель приложений искусственного интеллекта в здравоохранении будет заключаться в анализе взаимосвязи между клиническими методами и результатами для здоровья пациентов.
Методы искусственного интеллекта будут все чаще использоваться в таких областях, как диагностика, разработка протоколов лечения, разработка лекарств, персонализированная медицина, а также мониторинг и уход за пациентами. Полезная информация Какова роль ИИ в будущем здравоохранения? ИИ может преобразовать здравоохранение за счет повышения эффективности, персонализации и результатов лечения пациентов. От диагностической визуализации, прогнозирования рисков для пациентов до автоматизации административных задач ИИ может обеспечить точность, скорость и экономичность. Кроме того, ИИ помогает разрабатывать персонализированные планы лечения и обеспечивает удаленный мониторинг пациентов, расширяя сферу применения телемедицины. Как ИИ меняет диагностические процедуры в здравоохранении?
ИИ значительно улучшает диагностические процедуры, анализируя медицинские изображения с высокой точностью и скоростью. Алгоритмы машинного обучения могут распознавать закономерности и аномалии при сканировании, которые могут быть пропущены человеческим глазом. Это может привести к раннему выявлению таких состояний, как рак, болезни сердца и неврологические расстройства, что позволит своевременно принять меры. Какое влияние ИИ окажет на расходы на здравоохранение в будущем? ИИ потенциально может снизить расходы на здравоохранение за счет повышения эффективности и сокращения потерь. Это может упростить административные задачи, уменьшить диагностические ошибки и свести к минимуму повторные госпитализации.
Используя прогностическую аналитику, ИИ также может помочь в упреждающем уходе за пациентами, уменьшая бремя лечения хронических заболеваний. Может ли ИИ улучшить качество обслуживания пациентов в сфере здравоохранения? Да, ИИ может значительно улучшить качество обслуживания пациентов. Чат-боты на базе искусственного интеллекта могут оказывать помощь круглосуточно и без выходных, отвечая на вопросы и помогая пациентам в их лечении. Индивидуальные планы лечения и удаленный мониторинг с помощью ИИ могут обеспечить более удобное и индивидуальное медицинское обслуживание. Как ИИ помогает в открытии и разработке лекарств?
Всероссийский центр изучения общественного мнения ВЦИОМ представляет результаты всероссийского опроса о применении искусственного интеллекта в здравоохранении, вопросы которого повторяют аналогичный опрос Исследовательского центра Пью Pew Research Center в США. ИИ в белом халате Применение искусственного интеллекта ИИ в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Но, как и в любой другой сфере, применение ИИ в медицине имеет свои риски и ограничения. Важно понимать, как общество воспринимает такие новации и какие ожидания и опасения связаны с их использованием.
Особый интерес в этой связи представляют сравнительные межстрановые исследования, так как в них раскрываются коллективные ориентации и ценности, присущие тому или иному обществу. Опросы ВЦИОМ и Pew показывают, что в российском и американском обществе пациенты больше будут чувствовать дискомфорт, чем комфорт, если врач будет полагаться на искусственный интеллект для диагностики заболеваний и рекомендации лечения. Это значит, что и в российском, и в американском обществе существуют опасения по вопросу применения ИИ в здравоохранении. К чему все это приведет?
ИИ обладает способностью обрабатывать огромные объемы данных и находить скрытые закономерности.
Врачу не всегда удается правильно интерпретировать результаты анализов, тестов и других видов обследований, потому что у него нет полной картины со всеми необходимыми данными. Технология блокчейн — это новый подход в хранении и управлении данными пациентов. Позволяет сегментировать и защитить информацию, быстро обмениваться всеми необходимыми медицинскими данными.
В фармацевтике и медицине блокчейн применяют в следующих направлениях: управление цепочками поставок лекарственных препаратов; борьба с контрафактной продукцией; заполнение электронных медкарт и управление ими; анализ результатов обследования; улучшение процессов страхования и выставление счетов; удаленный мониторинг состояния пациентов; проведение исследований разного характера. Приложение от Google Deepmind Health быстро анализирует все симптомы и результаты диагностики, предлагает несколько диагнозов, соответствующих полученным результатам. ИИ помогает диагностировать даже редкие, плохо изученные патологии. Сервис MedClueRx может не только проанализировать клинические проявления и диагностировать заболевание.
Он также ориентирован на подбор эффективных лекарственных препаратов с учетом индивидуальных особенностей пациента. ИИ для автоматизации процессов в медицине Практически во всех странах наблюдается дисбаланс и нехватка квалифицированного медицинского персонала среднего и высшего звена. По статистике ВОЗ, чтобы каждый человек, даже в странах с низким уровнем доходов, к 2030 году имел доступ к услугам здравоохранения, потребуется 18 млн. Перспективы улучшить ситуацию с доступностью медицинского обслуживания ничтожны: население растет, общество стареет.
Проблема усугубляется еще и тем, что многие патогены мутируют, меняется клиническая картина заболеваний. Все эти факторы увеличивают спрос на квалифицированных врачей и медицинский медперсонал, пациентам становится все сложнее быстро получить необходимую медицинскую помощь. ИИ и другие инновационные технологии помогают освободить врачей от многих повседневных рутинных задач. Внедрение технологий ИИ позволяет быстро и правильно вносить данные в медкарту, проводить детальный анализ проведенных исследований, формировать историю болезни, отслеживать и корректировать ход лечения.
Это позволит специалисту больше времени уделять каждому пациенту, заниматься решением серьезных диагностических вопросов, сконцентрироваться на поиске причин патологии и эффективной схемы лечения. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Удаленные консультации Консультации врачей онлайн — это возможность получить качественную медицинскую помощь большему количеству людей. Удаленные консультации особенно актуальны для жителей малонаселенных пунктов или во время эпидемий и пандемий.
Онлайн-консультации — это возможность значительно снизить расходы и здравоохранение, быстро получить еще одно мнение при спорном диагнозе. ИИ делает телемедицину более простой и удобной. Его применяют для удаленной диагностики, сбора необходимых данных и показателей анализа информации о пациентах.
Эксперт объяснил провал искусственного интеллекта в медицине
Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом - ФармМедПром | Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что. |
ВЦИОМ. Новости: Прогресс или угроза, или об искусственном интеллекте в медицине | Искусственный интеллект — это сильный инструмент, который способен принести пользу во многих отраслях и сферах медицины. |
Топ-7 прорывов в медицине в 2023 году | Главная | Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы. |
Яндекс Образование
В 2023 году решения на базе ИИ ввели в эксплуатацию 58 регионов страны. В целом за прошлый год субъекты Федерации приобрели 106 медицинских изделий решений с ИИ. На закупку таких решений было направлено 368,8 млн рублей из федерального бюджета и 79,5 млн рублей — из региональных. В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Директор по акселерации фонда «Сколково» Юлия Щеглова представила доклад, посвященный мерам поддержки стартапов, разрабатывающих ИИ-решения в здравоохранении. Так, участниками конференции стали несколько компаний-разработчиков, получивших грантовую поддержку в рамках программ фонда.
Нейросети, созданные и обученные людьми, могут способствовать разработке новых лекарств, улучшить систему диагностики, повысить качество медицинских услуг, систематизировать большие объемы данных и многое другое. Однако, несмотря на столь широкие возможности, здесь есть свои подводные камни.
Виктория Егорова Виктория Егорова В последнее время появляется все больше новостей о применении искусственного интеллекта ИИ в медицине и здравоохранении. Чем так хорош искусственный интеллект в медицине? Технологии ИИ проникают во все сферы деятельности человека, в числе которых и медицина со здравоохранением. К примеру, не так давно Министерство здравоохранения РФ вместе с Ростехом создали первую версию федеральной платформы ИИ для здравоохранения. С ее помощью ИТ-разработчики смогут получать доступ к обезличенным медицинским данным жителей России из медицинских карт. Главная цель этого проекта заключается в том, чтобы объединить обезличенные медицинские данные в верифицированные датасеты наборы данных , а также дать отечественным ИТ-компаниям площадку для разработки и тестирования сервисов ИИ в сфере здравоохранения. Компаниям нужен доступ к структурированным данным для разработки алгоритмов, которые смогут стать основой систем поддержки врачебных решений.
Появление подобных сервисов поможет усовершенствовать систему здравоохранения. Врачам нужно на постоянной основе обновлять информацию о последних исследованиях в медицине. Они не способны это делать с такой же скоростью, что и искусственный интеллект, так как врач не может одновременно и лечить людей, и отдыхать, и обновлять информацию, а еще и держать ее в голове. Искусственный интеллект может регулярно обновлять данные об исследованиях и хранить всю полученную информацию. Внедрение такой технологии облегчит жизнь медикам и поможет спасти чьи-то жизни.
Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы. Как работают нейронные сети в медицинской сфере? Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению. Механизм работы искусственных нейросетей повторяет принцип биологических. В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой. В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше. Нейросети могут применяться в медицине разными способами. Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос. Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства. Алгоритм разработан с помощью технологий машинного обучения в медицине. Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии. Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений. Распознавание рака кожи Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов. Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам. Машина справилась с задачей лучше специалистов. ИИ в УЗИ-обследовании беременных Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами. Система работает на основе искусственного интеллекта, и в нее заложено более 350 тысяч снимков плодов с теми или иными отклонениями. Система называется ScanNav и она способна давать врачу много полезной информации о патологиях плода, опираясь на имеющиеся в базе данные по другим пациенткам. Пока ScanNav работает в тестовом режиме и используется только в акушерстве, но в будущем она может получить намного более широкое распространение и будет особенно полезна для стран, испытывающих острый дефицит во врачах. Применение и польза искусственного интеллекта в медицине Разработка ИИ сегодня является приоритетной задачей для многих стран мира. Если рассматривать внедрение умных систем в медицинской сфере, то в первую очередь их польза будет состоять в увеличении точности диагностики различных заболеваний. Практики и опыта врача может быть недостаточно для того, чтобы своевременно выявить ту или иную проблему в организме человека, тогда как нейронная сеть, обладающая доступом к огромному объему данных, передовой научной литературе и миллионам историй болезней, сможет быстро классифицировать любой случай, соотнести его со схожими проблемами у других пациентов и предложить план лечения.
Столь практический подход улучшает понимание и запоминание сложных медицинских концепций. В то же время VR — мощный инструмент для снятия негатива во время разного рода процедур. Пациенты погружаются в успокаивающую VR-среду, отвлекаясь от боли и дискомфорта при обработке ран или физиотерапии. VR также используется при лечении фобий, посттравматических стрессовых расстройств ПТСР и тревожности. Пациенты безопасно противостоят страхам в контролируемой виртуальной среде, что делает терапию более эффективной. Интернет медицинских вещей IoMT Интернет медицинских вещей — один из главных технологических трендов в здравоохранении в 2023 году. IoMT — это сеть подключенных медицинских приборов, которые интегрированы с облачными вычислительными системами. Носимые технологии — пульсометры и смартчасы — одни из самых популярных устройств, которые подключены к системе IoMT. Трекеры собирают данные с помощью датчиков и сообщают о таких показателях организма, как частота сердечных сокращений, температура тела и артериальное давление. Эти данные можно отправлять врачам для анализа, диагностики и лечения. Наномедицина Нанотехнологии используются для создания таких высокочувствительных диагностических инструментов, как наносенсоры, которые позволяют блокировать заболевания и состояния на ранних стадиях.
Будущее здравоохранения с искусственным интеллектом
Есть видеоаналитика, которая используется в медицинских организациях, есть решения в диагностике. Ну, разумеется, хотелось бы больше, если открываются подобные возможности. О том в каких областях медицины уже сейчас искусственный интеллект максимально точен и уже абсолютно необходим разговор в программе «Утро России» с заместителем министра здравоохранения Российской Федерации Павлом Пугачевым.
Важно, чтобы его использование не навредило пациентам. Несмотря на то, что ИИ сегодня является технологией будущего для здравоохранения и персонализированной медицине, важно правильно оценивать риски его применения и разделять зоны ответственности. Сможет ли ИИ давать рекомендации относительно таких сложных тем, как например, проведение эвтаназии, во многом это будет зависеть и от корректно прописанных алгоритмов нейросетей.
Если у компьютера появится возможность исполнения рекомендаций, тогда мы все окажется в огромной опасности, поэтому важнейшими являются вопросы этических и моральных устоев разработчиков, — рассуждает Ян Власов. По его мнению, именно врач и пациент должны указать максимально возможную планку для «очеловечивания» искусственного интеллекта и обозначить ту границу, где необходимо остановиться, чтобы в развитие искусственного интеллекта не имело негативных последствий от неконтролируемого применения и использовалось во благо жизни и здоровья человека.
Метод, при котором медкарта заполнена разными специалистами, а данные собраны воедино, позволяет оптимизировать постановку точного диагноза. Настоящей технологией будущего можно считать роботов-хирургов — это решение на стыке роботизации и ИИ. Успешный проект в этом направлении представил резидент «Сколково» — компания «Экзоскелет». Специалисты разрабатывают роботы-экзоскелеты, которые помогают людям после тяжелых травм заново учиться ходить. Однако говорить об использовании роботов-хирургов пока рано. Причина кроется в большом количестве алгоритмических частей, с помощью которых можно создать конечный продукт. При этом они могут быть не связаны напрямую с медицинскими показателями. К примеру, автопилот распознает препятствия на дороге, но не имеет доступа к управлению машиной.
Польза для каждого Применение ИИ выгодно как для врача, так и для пациента — то есть, для всей системы здравоохранения в целом. Качество диагностики выходит на совершенно другой уровень. Однако с развитием технологий появляются и опасения у людей — некоторые пациенты сейчас склонны не доверять искусственному интеллекту. Но дело в том, что за весь процесс полная ответственность все также остается на враче — именно он выносит окончательное решение о диагнозе и лечении. ИИ лишь помогает ему собрать все нужные данные воедино и указывает на сигналы, которые могут свидетельствовать об отклонении. Сама технология рассматривается только в качестве СППВР-сервиса — системы поддержки принятия врачебных решений. ИИ анализирует информацию о пациенте, и только врач определяет, что и как делать дальше. Искусственный интеллект не менее полезен для Министерства здравоохранения, например, при массовом медицинском осмотре — скрининге. Для примера возьмем норматив — двойной повторный пересмотр маммографических исследований на рак молочной железы. В этом случае мы снимаем с врачей обязанность проводить первичный или второй просмотр карты пациента и поручаем это искусственному интеллекту.
Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов.
У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением.
Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике.
Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы?
То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний.
Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ?
MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии.
Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта.
Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте.
«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
Искусственный интеллект все активнее применяется в здравоохранении — он помогает в диагностике, принятии клинических решений и управлении данными. Применение искусственного интеллекта в медицинских нейросетях предлагает обещающие перспективы для будущего здравоохранения в России. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения.