А. Водоросли усваивают минеральные вещества всей поверхностью тела. Б. Высшие растения сами производят необходимые минеральные вещества в процессе дыхания. А. Водоросли усваивают минеральные вещества всей поверхностью тела. Б. Высшие растения сами производят необходимые минеральные вещества в процессе дыхания. 4 – водоросли поглощают воду и минеральные соли всей поверхностью тела, а ризоиды служат для прикрепления к субстрату. 4. Как и цветковые растения, водоросли поглощают воду и минеральные соли с помощью корней — у водорослей ет корней, поглощают всей поверхностью тела. А. Водоросли усваивают питательные вещества всей поверхностью тела. Б. Высшие растения поглощают минеральные вещества из почвы с помощью корней.
Чем водоросли поглощают минеральные вещества
Водоросли поглощают воду и минеральные вещества всей поверхностью тела, а ризоиды (маленькие выросты клеток) служат для прикрепления к поверхности (субстрату). 2) В клетках водорослей происходит только фотосинтез; хемосинтез происходит у бактерий 4) У водорослей отсутствует корень: их тело погружено в воду, поэтому они поглощают растворенный в воде кислород и минеральные вещества всей поверхностью тела. Водоросли впитывают воду и минеральные соли при помощи ризоидов — мелких волосковидных выростов, которые располагаются на всей поверхности организма. 5) водоросли поглощают необходимые вещества из окружающей среды всей поверхностью тела. 5) водоросли поглощают необходимые вещества из окружающей среды всей поверхностью тела.
Водоросли: строение и жизнедеятельность.
Водоросли населяют водоемы лишь на тех глубинах, на которые проникает солнечный свет. Условия этой среды заметно отличаются от наземных условий. Выживание водорослей в таких жестких условиях водной среды возможно благодаря специальным приспособлениям. Выход спор и гамет у морских водорослей совпадает с приливом.
Некоторые виды организмов обнаружены во льдах. Но, жизнь наземных водорослей все равно тесно связана с водой. Водоросли могут обитать на такой глубине воду, в которую может проникать солнечный свет. Максимальная глубина не превышает 200 метров. По образу жизни и обитания всех многочисленных представителей водорослей можно разделить на следующие группы: планктон, или фитопланктон — микроскопические водоросли, взвешенные в толще воды и не противостоящие течению; нейстон, или фитонейстон — микроскопические представители, обитающие в самом верхнем слое воды; бентос, или фитобентос — растения, прикрепляющиеся ко дну или грунту; галофитон — жители соленых вод; термофитон — обитатели горячих минеральных источников; аэрофитон — живут на коре и листьях деревьев, на шерсти животных, на стенах и крышах зданий, на заборах; фитоэдафон — их средой обитания является поверхностный слой почвы; криофитон — способны жить на поверхности снега и подтаявшего льда. Некрупные водоросли могут крепиться ко дну водоемов или свободно плавать вместе с планктоном в верхних слоях воды. Мелкие водоросли, плавающие в толще вод, относятся к планктону. В больших количествах они вызывают окрашивание воды в зеленый цвет, или цветение. Отдельные представители прикрепляются ко дну, тем самым образуя целые заросли. Так, крупные бурые водоросли образуют настоящие подводные леса. Существуют водоросли, паразитирующие на раковинах живых организмов. Водоросли играют очень важную роль в природе и жизни человека и других живых существ. Благодаря их повсеместному обитанию и большому количеству водоросли производят большую часть кислорода на Земле. Водоросли выступают производителями органических веществ в воде, это связано с процессом фотосинтеза. Водоросли широко применяются для биологической очистки вод. Из них формируются полезные ископаемые. Водоросли служат пищей для живых организмов чаще водных обитателей , кормом для скота, а также пищей для людей ламинария, ульва. Соответственно, в экосистемах водоросли выступают в роли продуцентов. Съедобные водоросли обогащены йодом и минеральными веществами. Водоросли применяются в химической, пищевой промышленности, в фармацевтике.
Томасу, который в 1939 году в Швейцарии получил из мико- и фотобионтов лишайник кладония крыночковидная с хорошо различимыми плодовыми телами. В отличие от предыдущих исследователей, Томас выполнял синтез в стерильных условиях, что внушает доверие к полученному им результату. К сожалению, его попытки повторить синтез в 800 других опытах не удались. Любимый объект исследования В. Ахмаджяна, принесший ему всемирную славу в области лишайникового синтеза, - кладония гребешковая. Этот лишайник широко распространен в Северной Америке и получил простонародное название британские солдаты: его ярко-красные плодовые тела напоминают алые мундиры английских солдат времен войны североамериканских колоний за независимость. Небольшие комочки изолированного микобионта кладонии гребешковой смешивали с фотобионтом, извлеченным из того же лишайника. Смесь помещали на узкие слюдяные пластинки, пропитанные минеральным питательным раствором и закрепленные в закрытых колбах. Внутри колб поддерживали строго контролируемые условия влажности, температуры и освещенности. Важным условием эксперимента было минимальное количество питательных веществ в среде. Как же вели себя лишайниковые партнеры в непосредственной близости друг к другу? Клетки водоросли выделяли особое вещество, которое приклеивало к ним гифы гриба, и гифы сразу начинали активно оплетать зеленые клетки. Группы водорослевых клеток скреплялись ветвящимися гифами в первичные чешуйки. Следующим этапом было дальнейшее развитие утолщенных гиф поверх чешуек и выделение ими внеклеточного материала, а в результате - образование верхнего корового слоя. Еще позже дифференцировались водорослевый слой и сердцевина, совсем как в слоевище природного лишайника. Эти опыты были многократно воспроизведены в лаборатории Ахмаджяна и всякий раз приводили к появлению первичного лишайникового слоевища. В 40-е годы XX века немецкий ученый Ф. Тоблер обнаружил, что для прорастания спор ксантории настенной требуются добавки стимулирующих веществ: экстрактов из древесной коры, водорослей, плодов сливы, некоторых витаминов или других соединений. Было сделано предположение, что в природе прорастание некоторых грибов стимулируется веществами, поступающими из водоросли. Примечательно, что для возникновения симбиотических отношений оба партнера получать умеренное и даже скудное питание, ограниченные влажность и освещение. Оптимальные условия существования гриба и водоросли отнюдь не стимулируют их воссоединение. Более того, известны случаи, когда обильное питание например, при искусственном удобрении вило к быстрому росту водорослей в слоевище, нарушению связи между симбионтами и гибели лишайника. Если рассматривать срезы лишайникового слоевища под микроскопом, видно, что чаще всего водоросль просто соседствует с грибными гифами. Иногда гифы тесно прижимаются к водорослевым клеткам. Наконец, грибные гифы либо их ответвления могут более или менее глубоко проникать внутрь водоросли. Эти выросты называются гаусториями. Совместное существование накладывает отпечаток и на строение обоих лишайниковых симбионтов. Так, если свободноживущие синезеленые водоросли родов носток, сцитонема и других образуют длинные, иногда ветвящиеся нити, то у тех же водорослей в симбиозе нити либо скручены в плотные клубочки, либо укорочены до единичных клеток. Кроме того, у свободноживущих и лихенизированных синезеленых водорослей отмечают различия в размерах и расположении клеточных структур. Зеленые водоросли также изменяются в симбиотическом состоянии. Это, в первую очередь, касается их размножения. Многие из зеленых водорослей, живя на свободе, размножаются подвижными тонкостенными клеточками - зооспорами. В слоевище зооспоры, обычно, не образуются. Вместо них появляются апланоспоры - относительно маленькие клетки с толстыми стенками, хорошо приспособленные к засушливым условиям. Из клеточных структур зеленых фотобионтов наибольшим изменениям подвергается оболочка. Она тоньше, чем у тех же водорослей на воле, и имеет ряд биохимических различий. Очень часто внутри симбиотических клеток наблюдают жироподобные зернышки, которые после изъятия водоросли из слоевища исчезают. Говоря о причинах этих различий, можно предположить, что они связаны с каким-то химическим воздействием грибного соседа водоросли. Сам микобионт также испытывает воздействие водорослевого партнера. Плотные комочки изолированных микобионтов, состоящие из тесно переплетенных гиф, внешне совсем не похожи на лихенизированные грибы. Внутреннее строение гиф тоже различно. Клеточные стенки гиф в симбиотическом состоянии значительно тоньше. Итак, жизнь в симбиозе побуждает водоросль и гриб менять свой внешний облик и внутреннее строение. Что же получают сожители друг от друга, какую пользу извлекают из совместного существования? Водоросль снабжает гриб, своего соседа по лишайниковому симбиозу, углеводами, полученными в процессе фотосинтеза. Водоросль, синтезировав тот или иной углевод, быстро и почти целиком отдает его своему грибному сожителю. Гриб получает от водоросли не только углеводы. Если синезеленый фотобионт фиксирует атмосферный азот, существует быстрый и устойчивый отток образовавшегося аммония к грибному соседу водоросли. Водоросль же, очевидно, просто получает возможность широко расселяться по Земле. По словам Д. Смита, наиболее частая у лишайников водоросль, требуксия, очень редко живет вне лишайника. Внутри же лишайника она распространена, пожалуй, шире, чем любой род свободноживущих водорослей. Литература Лишайники - википедия Биохимические особенности[править] Большинство внутриклеточных продуктов, как фото- фико- , так и микобионтов не являются специфичными для лишайников. Уникальные вещества внеклеточные , так называемые лишайниковые, формируются исключительно микобионтом и накапливаются в его гифах. Сегодня известно более 600 таких веществ, например, усниновая кислота, мевалоновая кислота. Нередко, именно эти вещества оказываются решающими в формировании окраски лишайника. Лишайниковые кислоты играют важную роль в выветривании, разрушая субстрат.
Автотрофный тип питания характерен для всех фотосинтезирующих растений и цианобактерий. Они существуют за счёт потребления готовых органических веществ, создаваемых автотрофами. К гетеротрофам относятся все животные в том числе человек , грибы и многие бактерии. Существуют также организмы со смешанным типом питания, которые могут в зависимости от условий обитания как синтезировать органические вещества, так и питаться готовыми органическими соединениями. К организмам со смешанным питанием относятся многие одноклеточные водоросли эвглена, хлорелла, хламидомонада. Фотосинтез в растениях происходит только при участии хлорофилла. Бесполое размножение — форма размножения без образования половых клеток — гамет. В нём участвует одна особь, а потомство является абсолютной копией материнского организма. Бесполое размножение организмов может проходить при помощи спор или специальных органов бесполого размножения выводковых почек, клубеньков и др. Споры могут быть подвижными и иметь жгутики для перемещения, в этом случае их называют зооспорами от др. Существуют неподвижные споры без жгутиков — апланоспоры от др. Половое размножение — форма размножения с образованием половых клеток — гамет. В процессе полового размножения новый организм образуется в результате оплодотворения — слияния гамет, а потомство, получившееся в результате полового размножения, не является точной копией родительских организмов, а имеет сходство с каждым из них. При слиянии гамет оплодотворении образуется зигота — первая клетка нового организма. В стадии зигоспоры организм переносит неблагоприятные условия засуху, холод. Встречается у некоторых водорослей и простейших. Благодаря митозу происходит рост многоклеточных организмов, а также образуются споры бесполого размножения. В каждой дочерней клетке количество наследственного материала вдвое меньше, чем в материнской. Путём мейоза образуются гаметы. В результате оплодотворения слияния гамет количество наследственного материала в зиготе восстанавливается. За счёт слияния гамет от разных родительских организмов происходит комбинирование наследственных признаков у организма, который разовьётся из получившейся зиготы.
Чем водоросли поглощают вещества из окружающей среды?
Среди водорослей есть одноклеточные и многоклеточные организмы. Одни из них — микроскопические, другие — гиганты. Например, размер тела одноклеточной водоросли хлореллы обыкновенной составляет всего 2 микрона, а тело многоклеточной морской водоросли макроцистиса грушевидного достигает в длину 45-60 м. Строение водорослей отличается от строения других растений.
Их тело не расчленено на корень, стебель и листья, а представлено слоевищем, или талломом от греч. В нем нет проводящих сосудов. Водоросли всей поверхностью своего тела поглощают вещества из окружающей среды.
Именно поэтому их относят к низшим растениям. Тело водорослей не разделено на поглощающие и фотосинтезирующие части. Оно осуществляет те и другие функции всей своей поверхностью.
В клетках тела водорослей присутствует хлорофилл и другие пигменты, обеспечивающие фотосинтез. В связи с этим водоросли относят к автотрофным организмам, способным с участием хлорофилла на свету осуществлять фотосинтез. Как все растения, из углекислого газа и воды водоросли образуют органические вещества, поглощают и запасают энергию солнечного света.
Талломное строение тела слоевища и наличие пигментов в клетках — характерные признаки водорослей.
При больших дозах азота и фосфора в почве, усвоение цинка замедляется. Однако дефицит его становится заметен только в конце вегетации, когда листва приобретает лимонный оттенок. Плюсы и минусы Растения играют большую роль в жизни человека. Относиться к ним можно по-разному, но несомненная польза флоры для существования нашей планеты очевидна.
Одна особенность растительного братства вырабатывать кислород чего стоит. У почвенного питания тоже есть целый ряд достоинств: способность получать необходимые вещества прямо из земли, растения питаются самостоятельно, в случае нехватки отдельного микроэлемента его всегда можно добавить в почву, возможность влиять на урожайность сельскохозяйственных культур, минералы помогают представителям флоры стойко переносить засуху и морозные зимы, микроэлементы защищают посадки от вредителей и болезней. Что такое удобрение, современная молодежь знает только из учебников. Зато фермеры и огородники хорошо с ним знакомы. Производители предлагают в широком ассортименте и комплексные удобрения, и отдельные микроэлементы.
Но при всех преимуществах у минерального питания есть и отдельные недостатки. Если растения сжечь, то в золе можно обнаружить много микроэлементов. В дикой природе, когда трава, цветы и листва осенью жухнут, все это остается на земле. Следовательно, микроэлементы никуда не исчезают, и флора снова может их использовать с наступлением весны, когда опавшие листья и старая трава превратятся в перегной. Совсем другая картина с сельскохозяйственными культурами, плоды которых забираются человеком для употребления в пищу.
Чтобы сохранить баланс микроэлементов в почве, приходится вносить различные подкормки, а это трудовые и материальные затраты. К тому же многие представители растительного братства имеют свойство накапливать в себе микроэлементы, переизбыток которых вреден для здоровья. Если внести в землю много того же азота, овощи будут изобиловать нитратами, нанося вред человеческому организму при употреблении. Поэтому при внесении минеральных удобрений нужно проявлять внимательность, да и работать с ними лучше в перчатках и марлевой повязке. Растения-исключения Раньше к растениям относили и грибы, но со временем их выделили в отдельные группы, отделы и классы.
То же самое касается бактерий и большинства микроорганизмов. Среди самих растений также встречаются исключения, например, представитель однодольных растений Вороний глаз, имеющий листовую пластину с сетчатым жилкованием и четырехчленный околоцветник. Это признаки двудольных растений, хотя сам Вороний глаз относится к однодольным. Аналогичная картина наблюдается и у известного всем подорожника, относящегося к классу двудольных, но демонстрирующего признаки однодольных растений: дуговое жилкование листовой пластины и мочковатую корневую систему.
Но больше всего развитию водорослей способствует повышенное содержание фосфора, поступающего в воду или с разлагающейся органикой, или с минеральной подкормкой для растений. Очевидно, причиной является то, что гуминовые кислоты играют роль желтого светофильтра, а желтый свет благоприятствует развитию этих водорослей. Повышение температуры воды на несколько градусов также способствует массовому развитию сине-зеленых. Это объясняется тем, что активизируются обменные процессы и происходит быстрое по сравнению с другими растениями деление клеток. В общем, сине-зеленые водоросли — это свидетельство нарушений в биологической системе. Они легко появляются во вновь оборудованных аквариумах с еще нестабильной средой.
Подмены воды, затенение аквариума, улучшение фильтрации не всегда приносят желаемый результат. C течением времени, когда экосистема в аквариуме сбалансируется, то есть в грунте и фильтре сформируется колония бактерий способная переработать все органические загрязнения, образующиеся в молодом аквариуме в больших количествах, и благодаря тому, что растений начнут хорошо расти, Cyanobacteria исчезнет. В аквариумах с хорошо ассимилировавшимися растениями вы никогда не увидите нароста сине-зеленых водорослей. В старых аквариумах сине-зеленые водоросли почти всегда вырастают только после внезапных изменений, например, при изменении освещения, передозировке удобрений или применении какого-либо химического препарата. Предполагают, что довольно часто сине-зеленые водоросли свидетельствуют о плохом качестве воды. Причины этого могут крыться: в низком содержании кислорода, передозировке питательных веществ в том числе нитратов, фосфатов , щелочном показателе рН, избытке органических веществ или слишком частом кормлении рыб, а также почти всегда в слишком редкой смене воды. Методы борьбы. Так как вспышка развития сине-зеленых водорослей обусловливается комплексом причин, и борьбу с ними желательно также вести комплексно. Поэтому лучшие результаты может дать сочетание нескольких из предлагаемых ниже методов: — Механический метод — очистка стекол и растений от налета водорослей, регулярное рыхление грунта. Затемнение от прямых солнечных лучей.
Полностью избавиться от водорослей не удается, но все же развитие сине-зеленых можно значительно ограничить. Как правило, эти меры применяются при еженедельной уборке аквариума. Суть его в том, что другие обитатели аквариума способны влиять на количество сине-зеленых водорослей. Так, брюхоногие моллюски активно потребляют срезанные и побуревшие водоросли, но скорость прироста водорослей преобладает над их потреблением. После чистки аквариума можно растворить в нем антибиотики или антисептики. Сначала необходимо разобраться в причинах появления сине-зеленых водорослей и по возможности их устранить. Замечено, что водоросли не любят когда их тревожат. Поэтому нужно регулярно, лучше несколько раз в день, удалять их из аквариума. Перекрыть доступ питательным веществам, для чего полностью затемнить аквариум, отключить аэрацию и фильтрацию и не проводить смену воды пока водоросли полностью не исчезнут ценные виды растений на это время лучше удалить из аквариума. Для борьбы с сине-зелеными водорослями нужно подобрать оптимальный режим содержания аквариума, уменьшить яркость освещения, ограничить аэрацию.
Очень важно соблюдать правила аквариумной гигиены и в первую очередь аккуратно кормить рыб лучше понемногу, но часто , регулярно подменивать воду. Интенсивная аэрация и циркуляция воды губительны для водорослей, так как при окислении веществ клеточной оболочки они гибнут. И хотя небольшое количество сине-зеленых водорослей зачастую через некоторое время исчезает само собой, рекомендуется немедленно удалить их механическим способом. Иногда действенным может оказаться механическое удаление водорослей, но после каждой смены воды они появляются в еще большем количестве. Если однажды сине-зеленые водоросли распространятся по аквариуму, то победить их окончательно очень сложно. При механической очистке аквариума они создают очень много грязи, но она очень быстро удаляется помпой-фильтром. Интенсивное движение воды в аквариуме значительно затрудняет восстановление колонии. Поэтому регулярный уход за аквариумом — один из основных способов, предупреждающий появление этих водорослей. В таких условиях водоросли гибнут через 2-3 недели. Ограничение времени освещения аквариума до 6-8 часов — важнейшая мера в борьбе с Cyanobacteria.
Очень полезно пустить на поверхность воды побольше плавающих растений - это первое что нужно сделать. Именно не уменьшать интенсивность освещения чтобы не тормозить рост растений , а сократить количество часов в сутки. Иногда довольно эффективно полное затемнение аквариума на срок от трех до семи дней. Попытаться сделать это стоит, однако помните, что этот прием негативно отразится на росте растений. Если вы предпримете такую попытку, то спустя 3-5 дней необходимо удалить остатки отмерших водорослей. Когда период затемнения подойдет к концу, постепенно увеличивайте интенсивность света и продолжительность освещения в первый день всего на 3-5 часов. И только спустя приблизительно неделю можно оставить подсветку работать на полную мощность. Но если не сразу определить и устранить причину, то наросты из водорослей снова образуются после того, как вы включите освещение. Плохая фильтрация или плохое состояние грунта создают условия для появления сине-зеленых водорослей. Следовательно, если появились сине-зеленые водоросли первое что надо сделать — это открыть и проверить состояние фильтра и промыть наполнитель.
Ухудшение состояния грунта также может служить причиной появления сине-зеленых водорослей. При этом они начинают расти от центра дна. В этом случае нужно внести в грунт культуру бактерий, растворив их воде или введя прямо в грунт при помощи шприца. Желаемый результат может дать временное применение активированного угля. Калий очень важный для растений элемент, предположительно, его часто не хватает в аквариумах с растениями. Сине-зеленые водоросли же очень чувствительны к ионам калия и могут получить от него повреждения. Для борьбы с водорослями и одновременного придания импульса росту растений добавляют на 100 л воды чайную ложку сульфата калия 8 г , а перед внесением этого химиката механически удаляют водоросли. Только спустя неделю можно увидеть, что количество сине-зеленых водорослей уменьшилось. Если увеличить указанную концентрацию сульфата калия, то не исключены случаи повреждения растений. Следует заметить, что большое количество калия в воде сильно повышает ее проводимость, поэтому после такой процедуры надо несколько раз частично сменить воду.
Повышение содержания кислорода. Вероятно, рост сине-зеленых водорослей в аквариуме находится во взаимосвязи с низким содержанием кислорода в воде. Поэтому целесообразно повысить содержание кислорода. С одной стороны, этого можно добиться, насаждая в аквариуме хорошо ассимилирующие растения, с другой — при помощи оксидатора. Кислород, выделяемый оксидатором, растворяется в воде, повышая его содержание в ней, и тогда моментально приостанавливается рост сине-зеленых водорослей. Отдельные особо чувствительные растения, например роголистник, могут получить такие серьезные повреждения, что они просто растворятся в воде, но большая часть аквариумных растений отзовется на повышение уровня кислорода в воде ускорением темпов роста. Разумеется, предварительно удалите как можно больше сине-зеленых водорослей механическим способом. Применение оксидатора при соблюдении такого порядка не причинит вреда рыбам. Иногда удается избавиться от Cyanobacteria путем понижения уровня воды в аквариуме и направления тока воды богатой кислородом на пораженные участки грунта. Основная причина появления сине-зеленых водорослей — недостаток азота.
Это означает, что вопреки методам борьбы с другими видами водорослей заключающихся в подменах воды для уменьшения концентрации питательных веществ, быстро избавиться от Cyanobacteria можно внося в аквариум азот, но не забывая об ограничении времени освещения, кислороде и движении воды. Вносите азот, создайте нормальные условия для роста растений, и Cyanobacteria быстро исчезнет. Определенная сложность борьбы с этими водорослями заключается в том, что ни один вид рыб или моллюсков их не трогает. Погибшие, побуревшие сине-зеленые водоросли охотно поедаются моллюсками. Быстрого успеха в борьбе с водорослями можно достигнуть с помощью антибиотиков и различных красителей. Сочетание этих веществ иногда дает лучший результат. Альгицид также не является панацеей. Его следует применять только в самом крайнем случае, и даже тогда он, к сожалению, не сможет оказать ожидаемого воздействия. Однако от них может быть больше вреда, чем пользы: зачастую в действующих на водоросли дозах они вредят рыбам и растениям, удаляя водоросли, они не удаляют причину их возникновения и через некоторое время все повторится, уничтожают сообщество бактерий, которые обеспечивают азотный цикл. Наиболее эффективен антибиотик бициллин-5.
Он применяется в концентрации от 10 до 20 тысяч единиц на 1 л воды. Продается этот антибиотик во флаконах по 1,5 миллиона единиц. Перед употреблением содержимое флакона целесообразно смешать с 15 мл воды для удобства дозировки. Воду можно брать дистиллированную или просто кипяченую. Образовавшейся суспензии бициллин-5 не растворяется хватает для обработки 75 — 150 л воды. Вносить антибиотик можно только на ночь, так как на свету он быстро разлагается. При этом нужно отключить все фильтры, иначе эффективность обработки существенно снизится. Бициллин-5 вносят три ночи подряд. Концентрация антибиотика, которую необходимо создать в воде аквариума, зависит прежде всего от загрязненности аквариума органикой. В чистом аквариуме с минимальным количеством органики концентрация бициллина-5 может быть минимальной - 10 тысяч единиц на 1 л.
При обработке сильно загрязненного аквариума с обильными обрастаниями и нечищенным грунтом необходимо вносить антибиотик из расчета около 20 тысяч единиц на 1 л. Однако при этой концентрации не только погибают водоросли, но и значительно страдает полезная микрофлора аквариума, основная масса которой находится в грунте. Может произойти существенное нарушение биологического равновесия в водоеме. При максимальной концентрации антибиотика могут пострадать и некоторые высшие растения, в первую очередь папоротники и некоторые другие очень чувствительные к изменениям состава воды растения. На четвертые сутки после внесения антибиотика, как правило, наступает массовая гибель водорослей. При недостаточной концентрации антибиотика через 2 - 3 недели отмечается возобновление роста водорослей. Для усиления эффективности борьбы с водорослями антибиотики, взятые в низкой концентрации, можно сочетать с красителями: трипафлавином, бриллиантовым зеленым, метиленовым синим. Очень хороший результат получается при внесении в аквариум одновременно бициллина-5 в концентрации 10 тысяч единиц на 1 л и трипафлавина в дозе 1 мг на 1 л. Раствор бриллиантовой зелени или метиленовой синьки добавляется в аквариум каплями до получения равномерной яркой окраски всей воды, после чего вносится бициллин в дозе 10 тысяч единиц на 1 л. Использование других антибиотиков пенициллина, бициллина-3, стрептомицина, эритромицина в большинстве случаев менее эффективно, но иногда применение какого-то из этих антибиотиков дает лучший результат.
Подбирать антибиотик приходится методом проб. Идеальным вариантом является метод определения чувствительности водорослей к антибиотику. Для этого в чашку Петри помещают пленку сине-зеленых водорослей, снятую с поверхности, и на нее накладывают кусочки фильтровальной бумаги, смоченные раствором антибиотиков. Чашка должна находиться в слабо освещенном месте. Через 1-2 суток визуально определяют размер очага гибели водорослей вокруг фильтровальной бумаги. Там, где диаметр очага больше, антибиотик сильнее всего подавляет рост водорослей, и именно его целесообразно использовать. Испытано действие на сине-зеленые водоросли стрептомицина. Развитию водорослей способствует так же спектральный состав освещения. Из отечественных люминесцентных ламп наиболее благоприятным спектром для развития водорослей обладают лампы типа ЛБ. Для предотвращения появления сине-зеленых водорослей во вновь устраиваемом аквариуме следует сажать сразу большое количество растений.
Рекомендуется поместить быстрорастущие виды, плавающие в толще воды наяс, элодею, пузырчатку и т. Эти растения, начав активный рост, не дадут возможности развиваться сине-зеленым водорослям. При появлении водорослей рекомендуется также снизить рН до 6,0. Помощь в борьбе с ними оказывают моллинезии и пецилии, хотя часто из-за горького вкуса рыбы отказываются поедать их. При появлении первых следов сине-зеленых водорослей помогают улитки: физы, катушки и мелании. Зеленые водоросли — самая разнообразная группа отдел из всех водорослей, как по строению, так и по жизненному циклу. Она объединяет около 7000 видов, большинство из которых обитает в воде. Некоторые зеленые водоросли для защиты от яркого света образуют красные пигменты и из-за этого выглядят красными и оранжевыми. Зеленые водоросли по строению и другим признакам напоминают растения. Они содержат хлорофиллы А и Б, накапливают запасной крахмал внутри пластид, имеют жесткие клеточные стенки, образованные у некоторых видов целлюлозой.
Эти аргументы подтверждают происхождение растений от зеленых водорослей. У них много разновидностей, практически все появляются при избыточном освещении. Зеленые водоросли имеют вид тончайших нитей. В аквариуме встречаются два вида: ярко-зеленые дернинки на стеклах и листьях растений и длинные тонкие нити, опутывающие растения. Многие виды микроскопических водорослей, плавающих во взвешенном состоянии, окрашивают воду в зеленый, желто-зеленый или кирпично-зеленый цвета. Большинство видов легко счищается руками и подручными средствами. Хотя зеленые водоросли и считаются полезной для рыб витаминной подкормкой, тем не менее, при сильном разрастании, с ними надо бороться, счищая со стекол скребком. Зеленые нитевидные водоросли удаляют шероховатой палочкой, на которую наматывают их длинные нити. Разрастаются водоросли от чрезмерного освещения, поэтому одной из мер борьбы и профилактики является уменьшение яркости света. Из-за разложения отмирающих водорослей появляется характерный запах гнили.
В аквариуме, прежде всего, начинают разлагаться растительные остатки, при этом поглощается кислород, и выделяются токсичные вещества, которые оказывают угнетающее действие на обитателей водоема. Равновесие в системе нарушается. Spirogyra — Спирогира. Silk Algae, Water Silk. Этот род неразветвленных, нитчатых водорослей, часто образует в аквариумах пенистые, слизистые скопления. Пряди тонкие, иногда очень длинные, скользкие на ощупь, растут очень быстро. Своими тонкими длинными светло-зелеными нитями опутывает растения. Водоросль чаще всего появляется при очень сильном освещении, в загрязненных аквариумах, богатыми питательными веществами. Часто появляется через пару недель после беспокойства аквариума, что вызывает всплеск уровня аммония. Это может быть что угодно - от беспокойства субстрата до не замеченной во время мертвой рыбы.
Их бывает очень сложно удалить, так как они процветают при тех же условиях что и растения. Попробуйте уменьшить освещение, удалите как можно больше механически и сделайте затемнение на три дня, при выключенной подаче CO2 и делая ежедневные подмены воды. Удаляют, наматывая на шероховатую деревянную палочку. Разросшиеся пучки удаляют вместе с пораженными растениями. После подмен воды внесите макроэлементы, чтобы восстановить концентрацию. Иногда эти водоросли по неизвестной причине исчезают сами. Их едят барбусы Puntius Barbus conchonius. В некоторых случаях помогает бициллин-5. Зеленые нитчатые водоросли. Это очень обобщенное название большого количества видов нитчатых водорослей.
Нитчатые и им подобные водоросли имеют ярко-зеленый или же темный цвет и выглядят как длинные тонкие нити. Образуют отдельные пучки в виде длинных нитей, прикрепленных к корягам, камням, трубкам фильтров и старым листьям. Они могут быть зелеными, серыми и черными и, обычно, вырастают на хорошо освещенных местах. Нитчатые водоросли растут по всей поверхности растений, запутываясь в плотных зарослях риччии или мха, и их трудно оттуда вытащить. Они хорошо себя чувствуют при тех же условиях, при которых хорошо себя чувствуют аквариумные растения, потому от них не так просто избавиться. Fuzz algae. Растет в основном на листьях растений, как отдельные, короткие 2-3 мм нитей. Причиной возникновения может служить целый ряд причин, включая низкую концентрацию CO2, недостаток питания мало NO3 и PO4 и всплеск концентрации аммония NH4. Вспышка может быть вызвана нерегулярной сменой воды высокий уровень нитратов или очень сильным светом при дефиците СО2. Ничего общего с повышенным уровнем железа Fe, как это обычно думают.
Удаляйте как можно больше нитчатки наматыванием на зубную щетку. Очень скоро она сама исчезнет. Если же нитчатка наблюдается при достаточной дозировке макро и микроэлементов — причина в недостаточной подаче CO2. Если увеличение подачи CO2 не устраняет нитчатку, значит сильно передозированы макроэлементы или слишком много рыб много аммония и органики. Еще одна частая причина — колебания концентрации CO2. Колебания CO2 могут увеличить рост нитчатки в 15 раз. Если восстановить достаточную и стабильную подачу CO2, скорость роста уменьшается до минимума. Многие креветки, черные моллинезии, апистограммы и другие рыбы с удовольствием поедают эти водоросли. С нитчатыми водорослями возможны следующие способы борьбы: уменьшить количество света, падающего на аквариум, поселить в нем как можно больше улиток катушек, пустить в него рыб, охотно поедающих нитчатку. Green filamentous Hair algae.
Это тип водорослей, которые считаются признаком оптимальных условий для роста растений. Эти водоросли представляют собой тонкие зеленые нити, которые развеваются на течении, длиной до 30 см, легко наматываются на палочку. Особенно подвержены обрастанию этими водорослями растения при наличии фосфатов. Их хорошо поедают креветки. Siphonales — Сифоновые водоросли. Появляются на освещенных солнцем стенках аквариума в виде плотного темно-зеленого настила из разветвленных нитей, образуют темно-зеленый видимый плотный ковер. Их легко удалить стеклоочистителем.
Название "водоросль" говорит о том, что эти растения обитают в воде, в пресной и морской. Однако одноклеточные формы кроме того могут жить во влажных местах: коре деревьев, почве, на камнях. Некоторые виды водорослей способны, как и ряд бактерий, обитать на ледниках и в горячих источниках. В случае пересыхания одноклеточные формы могут переходить в стадию покоя. Группы водорослей, которые относят к растениям, считают низшими растениями, так как у них нет настоящих тканей и органов, тело не разделено на корень и побег стебель и листья. Тело водоросли однородно, то есть отсутствует дифференциация. У одноклеточных водорослей тело состоит из одной клетки, некоторые водоросли образуют колонии клеток. У многоклеточных водорослей тело представлено слоевищем, которое также называют таллом. Водоросли поглощают вещества в основном воду и минеральные соли из окружающей среды всей поверхностью тела. Кроме хлорофилла клетки многих водорослей содержат красные, синие, бурые, оранжевые пигменты. Пигменты находятся не в хлоропластах как у высших растений , а в хроматофорах, которые также имеют мембранную структуру, однако несколько иную и разнообразную форму: пластинчатую, ленточную, чашевидную и другую. В хроматофорах нередко откладывается запасные питательные вещества. По содержанию и преобладанию того или иного пигмента, придающего окрас таллому, водоросли могут иметь не только зеленоватый окрас. Так бурые водоросли имеют желтовато-бурую окраску слоевищ. Цвет красных водорослей более разнообразный: от красного и желтого до голубоватого и зеленоватого. Красные водоросли содержат много красного и синего пигментов. Однако все равно они содержат в своих клетках хлорофилл, необходимый для фотосинтеза. Представители зеленых водорослей обитают как в пресной, так и соленой воде.
Минеральное питание растений это залог высоких стабильных урожаев
4) всей поверхностью тела. Найдите правильный ответ на вопрос«Как водоросли поглощают вещества и окружающей среды? Водоросли синтезируют органические вещества в процессе фотосинтеза, всасывая воду и минеральные соли всей поверхностью тела. Б. Высшие растения поглощают минеральные вещества из почвы с помощью корней. Биология. Поглощение минеральных веществ растениями Установи, какие из суждений верны: А. Водоросли усваивают питательные вещества всей поверхностью тела. 2) В клетках водорослей происходит только фотосинтез; хемосинтез происходит у бактерий 4) У водорослей отсутствует корень: их тело погружено в воду, поэтому они поглощают растворенный в воде кислород и минеральные вещества всей поверхностью тела. А. Водоросли усваивают питательные вещества всей поверхностью тела. Б. Высшие растения поглощают минеральные вещества из почвы с помощью корней. Необходимые для фотосинтеза минеральные соли и углекислый газ водоросли поглощают из воды всей поверхностью тела и выделяют в окружающую среду кислород.
Водоросли: общая характеристика
Выберите верные ответы: А Водоросль поглощает воду и минеральные вещества: а листьями б корнями в всей поверхностью тел 7. Выберите верные ответы: А Водоросль поглощает воду и минеральные вещества: а листьями б корнями в всей поверхностью тела г ризоидами Б Какое вещество, добываемое из водорослей, обладает дезинфицирующим действием: а калийные соли б целлюлоза в агар-агар г йод В Из названных растений водорослью является: а ряска б элодея в ламинария — морская капуста г кувшинка д улотрикс е спирогира Г Своё название хламидомонада получила потому, что: а живёт в воде б имеет два жгутика в это простейший организм, покрытый оболочкой г имеет грушевидную форму.
Под оболочкой материнской клетки образуется 2, 4 или 8 мелких клеток, имеющих пару жгутиков. Оболочка материнской клетки разрывается, и мелкие клетки, называемыезооспорами, выходят в среду. Они растут и превращаются во взрослых хламидомонад. В неблагоприятных условиях у хламидомонады начинается половой процесс.
Внутри родительских клеток формируются подвижные гаметы, которые выходят в воду. Гаметы, происходящие из разных родительских клеток, соединяются попарно и образуют зиготу. Она покрывается плотной оболочкой и превращается в зигоцисту, способную переживать неблагоприятные условия. При наступлении благоприятных условий в зигоцисте происходит мейоз, и из нее выходят 4 зооспоры, вырастающие во взрослую хламидомонаду. Хлорелла В отличие от хламидомонады, хлорелла не имеет жгутиков и удерживается в верхних слоях воды за счет низкой плотности.
Выглядит она как зеленая муть в воде — вода «цветет» рис. Для хлореллы характерна высокая скорость фотосинтеза, она богата белками и липидами, благодаря чему ее выращивают на корм скоту и применяют для регенерации кислорода в космических аппаратах. Представителями нитчатых зеленых водорослей являются улотрикс и спирогира. Остальные клетки имеют одинаковое строение и способны к делению и фотосинтезу. За счет их деления водоросль растет в длину.
Они образуются путем митотического деления из клеток средней части нити. Нижняя клетка превращается в прикрепительную, а верхняя продолжает делиться, образуя нить. Нити улотрикса могут размножаться фрагментацией. В неблагоприятных условиях улотрикс размножается половым путем. В клетках нити формируются подвижные гаметы.
Они, соединяясь попарно, образуют зиготу, которая превращается с зигоцисту, переживающую неблагоприятные условия. В благоприятных условиях в ней происходит мейоз, и образовавшиеся гаплоидные клетки дают начало новым нитям улотрикса. Центр клетки занимает крупная центральная вакуоль, цитоплазма находится в пристенном слое и пронизывает вакуоль отдельными тяжами. Особенность спирогиры: один или несколько лентовидных хроматофоров, закрученных в спираль, и гаплоидное ядро. При фрагментации нити каждый ее кусочек может дать начало новой нити.
Так происходит вегетативное размножение спирогиры. Часто в водоемах спирогира образует густые сплетения, похожие на зеленую вату. Половой процесс — конъюгация — у спирогиры происходит между обычными клетками двух разных нитей рис.
В цитоплазме кроме одного или нескольких ядер содержится также один или несколько хлоропластов. Многочисленные хлоропласты обладают дисковидной или веретеновидной формой; когда хлоропласт один, он имеет сетчатое строение. Примерами таких водорослей являются каулерпа рис. В ризоиде расположено ядро. Вверх растет ножка, достигающая в длину нескольких сантиметров. На ее конце формируется шляпка.
Для размножения по периферии шляпки образуются споры, из которых вырастают новые растения. Запасными веществами являются полисахарид ламинарин, спирт маннит и липиды. Они встречаются только в морях особенно в холодных водах и представляют собой крупные растения до 30 метров в длину , состоящие из диплоидных клеток. Таллом образует ризоиды для прикрепления к субстрату рис. Ни одноклеточных, ни колониальных форм не встречается. Для защиты от высыхания бурые водоросли образуют много слизистых веществ. Представителями бурых водорослей является Фукус рис. Прикрепляется к камням конической подошвой. Встречается на Дальнем Востоке.
Таллом фукуса содержит многочисленные пузырьки воздуха для увеличения плавучести. Ламинария имеет таллом длиной до 10 м, представленный толстой блестящей пластиной через столбик соединяющийся с разветвленными ризоидами. Размножаются бурые водоросли половым и бесполым путем. Диплоидные растения посредством мейоза образуют гаплоидные клетки. У одних род фукус они становятся гаметами, при слиянии которых образуется зигота, дающая начало новому растению. У большинства же продуктами мейоза являются споры, которые дают начало гаплоидной стадии рис. Жизненный цикл ламинарии Гаплоидная стадия представляет собой мелкие нитевидные образования, которые недолго живут на дне моря. Они раздельнополы. На них формируются многоклеточные!
Они, сливаясь, образуют зиготу, из которой вырастают крупные диплоидные растения. Задание — написать значение бурых водорослей!!!!! Отдел красные водоросли багрянки На глубинах более 30 метров света не хватает и для бурых водорослей.
Намного быстрее они растут в условиях хорошей влажности. Несмотря на то, что большинство представителей водорослей являются водными обитателями, некоторые виды приспособились к жизни во влажных местах, в почве или на ее поверхности, на деревьях, на камнях, скалах и даже стенах домов. Водоросли могут жить как в пресных, так и в соленых водоемах.
Некоторые виды организмов обнаружены во льдах. Но, жизнь наземных водорослей все равно тесно связана с водой. Водоросли могут обитать на такой глубине воду, в которую может проникать солнечный свет. Максимальная глубина не превышает 200 метров. По образу жизни и обитания всех многочисленных представителей водорослей можно разделить на следующие группы: планктон, или фитопланктон — микроскопические водоросли, взвешенные в толще воды и не противостоящие течению; нейстон, или фитонейстон — микроскопические представители, обитающие в самом верхнем слое воды; бентос, или фитобентос — растения, прикрепляющиеся ко дну или грунту; галофитон — жители соленых вод; термофитон — обитатели горячих минеральных источников; аэрофитон — живут на коре и листьях деревьев, на шерсти животных, на стенах и крышах зданий, на заборах; фитоэдафон — их средой обитания является поверхностный слой почвы; криофитон — способны жить на поверхности снега и подтаявшего льда. Некрупные водоросли могут крепиться ко дну водоемов или свободно плавать вместе с планктоном в верхних слоях воды.
Мелкие водоросли, плавающие в толще вод, относятся к планктону. В больших количествах они вызывают окрашивание воды в зеленый цвет, или цветение. Отдельные представители прикрепляются ко дну, тем самым образуя целые заросли. Так, крупные бурые водоросли образуют настоящие подводные леса. Существуют водоросли, паразитирующие на раковинах живых организмов. Водоросли играют очень важную роль в природе и жизни человека и других живых существ.
Благодаря их повсеместному обитанию и большому количеству водоросли производят большую часть кислорода на Земле. Водоросли выступают производителями органических веществ в воде, это связано с процессом фотосинтеза. Водоросли широко применяются для биологической очистки вод. Из них формируются полезные ископаемые. Водоросли служат пищей для живых организмов чаще водных обитателей , кормом для скота, а также пищей для людей ламинария, ульва.
Водоросли. Общая характеристика и размножение
Сайт учителей биологии МБОУ Лицей № 2 города Воронежа - Водоросли | 58.У водорослей нет корней – они поглощают нужные им питательные вещества из воды всей поверхностью. |
Водоросли усваивают минеральные вещества всей поверхностью тела | Необходимые для фотосинтеза минеральные соли и углекислый газ водоросли поглощают из воды всей поверхностью тела и выделяют в окружающую среду кислород. |
Поглощение питательных веществ растением
Питание и дыхание лишайников. Фикобионт и микобионт. Микобионт лишайника. Микобионт это у лишайников. Лишайники микобионт и фикобионт лишайников. Водоросли 5 класс биология презентация.
Водоросли поглощают. Из окружающей среды водоросли поглощают вещества какие. Водоросли поглощают органические вещества. Тело лишайника поглощает воду и Минеральные вещества и. Питание размнажениелишайников 5.
Питание и размножение лишайников. Питание лишайников 5 класс биология. Как водоросли поглощают вещества. Чем водоросли поглощают вещества из окружающей среды. Как водоросли поглощают вещества из окружающей среды ответы.
Как водоросли поглощают воду и Минеральные вещества. Минеральные и органические вещества. Минеральные вещества в грибах. Симбиоз грибы вода Минеральные вещества гриб водоросли. Питание водорослей.
Почвенные водоросли. Водоросли питаются 6 класс. Продуцент производитель. Производители органических веществ. Организмы производители.
Продуценты производители органического вещества. Строение и питание лишайников. Процессы жизнедеятельности лишайников. Особенности жизнедеятельности лишайников. Усвояемость железа.
Продукты для усвоения железа. Продукты препятствующие усвоению железа. Снижает всасывание железа. Жизнедеятельность лишайников. Жизнедеятельность лишайников кратко.
Лишайники впитывают влагу всей поверхностью тела. Сине зеленые водоросли в природе. Водоросли презентация. Водоросли их многообразие в природе. Сообщение на тему зеленые водоросли.
Жизнь в океане 7 класс. Жизнь в океане 7 класс география. Жизнь в океане презентация. Живые организмы мирового океана. Загадки по органической химии.
Минеральные вещества и углекислый ГАЗ. Растения и химия. Что поглощает воду и Минеральные вещества. Клетки водоросли грибница. Схема строение лишайника клетки водоросли грибница гриба.
Лишайник биология строение. Строение лишайника 7 класс биология. Грибы способ питания. Питательные вещества в грибах. Питание растений и грибов.
Питание грибов органическими веществами. Симбиотические водоросли. Водоросли симбионты. Пирофитовые водоросли. Водоросли зооксантеллы.
Способы питания.
Нить растет за счет деления всех клеток. При фрагментации нити каждый ее кусочек может дать начало новой нити. Так происходит вегетативное размножение спирогиры. Часто в водоемах спирогира образует густые сплетения, похожие на зеленую вату. Половой процесс — конъюгация — у спирогиры происходит между обычными клетками двух разных нитей рис. Происходит слияние клеток, а затем и ядер. Формируется диплоидная зигота, которая окружается плотной оболочкой — образуется зигоспора. Зигота делится мейозом, образуя 4 гаплоидные клетки.
В дальнейшем 3 из 4 клеток погибают. Оставшаяся прорастает в гаплоидную нить спирогиры. У них таллом образован, как правило, одной гигантской клеткой. В цитоплазме кроме одного или нескольких ядер содержится также один или несколько хлоропластов. Многочисленные хлоропласты обладают дисковидной или веретеновидной формой; когда хлоропласт один, он имеет сетчатое строение. Примерами таких водорослей являются каулерпа рис. В ризоиде расположено ядро. Вверх растет ножка, достигающая в длину нескольких сантиметров. На ее конце формируется шляпка.
Для размножения по периферии шляпки образуются споры, из которых вырастают новые растения. Они встречаются только в морях и представляют собой крупные растения до 30 метров в длину , состоящие из диплоидных клеток. Таллом образует ризоиды для прикрепления к субстрату рис. Многие из них растут в приливно-отливной зоне литорале и во время отлива оказываются на суше. Для защиты от высыхания бурые водоросли образуют много слизистых веществ. Представителями бурых водорослей является фукус рис. Таллом фукуса содержит многочисленные пузырьки воздуха для увеличения плавучести. Размножаются бурые водоросли половым и бесполым путем. Диплоидные растения посредством мейоза образуют гаплоидные клетки.
У одних род фукус они становятся гаметами, при слиянии которых образуется зигота, дающая начало новому растению. У большинства же продуктами мейоза являются споры, которые дают начало гаплоидной стадии рис. Жизненный цикл ламинарии Гаплоидная стадия представляет собой мелкие нитевидные образования, которые недолго живут на дне моря. Они раздельнополы. На них формируются многоклеточные! Они, сливаясь, образуют зиготу, из которой вырастают крупные диплоидные растения. Отдел красные водоросли багрянки На глубинах более 30 метров света не хватает и для бурых водорослей. Там обитают красные водоросли, пигменты которых способны использовать синий свет. Основные пигменты: хлорофилл, каротиноиды желто-оранжевые , фикобилины красно-синие.
Встречаются они и на более мелких участках дна, вплоть до границы воды и суши. В основном это морские растения средних размеров десятки сантиметров в длину , но среди них есть и обитатели пресных вод, и одноклеточные представители.
Многие виды этого рода съедобны и известны под названием «морской салат». Ульва съедобная, или «морской салат» Одной из самых древних групп зелёных водорослей являются сифоновые водоросли. У них таллом образован, как правило, одной гигантской клеткой. В цитоплазме кроме одного или нескольких ядер содержится также один или несколько хлоропластов. Многочисленные хлоропласты обладают дисковидной или веретеновидной формой; когда хлоропласт один, он имеет сетчатое строение. Примерами таких водорослей являются каулерпа и ацетабулярия. Ацетабулярия — гигантская одноклеточная водоросль, также известная как «бокал русалки». Стебелёк взрослого растения имеет длину до 10 см, а зонтик — до 1,5 см в диаметре.
Нижняя часть одноклеточного слоевища ризоид находится в грунте. В ризоиде расположено ядро. Вверх растёт ножка стебелёк , на её конце формируется шляпка зонтик. Для размножения по периферии шляпки образуются споры, из которых вырастают новые растения. Длина таллома каулерпы может превышать 2 метра, что позволяет считать её крупнейшим одноклеточным организмом на Земле. Внутри таллома нет межклеточных перегородок септ , поэтому каулерпа представляет собой единственную клетку с многочисленными ядрами. Ацетабулярия Отдел Бурые водоросли Бурые водоросли — это многоклеточные, почти исключительно морские растения. Всего известно около 1,5 тыс. Бурые водоросли в хроматофорах содержат бурый пигмент, который маскирует остальные пигменты. Заросли бурых водорослей встречаются до 30—40-метровой глубины, с помощью дополнительных пигментов они могут осуществлять фотосинтез на такой глубине в условиях дефицита света.
Бурые водоросли имеют крупные пластинчатые талломы до 30 метров в длину. Талломы имеют ризоиды для прикрепления к субстрату. Многие из видов бурых водорослей растут в приливно-отливной зоне на литорали и во время отлива оказываются на суше. Для защиты от высыхания они образуют много слизистых веществ. Представителями бурых водорослей являются съедобные фукус и ламинария, а также макроцистис — самая крупная водоросль, таллом которой достигает 200 м в длину, и саргассы, затрудняющие движение кораблей. Макроцистис грушеносный Отдел Красные водоросли, или Багрянки На глубине более 40 метров света не хватает и для бурых водорослей. Там обитают красные водоросли, пигменты которых способны использовать синюю часть спектра солнечного света. Основные пигменты этой группы водорослей: хлорофилл, каротиноиды жёлто-оранжевые , фикобилины красно-синие. Встречаются красные водоросли и на более мелких участках дна, вплоть до границы воды и суши. В основном это морские растения с пластинчатыми или кустистыми талломами средних размеров, но есть и обитатели пресных вод, и одноклеточные представители.
Всего известно около 4 тыс.
Это очень древняя форма организмов. Полагают, что они возникли около 1.. Rturbakov 28 апр. Shmt1999ml 28 апр. Эльвинка2 28 апр. При полном или частичном использовании материалов ссылка обязательна.
Жизненный цикл бурых водорослей и его особенности
3. Водоросли способны образовывать органические вещества из неорганических как при фотосинтезе, так и при хемосинтезе. поглощает минеральные вещества, выделяет углекислоту и воду (для водоросли), вырабатывает ряд веществ стимклирующих развитие водоросли. Водоросли впитывают воду и минеральные соли при помощи ризоидов — мелких волосковидных выростов, которые располагаются на всей поверхности организма. Дам 30 баллов. А. Водоросли усваивают питательные вещества всей поверхностью тела. Б. Высшие растения сами производят необходимые минеральные вещества в процессе фотосинтеза.
Водоросли поглощают воду и минеральные вещества ризоидами листьями корнями всем телом
Водоросли поглощают воду и минеральные соли всей поверхностью тела, а ризоиды необходимы для прикрепления к субстрату. 4) всей поверхностью тела. Найдите правильный ответ на вопрос«Как водоросли поглощают вещества и окружающей среды? минеральные вещества: а) листьями б) корнями в) всей поверхностью тела г) ризоидами Б) Какое вещество, добываемое из водорослей, обладает дезинфицирующим действием: а) калийные соли б) целлюлоза в) агар-агар г) йод В) Из названных растений водорослью. обладая способностью поглощать органические вещества всей поверхностью тела, участвует в самоочищении водоема.
Чем водоросли поглощают минеральные вещества
У некоторых водорослей специализированных половых клеток нет: образование зиготы происходит путём слияния содержимого двух вегетативных клеток. Такой половой процесс называют конъюгацией. Споры водорослей образуются внутри особых клеток. При этом клетка-спорангий многократно делится на части внутри оболочки, которая затем разрывается, и продукты деления выходят наружу. Особь, на которой формируются спорангии, называют спорофитом. Споры водорослей могут быть подвижными зооспоры и неподвижными апланоспоры. Клетки, в которых образуются гаметы, называются гаметангиями, а растения, несущие гаметангии, — гаметофитами. У водорослей встречается несколько вариантов полового процесса: изогамия — слияние двух одинаковых по форме и размеру подвижных гамет; гетерогамия — слияние двух одинаковых по форме, но разных по размеру подвижных гамет; оогамия овогамия — слияние крупной неподвижной яйцеклетки с мелким подвижным сперматозоидом; конъюгация — слияние содержимого двух вегетативных клеток.
Разные варианты полового процесса водорослей Образовавшаяся зигота часто покрывается плотной оболочкой и превращается в зигоспору зигоцисту. В таком виде она пережидает неблагоприятные условия, например засушливый или зимний период. При наступлении благоприятных условий зигоспора либо сразу прорастает, либо сначала в ней происходит мейоз. При мейозе из неё выходят четыре или одна спора, в этом случае ещё три клетки, образовавшиеся при делении, гибнут. У разных видов споры могут быть со жгутиками подвижными или безжгутиковыми неподвижными. Споры дают начало новым организмам. У бурых водорослей, например у ламинарии, в жизненном цикле чередуются два поколения — бесполое спорофит и половое гаметофит.
Спорофит развивается из зиготы, без её деления, он диплоидный. В особых органах спорофита — спорангиях — происходит мейоз и образуются гаплоидные споры. Из этих спор вырастают гаметофиты, гаплоидное половое поколение. На гаметофитах развиваются гаметангии, в которых образуются гаметы. Во внешней среде в воде или прямо на женском гаметофите происходит копуляция — встреча гамет — и образуется зигота. Гаметофиты и спорофиты водорослей могут внешне сильно различаться или не иметь выраженных морфологических отличий. Также гаметофиты могут быть однодомными обоеполыми , когда на одной особи развиваются и мужские, и женские гаметы, или двудомными раздельнополыми , когда мужские гаметы образуются на одних особях, а женские — на других.
Классификация водорослей Зелёные водоросли — самый обширный отдел, насчитывающий около 20 тыс. У представителей этого отдела преобладает пигмент хлорофилл, именно он определяет их окраску. Поскольку зелёные водоросли содержат хлорофилл, в качестве запасного вещества накапливают крахмал, а также многие имеют клеточные стенки из целлюлозы, учёные полагают, что эта группа организмов дала начало всем высшим растениям. Зелёные водоросли широко распространены в пресных и морских водах, встречаются также на суше в увлажнённых местообитаниях: в почве, на коре деревьев, на камнях. Они представлены различными жизненными формами: одноклеточными, колониальными, нитчатыми и многоклеточными, а размеры их талломов варьируются от нескольких микрометров до нескольких метров. Представителями одноклеточных зелёных водорослей являются хламидомонада и хлорелла. Хламидомонада имеет чашевидный хроматофор, красный глазок стигму и пульсирующие вакуоли, удаляющие из клетки воду и ненужные вещества.
Минеральные удобрения состоят из неорганических соединений, преимущественно солей. По виду основного питательного элемента различают азотные, фосфорные и калийные удобрения. Кроме того, широко используют микроудобрения, в которых содержатся такие элементы, как бор, медь, цинк, кобальт и др. Вопрос 6. Какое влияние на рост и развитие растений оказывают азот, калий, фосфор? Вещества, содержащие азот, способствуют росту растений, фосфор — скорейшему созреванию плодов, калий — быстрейшему оттоку органических веществ от листьев к корням. Вопрос 7. Что такое подкормка? Подкормка — это внесение минеральных удобрений в период роста и плодоношения растений.
На этой странице вы найдете ответ на вопрос Как водоросли поглощают воду с минеральными солями?. Вопрос соответствует категории Биология и уровню подготовки учащихся 1 - 4 классов классов. Если ответ полностью не удовлетворяет критериям поиска, ниже можно ознакомиться с вариантами ответов других посетителей страницы или обсудить с ними интересующую тему. Здесь также можно воспользоваться «умным поиском», который покажет аналогичные вопросы в этой категории. Если ни один из предложенных ответов не подходит, попробуйте самостоятельно сформулировать вопрос иначе, нажав кнопку вверху страницы. Последние ответы Batueva1970mailru 28 апр. Олжас3 28 апр.
Именно лишайники первыми осваивают непригодную для других организмов среду обитания, например вулканические лавы, разлагая их. Легко переносят они и сильное высыхание. Ежегодно лишайник вырастает на один-пять миллиметров. Лишенный такого покрова, тонкий слой почвы в тундре или сосняках подвергается эрозии, а это ведет к гибели и другой растительности. Если в воздухе содержится значительная концентрация углекислого и особенно сернистого газа, лишайники исчезают. Эту их особенность предлагается использовать для оценки чистоты воздуха в городах и промышленных районах. Симбиоз гриба и водоросли Итак, в лабораториях, в стерильных пробирках и колбах с питательной средой поселились изолированные симбионты лишайников. Имея в распоряжении чистые культуры лишайниковых партнеров, ученые решились на самый дерзкий шаг - синтез лишайника в лабораторных условиях. Первая удача на этом поприще принадлежит Е. Томасу, который в 1939 году в Швейцарии получил из мико- и фотобионтов лишайник кладония крыночковидная с хорошо различимыми плодовыми телами. В отличие от предыдущих исследователей, Томас выполнял синтез в стерильных условиях, что внушает доверие к полученному им результату. К сожалению, его попытки повторить синтез в 800 других опытах не удались. Любимый объект исследования В. Ахмаджяна, принесший ему всемирную славу в области лишайникового синтеза, - кладония гребешковая. Этот лишайник широко распространен в Северной Америке и получил простонародное название британские солдаты: его ярко-красные плодовые тела напоминают алые мундиры английских солдат времен войны североамериканских колоний за независимость. Небольшие комочки изолированного микобионта кладонии гребешковой смешивали с фотобионтом, извлеченным из того же лишайника. Смесь помещали на узкие слюдяные пластинки, пропитанные минеральным питательным раствором и закрепленные в закрытых колбах. Внутри колб поддерживали строго контролируемые условия влажности, температуры и освещенности. Важным условием эксперимента было минимальное количество питательных веществ в среде. Как же вели себя лишайниковые партнеры в непосредственной близости друг к другу? Клетки водоросли выделяли особое вещество, которое приклеивало к ним гифы гриба, и гифы сразу начинали активно оплетать зеленые клетки. Группы водорослевых клеток скреплялись ветвящимися гифами в первичные чешуйки. Следующим этапом было дальнейшее развитие утолщенных гиф поверх чешуек и выделение ими внеклеточного материала, а в результате - образование верхнего корового слоя. Еще позже дифференцировались водорослевый слой и сердцевина, совсем как в слоевище природного лишайника. Эти опыты были многократно воспроизведены в лаборатории Ахмаджяна и всякий раз приводили к появлению первичного лишайникового слоевища. В 40-е годы XX века немецкий ученый Ф. Тоблер обнаружил, что для прорастания спор ксантории настенной требуются добавки стимулирующих веществ: экстрактов из древесной коры, водорослей, плодов сливы, некоторых витаминов или других соединений. Было сделано предположение, что в природе прорастание некоторых грибов стимулируется веществами, поступающими из водоросли. Примечательно, что для возникновения симбиотических отношений оба партнера получать умеренное и даже скудное питание, ограниченные влажность и освещение. Оптимальные условия существования гриба и водоросли отнюдь не стимулируют их воссоединение. Более того, известны случаи, когда обильное питание например, при искусственном удобрении вило к быстрому росту водорослей в слоевище, нарушению связи между симбионтами и гибели лишайника. Если рассматривать срезы лишайникового слоевища под микроскопом, видно, что чаще всего водоросль просто соседствует с грибными гифами. Иногда гифы тесно прижимаются к водорослевым клеткам. Наконец, грибные гифы либо их ответвления могут более или менее глубоко проникать внутрь водоросли. Эти выросты называются гаусториями. Совместное существование накладывает отпечаток и на строение обоих лишайниковых симбионтов. Так, если свободноживущие синезеленые водоросли родов носток, сцитонема и других образуют длинные, иногда ветвящиеся нити, то у тех же водорослей в симбиозе нити либо скручены в плотные клубочки, либо укорочены до единичных клеток. Кроме того, у свободноживущих и лихенизированных синезеленых водорослей отмечают различия в размерах и расположении клеточных структур. Зеленые водоросли также изменяются в симбиотическом состоянии. Это, в первую очередь, касается их размножения. Многие из зеленых водорослей, живя на свободе, размножаются подвижными тонкостенными клеточками - зооспорами. В слоевище зооспоры, обычно, не образуются. Вместо них появляются апланоспоры - относительно маленькие клетки с толстыми стенками, хорошо приспособленные к засушливым условиям. Из клеточных структур зеленых фотобионтов наибольшим изменениям подвергается оболочка. Она тоньше, чем у тех же водорослей на воле, и имеет ряд биохимических различий. Очень часто внутри симбиотических клеток наблюдают жироподобные зернышки, которые после изъятия водоросли из слоевища исчезают. Говоря о причинах этих различий, можно предположить, что они связаны с каким-то химическим воздействием грибного соседа водоросли. Сам микобионт также испытывает воздействие водорослевого партнера. Плотные комочки изолированных микобионтов, состоящие из тесно переплетенных гиф, внешне совсем не похожи на лихенизированные грибы. Внутреннее строение гиф тоже различно. Клеточные стенки гиф в симбиотическом состоянии значительно тоньше. Итак, жизнь в симбиозе побуждает водоросль и гриб менять свой внешний облик и внутреннее строение. Что же получают сожители друг от друга, какую пользу извлекают из совместного существования? Водоросль снабжает гриб, своего соседа по лишайниковому симбиозу, углеводами, полученными в процессе фотосинтеза. Водоросль, синтезировав тот или иной углевод, быстро и почти целиком отдает его своему грибному сожителю. Гриб получает от водоросли не только углеводы. Если синезеленый фотобионт фиксирует атмосферный азот, существует быстрый и устойчивый отток образовавшегося аммония к грибному соседу водоросли.