Новости станок на котором закрепляется ствол артиллерийского орудия

Для повышения качества за счет получения ствола без весового прогиба в пушке заготовку ствола устанавливают в горизонтально-расточном станке, снабженном вертлюжной бабкой с двумя четырехкулачковыми патронами и кольцевым люнетом, выверяют заготовку. Военкор RT Александр Симонов показал эксклюзивные кадры с Купянского направления, где работает артиллерийский расчёт военного с позывным Гольф. Станок для сверления стволов пушек. Смотреть видео про Станок на котором закрепляется ствол артиллерийского орудия. В Харьковской области уничтожаются артиллерийские силы ВСУ: «Ланцетом» поражено очередное артиллерийское орудие украинской армии.

Конструкция, на которую крепится ствол артиллерийского орудия.

Лафетом называют часть артиллерийского орудия, на которой закрепляется ствол. Механизмы лафета обеспечивают придание стволу требуемого положения в пространстве и передают на грунт возникающие при выстреле усилия. Тюфяки – небольшие артиллерийские орудия, предназначенные для стрельбы металлическим и каменным дробом по живой силе противника. Станок для сверления стволов пушек. Первые артиллерийские орудия состояли из ствола и деревянного станка, часть из них имела затвор. Конструкция ствола пушки. Лафет станок артиллерийского орудия.

Ствол артиллерийского орудия

Не юмор и не фотошоп: зачем в Красной Армии привязывали винтовку к стволу пушки? 25. Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия. 26. Основное средство уничтожения и морального подавления противника в бою, стрельба из различных видов оружия на поражение цели.
«В день можем выпускать по 15—20 снарядов»: работа артиллерийского расчёта на Купянском направлении танков и самоходных артиллерийских.
5. СТВОЛЫ АРТИЛЛЕРИЙСКИХ ОРУДИЙ Ствол является основной боевой частью артиллерийского орудия.

Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия 5 букв ответ

Изобретение относится к технологии изготовления стволов артиллерийских орудий, в частности танковых и противотанковых пушек. Станок, на котором закрепляется ствол артиллерийского орудия. станок, на котором закрепляется ствол артиллерийского орудия.

Лежак пушечного ствола - слово из 5 букв

Лафетом называют часть артиллерийского орудия, на которой закрепляется ствол. Механизмы лафета обеспечивают придание стволу требуемого положения в пространстве и передают на грунт возникающие при выстреле усилия. Для повышения качества за счет получения ствола без весового прогиба в пушке заготовку ствола устанавливают в горизонтально-расточном станке, снабженном вертлюжной бабкой с двумя четырехкулачковыми патронами и кольцевым люнетом, выверяют заготовку. Люлька устанавливается и закрепляется наметками в цапфенных гнездах верхнего станка. Рельсосверлильный станок РСС предназначен для сверления и одновременного упрочнения отверстий под стыковые болты и рельсовые соединители, а также снятия фасок с двух сторон отверстия в рельсах типа Р5 Смотрите видео онлайн «Рельсосверлильный станок РСС» на.

Станок, на котором закрепляется ствол артиллерийского орудия WOW Guru

Смирнов 175. Через нем. Lafette с 1691 г. Шульц-Баслер 2, 4 из франц. Lafette, шв.

Станок, на котором закрепляют артиллерийское орудие. Которыя мортиры с нами, также и пушечные лафеты в оковках, железо зело плохо и непрестанно ломается. ПБР 10 566. Несколько пушек, между коих я узнал и нашу, поставлены были на походные лафеты.

Как пользоваться словарем Для поиска в словаре необходимо ввести слово в указанное поле поиска слова или ввести часть слова. Используйте пробелы для букв, которые вы не знаете. Оба поля можно использовать одновременно, если вы хотите уменьшить количество результатов и таким образом сузить слово решения.

Последние отливали из смеси воска, сала и толченого древесного угля в специальных гипсовых формах. Формовка ствола пушки Изготовив модель, начинали работу над кожухом формы. Для этого модель смазывали разделительным составом, состоявшим из сала с растительным маслом. Затем наносили несколько слоев влажной смеси, аналогичной той, которую использовали в последних слоях модели. Каждый слой обязательно просушивали на воздухе. А далее на них наносили слои из густой глины до тех пор, пока не получали кожух толщиной от 175 до 300 мм в зависимости от величины пушки.

Затем извлекали модели цапф, а образовавшиеся отверстия заделывали глиной. Сверху на кожух для прочности накладывали железные обручи, продольные полосы и снова железные обручи. Места пересечения поперечных и продольных бандажей скреплялись проволокой. После этого форму просушивали на козлах, разжигая под ней огонь.

Lafette, шв. Станок, на котором закрепляют артиллерийское орудие. Которыя мортиры с нами, также и пушечные лафеты в оковках, железо зело плохо и непрестанно ломается. ПБР 10 566. Несколько пушек, между коих я узнал и нашу, поставлены были на походные лафеты. Лошади были заменены другими из лафета, раненые убраны. Война и мир. ОЗ 1872 6 1 462. Сортамент бруса.

Тесты онлайн

Что такое гаубица и почему она до сих пор на вооружении. Объясняем простыми словами л, последняя - т).
Ремонтники ЦВО показали, как освоили замену стволов артиллерийских систем в полевых условиях Эта страница с ответами Words Of Wonders Guru Станок, на котором закрепляется ствол артиллерийского орудия дает вам необходимую помощь, чтобы справиться со сложными пазлами.
Words Of Wonders: Guru Станок, на котором закрепляется ствол артиллерийского орудия + 152-мм пушка-гаубица Д-20. Руководство службы.
Станок на котором закрепляется ствол артиллерийского орудия — 5 букв сканворд Сейчас дальнобойная артиллерия незаменима. Разбить узлы снабжения, места дислокации личного состава ВСУ, уничтожить тяжелую технику противника.
Буссоль. Артиллерия на закрытой позиции 1. военн. станок, на котором устанавливается и закрепляется ствол артиллерийского орудия Несколько пушек, между коих узнал я и нашу, поставлены были на походные лафеты.

Ответы на кроссворд дня № 21927 из "Одноклассников"

Броновый лафет для перьев. Октябрь 2001 5 106. Станок на колесах, на котором устанавливается артиллерийское орудие. Жать при помощи лафетной жатки.

Источник Способ изготовления ствола артиллерийского орудия Патент 2164202 Способ изготовления ствола артиллерийского орудия Изобретение относится к технологии изготовления деталей и узлов оружия, в частности к технологии изготовления орудийных стволов. Для повышения качества за счет получения ствола без весового прогиба в пушке заготовку ствола устанавливают в горизонтально-расточном станке, снабженном вертлюжной бабкой с двумя четырехкулачковыми патронами и кольцевым люнетом, выверяют заготовку, растачивают в ней канал. Затем выполняют точение наружной поверхности на токарном станке с вращением заготовки, центрируемой относительно оси станка в нескольких поперечных сечениях по предварительно выполненным опорным пояскам с постоянной по окружности толщиной стенки, расстояние между которыми определяют в зависимости от исходной непрямолинейности заготовки.

Заготовку устанавливают в станке для растачивания таким образом, чтобы ее весовой прогиб в патронах и люнетах станка по величине соответствовал весовому прогибу ствола в орудии, растачивают, затем измеряют отклонение оси канала от прямолинейности, в зависимости от этой величины определяют по приведенной формуле положение на заготовке опорных поясков, на заготовке выполняют два опорных пояска с постоянной по окружности толщиной стенки, устанавливают заготовку опорными поясками на роликовые люнеты токарного станка, закрепляют центрами, установленными в патроне и в задней бабке токарного станка, и точат наружную поверхность ствола. Изобретение относится к технологии изготовления деталей и узлов вооружения, в частности к технологии изготовления орудийных стволов. Известны способы изготовления орудийных стволов как длинномерных толстостенных труб повышенной точности изготовления, включающие глубокое сверление и растачивания канала например, по технологии, описанной в кн.

Уткин, Ю. Кижняев, С. Плужников и др.

Уткина — Л. Изготовление таких труб включает установку и выверку заготовки на горизонтально-расточном станке, снабженном вертлюжной бабкой с двумя четырехкулачковыми патронами и кольцевым люнетом, растачивание канала и последующее точение наружной поверхности по возможности соосно отверстию. Недостатком известных способов является большая непрямолинейность ствола, установленного в пушке, обусловленная его весовым прогибом, и неконцентричность канала и наружной поверхности ствола — разностенность.

Наиболее близким по технической сущности и достигаемому результату к предложенному способу является принятый за прототип способ механической обработки прецизионных длинномерных труб, включающий вращение заготовки, центрируемой относительно оси станка в нескольких поперечных сечениях по предварительно выполненным опорным пояскам с постоянной по окружности толщиной стенки, расстояние между которыми определяют в зависимости от исходной непрямолинейности заготовки, причем опорные пояски выполняют равномерно по длине заготовки патент РФ N 2055701, М. Недостатком известного, принятого за прототип, способа является то, что изготовленный таким образом ствол в орудии деформируется под действием собственного веса, приобретая при этом значительную непрямолинейность. При осуществлении варианта способа, при котором заготовку устанавливают в вертлюжном люнете казенной частью, предварительно измеряют биение наружной поверхности заготовки, находят положение наибольшего отклонения наружной поверхности заготовки от прямолинейности и при совмещении оси канала заготовки в дульном сечении с центром задней стойки и креплении заготовки в кольцевом люнете устанавливают заготовку в станке этим отклонением вниз.

Если заготовку устанавливают в вертлюжном люнете дульной частью, то в одном из вариантов осуществления способа предварительно измеряют биение наружной поверхности заготовки, находят положение наибольшего отклонения наружной поверхности заготовки от прямолинейности и при совмещении оси канала заготовки в дульном сечении с осью стебля расточной головки и креплении заготовки в патроне вертлюжной бабки у дульного торца устанавливают заготовку в станке этим отклонением вверх. Один из вариантов предполагает, что заготовку растачивают в направлении от казенной части к дульной. Может выполняться вариант способа, при котором заготовку устанавливают в вертлюжном люнете казенной частью, предварительно измеряют отклонение оси канала от прямолинейности, находят положение наибольшего отклонения и при совмещении оси канала заготовки в дульном сечении с центром задней стойки и креплении заготовки в кольцевом люнете устанавливают заготовку в станке этим отклонением вниз.

Может выполняться вариант способа, при котором заготовку устанавливают в вертлюжном люнете дульной частью, предварительно измеряют отклонение оси канала от прямолинейности, находят положение наибольшего отклонения и при совмещении оси канала заготовки в дульном сечении с осью стебля расточной головки и креплении заготовки в патроне вертлюжной бабки у дульного торца устанавливают заготовку в станке этим отклонением вверх. Сущность предложенного способа правки поясняется следующим образом. Орудийный ствол устанавливается консольно в люльке пушки, при этом весовой прогиб ствола может быть близок по величине или превышать технологический допуск на отклонение оси канала от прямолинейности, измеряемое в горизонтальной плоскости.

Если заготовку ствола перед растачиванием упруго деформировать так, чтобы ее кривизна соответствовала кривизне установленного в пушке ствола под действием собственного веса, зафиксировать такое положение и расточить ствол в заневоленном состоянии, то после снятия со станка канал ствола будет зеркально отображать прогиб под действием весового прогиба, а при установке в пушку ось канала будет прямолинейной с точностью до технологических погрешностей изготовления, величина которых соответствует погрешностям изготовления по действующей технологии, принятой за прототип. Однако расточенный канал заготовки ствола из-за кривизны оказывается несоосным наружной поверхности, что может привести к появлению повышенной разностенности. Для исключения этого наружную поверхность ствольной заготовки точат, установив заготовку в центрах и роликовых люнетах токарного станка с учетом полученной кривизны оси канала.

Формулы, по которым в зависимости от величины отклонения оси канала от прямолинейности определяют положение на заготовке опорных поясков, установлены при анализе деформации системы и компьютерном моделировании технологического процесса. Содержание и количественные характеристики вариантов осуществления способа предложены на основе анализа результатов моделирования процесса изготовления. Установка ствольной заготовки для растачивания казенной частью в два патрона вертлюжной приводной бабки консольно с последующей выверкой и фиксацией заготовки люнетом в дульной части позволяет в наибольшей степени имитировать весовой прогиб готового ствола, однако в этом случае повышается нагрузка на подшипники вертлюжной бабки станка, что может привести к их ускоренному износу.

Установка заготовки для растачивания казенной частью в люнет и дульной частью в расположенный ближе к средней части заготовки патрон вертлюжной бабки станка с последующей фиксацией заготовки патроном вертлюжной бабки, расположенным у дульного торца, не повышает нагрузку на подшипники вертлюжной бабки по сравнению с известной технологией, однако нужный результат достигается только в определенном интервале параметров способа, если один из патронов вертлюжной бабки расположен у дульного торца заготовки, а другой на расстоянии от него, равном 15. Выбор положения заготовки перед растачиванием в зависимости от исходной непрямолинейности наружной поверхности канала позволяет обеспечить меньшее отклонение канала после растачивания от соосности с наружной поверхностью заготовки. В этом случае при последующем точении наружной поверхности она будет обрабатываться с более равномерным по окружности припуском и, в результате, заготовка будет меньше деформироваться из-за перераспределения при точении имеющихся внутренних механических напряжений.

С «камазовскими» моторами он знаком давно. Хоть и давно это было, но я помню. Руки помнят.

На СВО я сам пошел. Ну, изъявил желание - помочь чем-то хотя бы, какой-то вклад свой внести. Семья одобрила - почему нет.

Появившаяся в середине 60-х годов прошлого века принципиально новая боевая машина десантных войск БМД-1 дала повод для разработки самоходной артиллерийской установки на ее базе. Несколько проектов оказались неудачными: использование мощного 122-миллиметрового снаряда давало большие перегрузки на шасси БМД. И тут как нельзя кстати оказалось появление на вооружении гусеничного десантного бронетранспортера БТР-Д. Его отличием было удлиненное на один каток шасси и отсутствие поворотной башни с 40-миллиметровой пушкой, что позволяло повысить грузоподъемность. В те же годы в ЦНИИ точного машиностроения в подмосковном Климовске под руководством доктора технических наук Авенира Новожилова было создано принципиально новое 120-миллиметровое нарезное орудие 2А51.

Вот из этой пушки и бронетранспортера и получилась универсальная артиллерийская система, совмещающая в себе функции пушки, гаубицы и миномета, получившая название 2С9 НОНА-С. Как и БМД-1, она десантировалась парашютным способом из самолетов военно-транспортной авиации и могла в считаные минуты после приземления вступить в бой. Возможности этой самоходки позволяют применять ее не только для поражения живой силы и разрушения оборонительных сооружений противника, но и вести борьбу с танками, для чего в состав боекомплекта входят различные боеприпасы. Это специальные осколочно-фугасные артиллерийские снаряды с готовыми нарезами на ведущем пояске. Такими снарядами можно стрелять на дальность до 8,7 километра, а их невысокая начальная скорость позволяет вести стрельбу с большой крутизной траектории.

Эффективность осколочного действия таких снарядов приближается к эффективности обычных 152-миллиметровых осколочно-фугасных снарядов отечественных и зарубежных гаубиц. А появление в 2013 году специально разработанных для «Ноны-С» корректируемых осколочно-фугасных снарядов «Китолов-2» существенно расширило ее возможности. Как по дальности от 1,5 до 9 километров , так и по точности поражения цели — с первого выстрела, без пристрелки. Важной характеристикой орудия непосредственной поддержки войск на поле боя является его наименьшая дальность стрельбы. Поэтому в боекомплект «Ноны-С» могут входить обыкновенные 120-миллиметровые мины: осколочно-фугасные, осветительные, дымовые и зажигательные.

Прицельная дальность стрельбы осколочно-фугасной миной — 7,1 километра.

Поиск ответов на кроссворды и сканворды Ответ на вопрос «Основание артиллерийского орудия, на котором крепится ствол «, 5 пять букв: лафет Альтернативные вопросы в кроссвордах для слова лафет Определение слова лафет в словарях Примеры употребления слова лафет в литературе. Тупо и бессмысленно торчат в разные стороны лазерные пушки и ракеты на лафетах, валяются возле них изрубленные и искусанные богомолы, у стены выстроились, задрав углами мохнатые лапы, усталые и потрепанные победители. Между делами он изобрел калибромер и особый лафет для пушек, специально предназначенных для обороны крепостей.

Words Of Wonders Guru - Станок, на котором закрепляется ствол артиллерийского орудия

Запатентованный станок предназначен для пулемета Калашникова модернизированного (ПКМ), он позволяет вести огонь и поражать как наземные, так и воздушные цели. Люлька устанавливается и закрепляется наметками в цапфенных гнездах верхнего станка. Внутри корпуса артиллерийской установки находятся ствол орудия и противооткатные устройства, размещенные в качающейся части, которая закреплена на верхнем станке.

Тесты онлайн

Ствол орудия будет расположен параллельно диаметру буссоли, на одном конце которого стоит цифра «30», а на другом «О» (рис. 246). Ответы на кроссворды. →. Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия, 5 букв. Лафет — станок, на котором закрепляется ствол артиллерийского орудия. Предназначен для придания стволу вертикальных и горизонтальных углов (с помощью механизмов наводки), поглощения энергии отдачи при выстреле (противооткатными устройствами).

Не юмор и не фотошоп: зачем в Красной Армии привязывали винтовку к стволу пушки?

Ствол с коническим каналом. Кроме того, известны опыты по применению стволов с полигональными многоугольными каналами. В современной артиллерии преимущественно применяются стволы с цилиндрическим каналом. В этих стволах площадь поперечного сечения снаряда, на которую действует давление пороховых газов, постоянна на всем пути движения снаряда в канале ствола. Поэтому, для того, чтобы увеличить начальную скорость снаряда, нужно увеличить давление пороховых газов или удлинить путь, на котором пороховые газы действуют на снаряд. Увеличение давления производится путем увеличения веса заряда с одновременным увеличением объема зарядной каморы. Удлинение пути, на котором действуют пороховые газы, производится за счет удлинения ствола. Эти методы широко применялись при модернизации артиллерийских орудий. Противотанковой и зенитной артиллерии необходимо было иметь орудия с большой начальной скоростью, но притом такие орудия, у которых с увеличением начальной скорости не увеличился бы вес орудий, а следовательно, не уменьшилась их подвижность. Это привело к применению стволов с коническим каналом. Благодаря сужению нарезной части к дулу начальная скорость увеличилась до 1500 метров в секунду.

Для стрельбы из таких стволов применяются специальные снаряды с мягкой оболочкой; диаметр такого снаряда по мере приближения к дульной части уменьшается. За счет чего же увеличивается начальная скорость снаряда при стрельбе из орудия, ствол которого имеет конический канал? Возьмем для примера ствол, калибр которого в казенной части равен 75 миллиметрам, а в дульной — 55 миллиметрам. При стрельбе из такого ствола применяется заряд, соответствующий калибру казенной части, в результате чего давление пороховых газов в начальный момент будет равно давлению газов в стволе 75-миллиметрового орудия. По мере продвижения снаряда по каналу ствола его поперечный размер площадь поперечного сечения будет уменьшаться и он приобретет большее ускорение. Но стрельба из такого орудия эффективна лишь на небольшие расстояния, так как легкий снаряд в результате большого сопротивления воздуха быстро теряет свою скорость. Конические стволы обычно состоят из трубы с цилиндрическим нарезным каналом и насадки с гладкими коническим и цилиндрическим участками, что облегчает их производство и улучшает качество рис. Ствол с цилиндро-коническим каналом. Насадка соединяется с трубой при помощи винтовой нарезки. Применение конического гладкостенного участка менее выгодно в отношении увеличения могущества орудия, чем применение нарезных цилиндрических каналов.

Затвор Мы уже установили, что ствол современного орудия представляет собой трубу. Отверстие в дульной части остается всегда открытым. Отверстие в казенной части должно быть открыто лишь при заряжании; при выстреле оно должно быть плотно закрыто. Это закрывание производится затвором. Затворами снабжаются стволы орудий, заряжающихся с казенной части. Во время выстрела они принимают на себя давление пороховых газов. Поэтому затвор должен плотно закрывать канал ствола, чтобы не допускать прорыва газов наружу. Кроме того, затвор должен надежно запирать канал ствола, то есть в момент выстрела затвор не должен самопроизвольно открываться. Надежно запирая канал ствола при выстреле, затвор должен просто и легко открываться после выстрела для нового заряжания орудия и легко и плотно закрываться после заряжания. При этом открывание и закрывание затвора должно производиться или простым движением руки без затраты большого усилия, или автоматически.

В орудиях крупного калибра для открывания и закрывания затворов используется энергия специальных двигателей, так как затворы имеют очень большой вес. Затвор предназначен не только для того, чтобы закрывать ствол. Он снабжен механизмами для производства выстрела и для выбрасывания гильзы после выстрела. Типы затворов весьма разнообразны. Наиболее широко применяются клиновые и поршневые затворы рис. Типы затворов: а — клиновой затвор с горизонтальным клиновым гнездом; б — клиновой затвор с вертикальным клиновым гнездом; в — поршневой затвор. Клиновой затвор имеет форму четырехгранной призмы. Передняя грань такой призмы перпендикулярна оси канала ствола, а задняя опорная грань наклонена по отношению к передней. Это делается для того, чтобы облегчить открывание и закрывание затвора и обеспечить наиболее плотное закрывание ствола. Клиновым гнездом называется сквозная прорезь в затворной части орудия.

Форма гнезда в казеннике соответствует форме клина. При выстреле клин опирается на грани пазов клинового гнезда. В зависимости от своего направления клиновое гнездо называется горизонтальным или вертикальным. В первом случае клин выдвигается в сторону, а во втором случае он движется сверху вниз. Горизонтальное движение клина выгодно, так как в этом случае усилие на открывание и закрывание распределяется равномерно, но при этом требуется место для выхода клина в сторону. У вертикально движущегося клина усилие на рукоятку очень неравномерно и при большом весе клина может оказаться непосильным для человека, поэтому у таких затворов вводятся специальные механизмы в виде пружин, которые взводятся при открывании затвора и уменьшают энергию падения клина, а при закрывании облегчают его подъем. При закрывании клин вдвигается в гнездо и скользит в нем по направляющим выступам, параллельным задней грани; передняя грань при этом, перемещаясь параллельно самой себе, приближается к заднему срезу ствола и досылает патрон до места. При открывании наклонные грани выступов позволяют легко выдвинуть клин и открыть канал даже при сильном нажатии дна гильзы на переднюю грань клина. При выстреле давление пороховых газов на переднюю грань клина через заднюю грань передается заклиновой части казенника. Растягивающее усилие может быть разложено на две составляющие: одна, направленная перпендикулярно задней грани, стремится оторвать заклиновую часть казенника, другая, направленная вдоль наклонной грани, вниз или вбок, стремится выбросить клин из его гнезда см.

Чем больше угол наклона задней грани, тем усилие, стремящееся выбросить клин из его гнезда, больше. В современных орудиях этот угол близок к нулю, следовательно, близка к нулю и сила, действующая вдоль наклонной грани. Отрыву заклиновой части казенника препятствует сам казенник, а выбрасыванию клина из гнезда противодействует сила трения. Благодаря наличию клинового гнезда с пазами уменьшается длина затворной части орудия, что, несомненно, выгодно. Однако эта конструкция менее прочна, так как щеки гнезда, не связанные сзади, могут разойтись. Такой тип клинового гнезда применяется преимущественно в орудиях малого калибра. Применение клинового гнезда с фигурными пазами исключает возможность расхождения щек. В современной артиллерии клиновые затворы, как правило, применяются в орудиях раздельного гильзового и патронного заряжания. В этих случаях обтюрация и предохранение от прорыва газов обеспечивается самой гильзой, которая, расширяясь под давлением пороховых газов, плотно прижимается наружной поверхностью к стенкам каморы, в результате чего устраняется прорыв газов наружу. Поэтому применение клинового затвора при раздельном гильзовом и патронном заряжании не требует применения каких-либо специальных обтюрирующих приспособлений.

В старых системах клиновой затвор применялся в орудиях картузного заряжания. Обтюрация в этих орудиях обеспечивалась особым приспособлением — обтюратором. Но применявшиеся обтюрирующие приспособления не давали хороших результатов. Поэтому клиновой затвор при картузном заряжании в современных артиллерийских орудиях не применяется. По сравнению с затворами других типов клиновой затвор имеет более простое устройство и надежно запирает канал ствола. Для закрывания и открывания клина требуется одно прямолинейное движение, обеспечивающее простоту и быстроту действия такого затвора, тем более, что углы возвышения не влияют на величину усилия, необходимого для открывания и закрывания, особенно в затворах с горизонтальным расположением клина. Это обстоятельство облегчает автоматизацию клиновых затворов. В современной артиллерии полуавтоматические затворы в большинстве случаев являются клиновыми. Вертикальные клиновые затворы обычно применяются в орудиях малого калибра, там, где вес клина мал и изменение усилий на рукоятки при открывании и закрывании ничтожно, а также в орудиях, где открывание и закрывание производится автоматически. Применение вертикальных клиновых затворов выгодно в тех случаях, в которых выдвижение клина вбок ограничивает угол горизонтального обстрела вследствие упора в станины лафета или другие части орудия.

Кроме клиновых затворов, действующих вручную, имеются еще полуавтоматические и автоматические. Полная или частичная автоматизация осуществляется за счет использования силы пороховых газов при отдаче. Полуавтоматические затворы за счет использования этой силы открываются, выбрасывают стреляную гильзу и закрываются. Заряжание и производство выстрела производится вручную. Большинство современных артиллерийских орудий малого и среднего калибров имеют полуавтоматический затвор. К таким орудиям относятся 45-миллиметровая противотанковая пушка обр. Встречаются затворы, у которых автоматизировано только закрывание 76-миллиметровая горная пушка обр. Автоматический затвор во время стрельбы без всяких усилий орудийного расчета в результате действия пороховых газов открывается, заряжает орудие, закрывается, производит выстрел и выбрасывает стреляную гильзу. Зенитные орудия малого калибра, как правило, имеют автоматические затворы. Кроме клиновых затворов, у некоторых артиллерийских орудий сохранились еще и поршневые затворы.

Поршневые затворы применяются в орудиях среднего и крупного калибров. Главная часть запирающего механизма поршневого затвора представляет собой цилиндр с винтовой нарезкой на наружной поверхности, называемый поршнем. При закрывании затвора поршень ввинчивается в нарезное затворное гнездо ствола, обеспечивая надежное запирание ствола при выстреле. Большое давление пороховых газов на поршень вызывает необходимость большего числа витков. Устройство такого поршня, в виде обыкновенного винта, потребовало бы много времени на открывание и закрывание затвора. Для ускорения работы затвора на поршне и в затворном гнезде витки нарезки делаются не по всей окружности, а чередуются с гладкими участками. Наиболее часто применяются поршни с двумя нарезными и двумя гладкими участками. В таком поршне каждый участок соответствует сектору с углом в 90 градусов. Бывают поршни с тремя и четырьмя парами нарезных и гладких участков. При закрывании поршень устанавливается нарезными секторами против гладких секторов затворного гнезда и в таком положении вдвигается в гнездо на всю длину.

После вдвигания поршня он поворачивается на определенный угол 90, 60, 45 градусов , при этом витки поршня входят в зацепление с витками затворного гнезда. Таким образом, вместо большого количества оборотов поршня вокруг оси закрывание производится путем поворота его на небольшой угол. Срезание части витков ускоряет работу затвора, но вместе с тем уменьшает прочность закрепления поршня в стволе. Для увеличения прочности зацепления увеличивают число витков на поршне, что вызывает увеличение длины поршня, а следовательно, и увеличение его веса. Оба эти фактора уменьшают скорострельность орудия. Для уменьшения длины и веса поршня и увеличения прочности его соединения с казенником иногда применяют так называемые ступенчатые поршни. Такие поршни имеют секторы различной высоты, то есть нарезка делается разных диаметров, соответственно которым нарезается и затворное гнездо. В некоторых затворах применяются конические ступенчатые поршни. Диаметр такого поршня увеличивается по направлению к казенной части. Это дает возможность сократить длину поршня, так как благодаря увеличению диаметра витков прочность поршня увеличивается.

Однако конические поршни мало применяются из-за сложности их изготовления. Силы трения, возникающие в месте соприкосновения поверхностей витков поршня и затворного гнезда, препятствуют повороту поршня под действием пороховых газов. Кроме того, затвор в закрытом положении стопорится специальными приспособлениями, что также устраняет возможность открывания затвора при выстреле. Обтюрация в поршневых затворах орудий раздельного гильзового и патронного заряжания, как и в клиновых затворах, обеспечивается гильзой, Несколько иначе обстоит дело при картузном заряжании. При закрытом затворе в месте соприкосновения его с телом орудия образуется небольшая щель, через которую могут прорваться сильно нагретые газы. Газы, проходящие через щель с большой скоростью, могут оплавить металл и, таким образом, привести затвор в негодность. Кроме того, эти газы, вырываясь назад, могут нанести сильные повреждения орудийному расчету. И, наконец, разрушительное действие газов может повредить и другие детали затвора, не рассчитанные на большие усилия. Прорыв газов не может быть устранен тщательной обработкой, точной пригонкой соприкасающихся поверхностей, потому что газы постоянно стремятся вырвать затвор из орудия и проникнуть в сколько-нибудь свободное пространство. Так как прорыв газов совершенно недопустим, то в самом затворе должно быть специальное приспособление, препятствующее протеканию газов.

Такое приспособление называется обтюратором. Обтюратор должен быть сделан из пластического материала, чтобы под действием давления он мог принимать форму окружающих поверхностей. Обтюратор помещается в казеннике так, чтобы прикрыть щель между затвором и телом орудия при выстреле. В современных затворах применяют только автоматически действующие обтюраторы, то есть такие, у которых плотное запирание производится исключительно под действием давления пороховых газов. Автоматически действующие обтюраторы можно подразделить на две группы: первая — обтюраторы, действие которых основано на сжатии, вторая — обтюраторы, действие которых основано на растяжении. К первой группе относится грибовидный обтюратор, ко второй группе — металлические гильзы и поддоны. Грибовидный обтюратор рис. Затвор с грибовидным обтюратором. Кольцевая подушка делается из холста, набивается асбестом, пропитывается бараньим салом и прессуется под большим давлением. Она помещается на переднем срезе поршня и удерживается грибовидным стержнем, имеющим сквозной запальный канал.

Грибовидный стержень имеет возможность несколько перемещаться вдоль оси. В момент выстрела под действием пороховых газов грибовидный стержень продвигается назад и расплющивает подушку, которая прижимается к стенкам каморы, устраняя возможность прорыва газов. Для того, чтобы материал подушки не вдавливался в зазоры между затвором и стволом, в обтюраторе имеются стальные разрезные кольца, которые под давлением подушки при выстреле разжимаются и прижимаются к соответствующим поверхностям. Вследствие упругости подушки и колец они после выстрела принимают первоначальные размеры и не затрудняют открывания затвора. Для закрывания затвора поршень устанавливается нарезными секторами против гладких секторов затворного гнезда и вдвигается на всю длину, после чего поршень повертывается на некоторый угол так, чтобы его витки сцепились с витками затворного гнезда. Следовательно, поступательное и вращательное движения поршня при открывании и закрывании выполняются простым действием на рукоять. Для удобства открывания и закрывания поршень укрепляется в раме, шарнирно связанной с казенником ствола при помощи оси. На конце оси насажена рукоять. Чтобы закрыть затвор, необходимо повернуть рукоять до упора в казенник. При этом затвор полностью закроется.

По количеству простых движений поршня, совершаемых при открывании и закрывании затвора, различаются двух- и трехтактные поршневые затворы. В двухтактных поршневых затворах поршень при закрывании движется вместе с рамой по дуге до полного ввода его в затворное гнездо, а затем поворачивается вокруг оси, ввинчиваясь в гнездо. При открывании затвора движение производится в обратном порядке. В трехтактных поршневых затворах поршень при закрывании затвора вместе с рамой подводится к казенному срезу, двигаясь по дуге окружности, затем выдвигается из рамы и вдвигается в поршневое гнездо, двигаясь по оси канала ствола, и поворачивается до полного зацепления нарезных участков, иными словами поршень ввинчивается в затворное гнездо. При открывании затвора движение совершается в обратном порядке. По расположению оси рамы поршневые затворы, так же как и клиновые, бывают горизонтальными и вертикальными. В первом случае ось рамы располагается вертикально, а вращение рамы вместе с поршнем происходит в горизонтальной плоскости. Во втором случае ось рамы располагается горизонтально, а вращение поршня вместе с рамой производится в вертикальной плоскости. Мы уже говорили, что затвор предназначен не только для запирания канала ствола, поэтому в конструкцию современного затвора, кроме запирающего устройства, входит еще несколько механизмов. Основным механизмом любого затвора является запирающий механизм.

В клиновых затворах запирающий механизм состоит в основном из клина, передвигающегося при помощи кривошипов и рукоятки, укрепленных на одной оси рис. Ролики кривошипов входят в пазы на клине. При движении рукоятки вперед ролики кривошипов надавливают на грани пазов, заставляя опуститься клин, в результате чего канал ствола открывается. Чтобы закрыть затвор, рукоятку необходимо повернуть назад. В двухтактном поршневом затворе запирающий механизм состоит из поршня рис. При повороте рукоятки назад шип рукоятки потянет гребенку, которая своими зубьями сцеплена с зубчатым сектором поршня. Поршень будет поворачиваться вокруг своей оси до тех пор, пока нарезные секторы его не расцепятся с нарезными участками поршневого гнезда. В момент полного расцепления выступ на оси рукоятки упрется в грань дугового паза на раме. Дальнейшее движение рукоятки будет связано с движением самой рамы, которая вместе с поршнем повернется вокруг оси рамы и выведет поршень из гнезда. Закрывание затвора производится движением рукоятки в обратном направлении.

Задачей разработки предложенного способа изготовления является получение технического результата - повышение качества, выражающееся в получении ствола без весового прогиба в орудии за счет создания исходной непрямолинейности ствола, компенсирующей его весовой прогиб. При осуществлении варианта способа, при котором заготовку устанавливают в вертлюжном люнете казенной частью, предварительно измеряют биение наружной поверхности заготовки, находят положение наибольшего отклонения наружной поверхности заготовки от прямолинейности и при совмещении оси канала заготовки в дульном сечении с центром задней стойки и креплении заготовки в кольцевом люнете устанавливают заготовку в станке этим отклонением вниз. Если заготовку устанавливают в вертлюжном люнете дульной частью, то в одном из вариантов осуществления способа предварительно измеряют биение наружной поверхности заготовки, находят положение наибольшего отклонения наружной поверхности заготовки от прямолинейности и при совмещении оси канала заготовки в дульном сечении с осью стебля расточной головки и креплении заготовки в патроне вертлюжной бабки у дульного торца устанавливают заготовку в станке этим отклонением вверх. Один из вариантов предполагает, что заготовку растачивают в направлении от казенной части к дульной. В варианте осуществления способа растачивают заготовки, биение наружной поверхности которых не превышает четырех значений весовой непрямолинейности ствола в орудии.

Может выполняться вариант способа, при котором заготовку устанавливают в вертлюжном люнете казенной частью, предварительно измеряют отклонение оси канала от прямолинейности, находят положение наибольшего отклонения и при совмещении оси канала заготовки в дульном сечении с центром задней стойки и креплении заготовки в кольцевом люнете устанавливают заготовку в станке этим отклонением вниз. Может выполняться вариант способа, при котором заготовку устанавливают в вертлюжном люнете дульной частью, предварительно измеряют отклонение оси канала от прямолинейности, находят положение наибольшего отклонения и при совмещении оси канала заготовки в дульном сечении с осью стебля расточной головки и креплении заготовки в патроне вертлюжной бабки у дульного торца устанавливают заготовку в станке этим отклонением вверх. Сущность предложенного способа правки поясняется следующим образом. Орудийный ствол устанавливается консольно в люльке пушки, при этом весовой прогиб ствола может быть близок по величине или превышать технологический допуск на отклонение оси канала от прямолинейности, измеряемое в горизонтальной плоскости. Если заготовку ствола перед растачиванием упруго деформировать так, чтобы ее кривизна соответствовала кривизне установленного в пушке ствола под действием собственного веса, зафиксировать такое положение и расточить ствол в заневоленном состоянии, то после снятия со станка канал ствола будет зеркально отображать прогиб под действием весового прогиба, а при установке в пушку ось канала будет прямолинейной с точностью до технологических погрешностей изготовления, величина которых соответствует погрешностям изготовления по действующей технологии, принятой за прототип.

Однако расточенный канал заготовки ствола из-за кривизны оказывается несоосным наружной поверхности, что может привести к появлению повышенной разностенности. Для исключения этого наружную поверхность ствольной заготовки точат, установив заготовку в центрах и роликовых люнетах токарного станка с учетом полученной кривизны оси канала. Формулы, по которым в зависимости от величины отклонения оси канала от прямолинейности определяют положение на заготовке опорных поясков, установлены при анализе деформации системы и компьютерном моделировании технологического процесса. Содержание и количественные характеристики вариантов осуществления способа предложены на основе анализа результатов моделирования процесса изготовления. Установка ствольной заготовки для растачивания казенной частью в два патрона вертлюжной приводной бабки консольно с последующей выверкой и фиксацией заготовки люнетом в дульной части позволяет в наибольшей степени имитировать весовой прогиб готового ствола, однако в этом случае повышается нагрузка на подшипники вертлюжной бабки станка, что может привести к их ускоренному износу.

Установка заготовки для растачивания казенной частью в люнет и дульной частью в расположенный ближе к средней части заготовки патрон вертлюжной бабки станка с последующей фиксацией заготовки патроном вертлюжной бабки, расположенным у дульного торца, не повышает нагрузку на подшипники вертлюжной бабки по сравнению с известной технологией, однако нужный результат достигается только в определенном интервале параметров способа, если один из патронов вертлюжной бабки расположен у дульного торца заготовки, а другой на расстоянии от него, равном 15... Выбор положения заготовки перед растачиванием в зависимости от исходной непрямолинейности канала позволяет обеспечить более равномерный по длине и окружности съем припуска при растачивании и, в результате, меньший увод и меньшее отклонение оси канала от прямолинейности. Выбор положения заготовки перед растачиванием в зависимости от исходной непрямолинейности наружной поверхности канала позволяет обеспечить меньшее отклонение канала после растачивания от соосности с наружной поверхностью заготовки. В этом случае при последующем точении наружной поверхности она будет обрабатываться с более равномерным по окружности припуском и, в результате, заготовка будет меньше деформироваться из-за перераспределения при точении имеющихся внутренних механических напряжений. Ограничение исходной непрямолинейности биение наружной поверхности не должно превышать четырех значений весовой непрямолинейности ствола в орудии получено следующим образом: в этом случае отклонение оси поверхности от прямолинейности не превышает половины биения, то есть удвоенного значения весового прогиба.

Заготовку устанавливают так, что ее прогиб равен весовому прогибу, при этом в деформированном состоянии поверхность канала смещается от наружной поверхности не более чем на величину весового прогиба, причем то или иное направление знак отклонения равновероятны. В этом случае разносъем металла при точении наружной поверхности минимален и более стабильно качество изготовления деталей. В термоупрочненной ствольной заготовке достаточно высоки внутренние механические напряжения и неравномерный съем металла приводит к их перераспределению и деформации детали. Если растачивать заготовки с большей непрямолинейностью, то закон распределения отклонений будет несимметричным, что приведет в производстве к большему разбросу показателей качества отклонения от прямолинейности, разностенности. Растачивание заготовки в направлении от казенной части к дульной предложено на основании того, что при растачивании в той или иной степени наблюдается увод оси канала.

Шаровые снаряды — бомбы, вкладываемые с дула, должны были свободно входить в ствол. При этом образовывался зазор между снарядом и стенками канала ствола; в этот зазор при выстреле прорывались пороховые газы, в результате чего начальная скорость шаровых снарядов была мала. Кроме того, эти снаряды быстро теряли скорость при полете в воздухе, ввиду того, что они встречали большое сопротивление воздуха. Все это приводило к тому, что дальность стрельбы была невелика. Поэтому артиллеристы давно стремились заменить шаровые снаряды продолговатыми с заостренной головной частью для уменьшения силы сопротивления возе духа. Однако, если выстрелить таким снарядом из гладкоствольного орудия, то снаряд будет кувыркаться в воздухе. Что же нужно сделать, чтобы снаряд не кувыркался? Для этого на поверхности канала ствола делаются желобки, идущие обычно по винтовой линии слева вверх направо.

Эти желобки называются нарезами. Часть поверхности канала ствола, заключенную между двумя нарезами, называют полем нареза рис. Калибр, нарез, поле. На снарядах делаются ведущие пояски из металла более мягкого, чем металл ствола обычно из меди ; пояски прочно закреплены на снарядах. Когда снаряд под действием пороховых газов при выстреле начинает двигаться по каналу ствола, ведущий поясок врезается в нарезы, и так как они идут по винтовой линии, то снаряд поворачивается вокруг своей оси. Таким образом, снаряд, помимо поступательного движения, получает еще и вращательное. Понять, почему вращательное движение сообщает снаряду устойчивость в воздухе, увеличивает дальность полета и заставляет снаряд лететь вперед головной частью, нам поможет гироскоп. Гироскоп представляет собой несколько видоизмененный обыкновенный волчок.

Предположим, что снаряд, получивший в канале орудия быстрое вращение, совершает полет в безвоздушном пространстве, где сила сопротивления воздуха отсутствует. Быстро вращающийся снаряд можно рассматривать как свободный от внешних воздействий гироскоп, к центру тяжести которого приложена единственная сила — вес. Допустим, что при выстреле оси канала ствола придали угол возвышения, то есть дуло ствола было приподнято кверху. Такой же угол наклона получит при выстреле из орудия и ось продолговатого снаряда, вращающегося вокруг своей оси. Во все время полета продольная ось снаряда-гироскопа будет сохранять то направление, которое она имела при вылете из канала ствола. Под действием силы тяжести снаряд будет падать на землю. Такое положение снаряда невыгодно артиллеристам. Для того, чтобы пробить встречаемое препятствие, снаряд должен попасть в него головной частью, а в рассмотренном случае он ударится о преграду боком.

Обратимся теперь к действительным условиям стрельбы. В этом случае на быстро вращающийся вокруг своей оси артиллерийский снаряд действует сила сопротивления воздуха рис. Силы, действующие на снаряд, летящий в воздухе. Опять воспользуемся для опыта гироскопом. При быстром вращении маховика ось гироскопа сохраняет неизменное положение в пространстве. Для исследования движения вращающегося снаряда сообщим маховику быстрое вращение. Чтобы представить себе действие силы сопротивления воздуха на снаряд, надавим пальцем или палочкой на ось гироскопа рис. При быстром вращении маховика ось вовсе не будет изменять своего направления, как это было бы при невращающемся маховике.

Вместо этого ось гироскопа начнет медленно поворачиваться так, что все точки этой оси будут двигаться по окружности, а сама ось начнет описывать фигуру, напоминающую правильный конус. Установим далее гироскоп так, чтобы его ось была почти горизонтальна, и снова приложим усилие к концу оси. Мы убедимся в том, что ось гироскопа по-прежнему, не опрокидываясь, будет описывать конус, но более узкий, чем ранее, мало отклоняясь от линии горизонта. Результаты такого опыта показывают, что ось вращающегося гироскопа под действием усилия не увеличивает своего первоначального наклона, гироскоп не опрокидывается и конец его оси остается вблизи от линии горизонта. Если теперь вместо гироскопа, к оси которого мы приложили усилие, будем рассматривать вращающийся снаряд, к оси которого приложена сила сопротивления воздуха, то мы увидим, что такой снаряд не будет кувыркаться в воздухе и его вершина, описывая конус вокруг касательной к траектории в данной точке, во все время полета останется близкой к траектории. Положение того «послушного» снаряда рис. Полет вращающегося снаряда в воздухе: а — ось снаряда описывает конус; б — вершина снаряда близка к траектории. Меткость стрельбы становится значительно большей.

При выстреле пороховые газы давят внутри канала ствола по всем направлениям рис. Силы, действующие на снаряд и на ствол орудия при выстреле. Но при давлении в толще стенок ствола возникают упругие силы, которые сопротивляются действию пороховых газов. Давление пороховых газов, умноженное на площадь дна снаряда, представляет собой силу, приложенную к центру снаряда и направленную в сторону выстрела. Эта сила заставляет снаряд двигаться вперед. Сила, действующая на дно ствола, стремится вырвать дно или разорвать ствол в поперечном сечении. При достаточной прочности ствола эта сила производит откат орудия. Вследствие волнообразного движения газов в заснарядном пространстве давление газов на стенки ствола в различных точках неодинаково.

Разделим внутреннюю поверхность ствола на небольшие участки. Будем считать давление в пределах каждого участка одинаковым. Умножим давление на каждом участке на площадь этого участка. Мы получим силы, направленные перпендикулярно к внутренней поверхности канала ствола. Эти силы стремятся разорвать ствол в продольном направлении. Таким образом, в результате действия всех этих сил при недостаточной прочности ствола может произойти поперечный или продольный разрыв его. Для того, чтобы ствол надежно сопротивлялся поперечному разрыву, нужно увеличить толщину его стенок, При этом, чем толще они будут, тем ствол будет прочней. Но достаточно ли этого для прочного сопротивления ствола продольному разрыву?

Нет, недостаточно. Опытом установлено, что увеличение толщины стенок свыше одного калибра нецелесообразно, так как это утяжеляет ствол и ведет к нерациональному использованию металла. Для того, чтобы уяснить действие давления газов на поверхность стенок канала ствола, проделаем следующий опыт. Возьмем плоское резиновое кольцо рис. Опыт с резиновым кольцом. Если в канал кольца будем вдвигать деревянный конус, то легко заметим, что диаметры окружностей, прилегающих к каналу, увеличатся в значительно большей степени, чем диаметры окружностей, начерченных ближе к наружной поверхности. Если мы будем продолжать вдвигать конус, то сначала начнут рваться внутренние слои, а уже после них — наружные. Этот опыт наглядно показывает, что слои принимают не одинаковое участие в сопротивлении растяжению: внутренние — больше, наружные — меньше.

При достаточной толщине кольца возможно, что внутренний слой разорвется, а наружный слой не разорвется. Ствол, в котором произойдет разрыв внутреннего слоя, уже не годится для дальнейшей стрельбы. Подобные явления происходят и в стенках ствола орудия. Таким образом, вопрос увеличения сопротивления ствола продольному разрыву не мог быть разрешен только путем увеличения толщины стенок ствола. Необходимо было создать такую конструкцию ствола, при которой все слои металла были бы равномерно напряжены, а напряжения, возникающие на его внутренней поверхности уменьшены. Этого можно достигнуть, составляя ствол из отдельных слоев. Такие стволы называются скрепленными. Процесс скрепления состоит в следующем: берут две трубы со стенками равной толщины рис.

Идея скрепления ствола. Внутренний диаметр одной трубы несколько меньше наружного диаметра другой. Нагреем большую трубу до температуры 400—450 градусов, наденем ее на меньшую трубу и дадим остыть составной трубе- При остывании наружная труба будет стремиться принять свои первоначальные размеры, то есть она начнет сжиматься. Ее внутренний диаметр будет уменьшаться и сжимать внутреннюю трубу. Но так как внутренняя труба будет оказывать сопротивление, то наружная не примет своих первоначальных размеров. Таким образом, после охлаждения до нормальной температуры наружная труба окажется несколько растянутой, а внутренняя — сжатой. Такое состояние смежных слоев, где внутренний слой сжат наружным, называется взаимным натяжением. До выстрела в наружной трубе наиболее растянутыми будут внутренние слои, а наименее — наружные.

Что касается внутренней трубы, то ее слои будут находиться в сжатом состоянии, при этом наружные слои будут менее сжаты, а внутренние — более сжаты. При выстреле под давлением пороховых газов внутренняя труба вначале приходит в нормальное состояние, а затем начинает растягиваться вместе с наружной трубой. С этого момента внутренняя и наружная трубы сильнее сопротивляются давлению пороховых газов. Ясно, что при этом в канале такого ствола может быть допущено большее давление, чем в сплошном стволе той же толщины. Такое расположение слоев металла позволяет увеличить допустимое давление в канале ствола по сравнению с нескрепленным стволом. Составив ствол орудия не из двух, а из четырех, пяти или более слоев, мы можем при заданном допускаемом давлении уменьшить вес ствола или при данном весе — увеличить допускаемое давление в канале ствола. Следовательно, при данной толщине ствола сопротивление его давлению пороховых газов растет с увеличением числа скрепляющих слоев; скрепленные стволы, имеющие такое же сопротивление, как и однослойные, будут иметь значительно меньшую толщину стенок, и из двух скрепленных стволов с одинаковой толщиной стенок будет больше сопротивляться давлению пороховых газов тот, который имеет большее число скрепляющих слоев. Вследствие того, что во время выстрела давление пороховых газов по длине ствола неодинаково, скрепление распространяется на ту часть ствола, в которой ожидается наибольшее давление.

Начиная с сечения ствола, в котором должно находиться дно снаряда в момент конца горения порохового заряда, и далее до дула число скрепляющих слоев можно уменьшить. Скрепление орудийных стволов может быть произведено при помощи колец, проволоки, кожуха, путем самоскрепления автофретирование и смешанным способом. Увеличение прочности ствола не устраняет все же быстрого износа поверхности канала ствола. Износ поверхности канала ствола влечет за собой потерю боевых качеств всего орудия, хотя остальные механизмы и агрегаты его еще совершенно не изношены. Для того, чтобы отремонтировать или сменить ствол, необходимо целиком все орудие отправлять на завод, и, таким образом, орудие надолго выбывает из строя. Здесь возникает важный и интересный вопрос: какова же общая продолжительность жизни орудия? После определенного числа выстрелов ствол приходит в состояние, при котором дальнейшее его боевое использование невозможно. Для орудий крупных калибров это состояние наступает уже после 150—200 выстрелов, а для орудий средних и малых калибров — после 10—15 тысяч выстрелов.

Кроме того, необходимо иметь в виду, что переплавка стволов, изготовленных из дорогостоящей стали, невыгодна экономически. Поэтому возникла мысль обновлять орудия, заменяя не весь ствол, а лишь тонкий внутренний слой металла. Для осуществления этой операции растачивают канал ствола. Вместо расточенной части вставляют тонкостенную трубу, называемую лейнером. Впервые эта идея была осуществлена в 8-дюймовой и 9-дюймовой русских гаубицах, которые участвовали в русско-турецкой войне 1877—1878 гг. В современных орудиях применяются два вида лейнеров: скрепленные лейнеры и свободные лейнеры. Скрепленные лейнеры обычно вставляются с очень малым натяжением. В этом случае натяжение создается не столько для скрепления, сколько для обеспечения плотного соприкосновения наружной поверхности лейнера с внутренней поверхностью ствола.

Смену скрепленных лейнеров нельзя производить на огневой позиции; для этого орудие нужно отправлять в мастерскую. Для того, чтобы лейнер можно было заменить на огневой позиции, его обычно вставляют в ствол с зазором рис. Ствол со свободным лейнером. Наружный диаметр свободного лейнера должен быть меньше внутреннего диаметра ствола. При этом образуется зазор, равный 0,1—0,3 миллиметра. При выстреле лейнер прижимается плотно к внутренней поверхности ствола, который при этом тоже сопротивляется давлению пороховых газов. После выстрела зазор между свободным лейнером и стволом должен быть равен первоначальному зазору. Поэтому свободные лейнеры изготавливаются всегда из высококачественных легированных сталей.

Лейнеры изготавливаются цилиндрической и конической формы. Цилиндрические лейнеры могут быть вставлены в ствол и с дульной части, и с казенной. Конические лейнеры вставляются в ствол только с казенной части. От перемещения в стволе лейнер удерживается специальными приспособлениями. Так, например, для того, чтобы цилиндрический лейнер, вставленный в ствол с дульной части, не вращался, ставится шпонка, одна часть которой находится в теле ствола, а другая в лейнере. От продольного перемещения назад лейнер удерживается кольцевым уступом ствола в казенной части, а от перемещения вперед — дульной гайкой и т. Кроме лейнеров, в современных артиллерийских орудиях широко применяются так называемые свободные трубы рис. Ствол со свободной трубой.

Свободная труба, в отличие от свободного лейнера, имеет более толстые стенки и вставляется в ствол с большим зазором. Свободную трубу вставляют в ствол с казенной части до упора в кольцевой уступ ствола, затем ее зажимают казенником. Таким образом, исключается возможность перемещения ее в продольном направлении. Вращение трубы в стволе предотвращается шпонкой. Применение свободной трубы дает возможность использовать менее дорогую сталь, вследствие большей толщины ее стенок; кроме того, не требуется большой точности обработки наружной поверхности трубы. Основным недостатком свободной трубы по сравнению со свободным лейнером можно считать ее большой вес, затрудняющий перевозку запасных труб. Следовательно, по характеру устройства стволы делятся на нескрепленные, скрепленные, стволы со свободным лейнером и стволы со свободной трубой. По наружному устройству ствол обычно состоит из казенника, цилиндрической и конической частей.

Для соединения с лафетом стволы старых систем снабжались цапфами. В современных артиллерийских орудиях устройство частей, служащих для соединения ствола с лафетом, зависит от конструкции и расположения противооткатных устройств. Говоря о канале ствола, мы имели в виду пока лишь цилиндрическую его форму. Но в настоящее время можно встретить орудия, стволы которых имеют канал конической формы рис. Ствол с коническим каналом. Кроме того, известны опыты по применению стволов с полигональными многоугольными каналами. В современной артиллерии преимущественно применяются стволы с цилиндрическим каналом. В этих стволах площадь поперечного сечения снаряда, на которую действует давление пороховых газов, постоянна на всем пути движения снаряда в канале ствола.

Поэтому, для того, чтобы увеличить начальную скорость снаряда, нужно увеличить давление пороховых газов или удлинить путь, на котором пороховые газы действуют на снаряд. Увеличение давления производится путем увеличения веса заряда с одновременным увеличением объема зарядной каморы. Удлинение пути, на котором действуют пороховые газы, производится за счет удлинения ствола. Эти методы широко применялись при модернизации артиллерийских орудий. Противотанковой и зенитной артиллерии необходимо было иметь орудия с большой начальной скоростью, но притом такие орудия, у которых с увеличением начальной скорости не увеличился бы вес орудий, а следовательно, не уменьшилась их подвижность. Это привело к применению стволов с коническим каналом. Благодаря сужению нарезной части к дулу начальная скорость увеличилась до 1500 метров в секунду. Для стрельбы из таких стволов применяются специальные снаряды с мягкой оболочкой; диаметр такого снаряда по мере приближения к дульной части уменьшается.

За счет чего же увеличивается начальная скорость снаряда при стрельбе из орудия, ствол которого имеет конический канал? Возьмем для примера ствол, калибр которого в казенной части равен 75 миллиметрам, а в дульной — 55 миллиметрам. При стрельбе из такого ствола применяется заряд, соответствующий калибру казенной части, в результате чего давление пороховых газов в начальный момент будет равно давлению газов в стволе 75-миллиметрового орудия. По мере продвижения снаряда по каналу ствола его поперечный размер площадь поперечного сечения будет уменьшаться и он приобретет большее ускорение. Но стрельба из такого орудия эффективна лишь на небольшие расстояния, так как легкий снаряд в результате большого сопротивления воздуха быстро теряет свою скорость. Конические стволы обычно состоят из трубы с цилиндрическим нарезным каналом и насадки с гладкими коническим и цилиндрическим участками, что облегчает их производство и улучшает качество рис. Ствол с цилиндро-коническим каналом.

Если Вы не знаете слово из кроссворда или сканворда, то наш сайт поможет Вам найти самые сложные и незнакомые слова.

Головой на лук похож. Если только пожуёшь Даже маленькую дольку — Будет пахнуть очень долго.

Похожие новости:

Оцените статью
Добавить комментарий