Новости принцип работы водородной бомбы

термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития. или почему при термоядерном взрыве не начинается самоподдерживающаяся термоядерная реакция в воде и в воздухе В своё время Нильс Бор говорил, что теоретически возможно запустить такой мощности, такого объема термоядерную реакцию. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов.

3. Водородная бомба: кто выдал её секрет

Вторая ступень, называемая "термоядерной ступенью", содержит деутерий и тритий, которые при взрыве испускают огромное количество энергии в результате ядерного синтеза. Гораздо большая мощность: Водородная бомба значительно мощнее атомной бомбы. Мощность водородной бомбы измеряется в мегатоннах TNT эквивалент тротилового эквивалента , что означает, что она способна создать разрушения, эквивалентные множеству миллионов тонн тротила. Разработка и испытания: Разработка водородной бомбы требует значительных научных знаний и технологического уровня. Первая успешная испытанная водородная бомба была проведена в 1952 году Соединенными Штатами Америки. С тех пор несколько стран провели свои собственные испытания водородных бомб. Воздействие и последствия: Взрыв водородной бомбы имеет разрушительные последствия, включая огромный огненный шар, ударную волну и радиационное излучение. Последствия воздействия водородной бомбы могут быть катастрофическими, причиняя разрушения в радиусе нескольких километров и оставляя долгосрочное радиоактивное загрязнение.

Оппенгеймер наконец признал его осуществимость, но Теллер, находясь в размолвке с Оппенгеймером, добился от Белого дома решения о создании независимой от Лос-Аламоса лаборатории. Стараниями Эдварда Теллера и еще одного «бомбиста», нобелевского лауреата Эрнеста Лоуренса, в 1952 году появилась Ливерморская лаборатория. Теллер возглавлял ее в 1958—1960 годы, впоследствии став почетным директором. Кстати, он привлек к работе над водородной бомбой и Гамова, который в 1948 году получил от Пентагона допуск к военным секретам. Принципиальная схема первого американского термоядерного взрывного устройства известна как схема Теллера — Улама. Она подразумевает радиационную имплозию — сжатие термоядерного горючего плазмой, образующейся при воздействии на урановую или свинцовую оболочку рентгеновского излучения взорвавшегося ядерного запала то есть «просто» ядерного, без «термо-». Хотя это была еще не бомба как таковая, а скорее гигантский термос-холодильник с жидким дейтерием, энерговыделение составило недостижимые в атомных зарядах 10,4 Мт. Штуку весом 80 т и высотой с двухэтажный дом невозможно было запихнуть ни в один носитель. Секретная «слойка» Андрея Сахарова судьба уберегла от коллизий, с которыми столкнулся на заре своей карьеры Эдвард Теллер. С отличием окончив в 1942 году МГУ, он отказался от предложения стать аспирантом и отправился работать в оборонку — заниматься качеством бронебойных снарядов. Так что в том, что от немецких танков «Тигр» и «Пантера» летели стальные щепки, есть и его заслуга. В 1944-м Сахаров поступил в аспирантуру Физического института. В 1947 году под руководством Игоря Тамма защитил кандидатскую по тематике ядерных переходов. Работа имела прямое отношение к атомному проекту, и Андрей Сахаров попал в спецгруппу Тамма, проверявшую выкладки по водородной бомбе коллектива Зельдовича. К тому моменту Андрей Сахаров предложил гетерогенную схему термоядерного заряда из слоев дейтерия и природного урана-238. При этом, как в схеме Теллера — Улама, дейтерий сжимался бы за счет имплозии из-за давления, создаваемого ионизированным ураном. К схеме, получившей технико-документальное название «слойка», Сахаров пришел независимо от заокеанских конкурентов. С этими соображениями отлично гармонировала предложенная Виталием Гинзбургом идея использовать дейтерид лития-6 6LiD как твердое термоядерное горючее для реакции синтеза дейтерия и трития. Так был открыт путь к созданию компактных боевых термоядерных зарядов. Первый из них, РДС-6с, и был взорван на Семипалатинском полигоне 12 августа 1953 года. От «Айви Майка» заряд отличался готовностью к снаряжению спецбоеприпасов. Мощность взрыва составила 400 кт. Это был колоссальный успех, и нужно отметить, что сведения об американском водородном заряде, полученные разведкой от британского ученого Клауса Фукса, при всей их важности оказались малоприменимыми для создания термоядерного оружия. А 22 ноября 1955 года Ту-16 на том же полигоне сбросил экспериментальную авиабомбу с РДС-37. Это был заряд, основанный на принципе радиационной имплозии первичного ядерного и термоядерного материала, заключенного в отдельный «слоеный», как в РДС-6с, вторичный модуль.

Именно эта реакция протекает в недрах звезд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжелые ядра гелия. Полученного количества энергии достаточно для того, чтобы запустить цепную реакцию, вовлекая в нее весь возможный водород. Именно поэтому звезды не гаснут, а взрыв водородной бомбы обладает такой разрушительной силой. Ученые скопировали эту реакцию с использованием жидких изотопов водорода — дейтерия и трития, что и дало название "водородная бомба". В последствии стал использоваться дейтерид лития-6, твердое вещество, соединение дейтерия и изотопа лития, которое по своим химическим свойствам является аналогом водорода. Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более "чистым", чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд. А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались "слойками". Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу. Почему при взрыве образуется "гриб"? На самом деле облако грибовидной формы — обыкновенное физическое явление.

Тамм подобрал небольшую группу, Сахаров, кстати, входил в эту группу», - рассказывает Владимир Визгин. В документе упоминалось два варианта. Одна из бомб должна быть создана, по сути, по американским лекалам. Это изделие проходит под кодовым названием РДС-6Т. В ней предполагалось цилиндрическое расположение заряда. Второе изделие РДС-6С. Ее конструкция представляла собой «слоеный пирог» из урана и термоядерного горючего, окруженных взрывчатым веществом. Эту альтернативную схему водородной бомбы предложил Андрей Сахаров. В итоге успешной будет именно «сахаровская слойка», а американская идея окажется тупиковой. Уже через несколько дней после принятия секретной правительственной директивы многие талантливые физики и математики окажутся в Арзамасе-16. Среди них будет выпускник физического факультета Ленинградского университета Юрий Трутнев. Они говорят: "Мы хотим вас отправить в очень интересное место, и очень интересная работа. Как вы? Мне объяснили: "Вам нужно пройти на бульвар. Напротив ресторана "Узбекистан" пройдете, двор 13, в дворницкую, там вам объяснят". Пошел, прихожу туда. Открыл дверь, смотрю - газовые горелки, кирпичи на них греются, и бабка какая-то сидит. Я говорю: "Сюда я попал? Пришел парень и говорит мне: "Вам нужно завтра с утра ехать во Внуково, встать около статуи Сталина.

Водородная бомба

Это позволило сделать в СССР почти полную копию нового вида оружия и благополучно испытать его в 1949 году. Требовалось организовать группу физиков-ядерщиков и техников, способных успешно вести разработки сверхмощного оружия только своими силами. Его директором был назначен Павел Зернов. Объективные проблемы Идти по самому простому пути — сделать бомбу в десять раз больше, а значит и в десять раз мощнее — было бессмысленно. Бомбардировщик Ту-95.

После детонации наблюдается стремительное повышение температуры до 2000-3000 градусов. Для сравнения: температура в крематории составляет чуть более 1000 градусов. Облако топливовоздушной смеси обладает дисковидной формой, что позволяет направить ударную волну в стороны и, соответственно, усилить поражающий эффект. Последняя впервые была продемонстрирована осенью 2007 года, однако опыт её дальнейшего применения неизвестен. Её эффективность поражения сопоставима с ядерным оружием. Действительно, тротиловый эквивалент в 44 тонны слабым не назовёшь. Однако применение такой бомбы не сказывается на радиационном фоне, в отличие от боеприпаса с ядерной начинкой. В горах такие бомбы отличаются особой эффективностью: скальная поверхность способствуют значительному усилению ударной волны благодаря переотражениям. В теории, используя ударный беспилотник "Сириус" или С-70 "Охотник" российская армия может поразить цель в любом уголке Украины. Вероятность использования такого оружия по целям в черте города крайне низка — слишком высок шанс поражения мирного населения.

Исследователи бросили весь свой интеллектуальный запал на уменьшение габаритов и веса водородного заряда. Уже в 70-х годах американские баллистические ракеты могли нести более 10 термоядерных боеголовок одновременно. Отстав на старте разработки водородной бомбы, СССР довольно быстро догнал соперника. Заслуга в такой прыти принадлежит выдающемуся физику Андрею Сахарову. Еще в 1949 году он спроектировал первое советское термоядерное устройство, которое получило название «Слойка». Сахаров предложил принципиально новую концепцию реализации термоядерной реакции, которая в корне отличалась от раздельной схемы Теллера-Улама. Физик разработал схему чередования расщепляющегося материала со слоями топлива-зачинщика реакции. В 1953 году «Слойка» была испытана. В 1953 году группа советских ученых, которая включала Сахарова, Зельдовича, Трутнева и других сильных физиков, разработала идею использования рентгеновского излучения для сжатия дейтерида лития перед синтезом. Эта концепция позволила в 1955 году добиться мощности взрыва в 1,6 мегатонн, открыв безграничные просторы для наращивания силы заряды. Через 6 лет была взорвана «Царь-бомба», которая остается самым мощным оружием, испытанным человечеством. Принцип действия водородной бомбы Основой термоядерного взрыва является энергия, которая выделяется при реакции термоядерного синтеза легких ядер. Подобные реакции происходят на солнце и других небесных светилах. Критические температуры и колоссальное давление приводят к столкновению ядер водорода, при котором образуются тяжелые ядра гелия. Некоторая часть массы ядра водорода переходит в энергию. Подобные реакции и провоцируют постоянное выделение энергии у звезд.

Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6 Li - единственный промышленный источник получения трития: В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру порядка 50 млн градусов , в водородной бомбе сначала взрывается небольшая по мощности атомная бомба. Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий. Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию 234 , которая и дает основное выделение энергии при взрыве водородной термоядерной бомбы. Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности. Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы. Устройство термоядерного боеприпаса Термоядерные боеприпасы существуют как в виде авиационных бомб водородная или термоядерная бомба , так и боеголовок для баллистических и крылатых ракет. История СССР Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова». Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз. Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий. В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом «лучевая имплозия». Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы. США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах. Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода. Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H2O показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий 2H. Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов. Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных "осколка". В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов.

Please wait while your request is being verified...

миллионнократная миниатюризация водородных бомб до размера наперстка - ради применения термоядерных микровзрывов. Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как термоядерная бомба, иногда называемой водородной. В современной (а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились) водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития – твердое белое вещество. Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Такой стереотип работы нейтронной бомбы возник еще во времена СССР из-за непонимания принципа ее работы.

Атомная, водородная, нейтронная… Чем отличаются и как работают

Куда же делись остальные? Да, их сколько-то потеряли — но не две с лишним тысячи. Как выяснилось, бомбы тоже ржавеют. Даже атомные. Хотя это выражение и не стоит воспринимать буквально, общий смысл происходящего именно такой. По целому ряду естественных причин сложное оружие с течением времени утрачивает свои изначальные свойства настолько, что возникают весьма серьезные сомнения в его срабатывании, если дело до того дойдет. Изготовители ядерных боеголовок по обе стороны океана дают одинаковый гарантийный срок на свои изделия — как правло, 20 лет и очень редко когда срок доходит до 30 лет. Поскольку вряд речь идет о корпоративном сговоре монополистов, очевидно, что проблема — в законах физики. Без него сложно было бы понять суть проблемы, с которой столкнулись США, и которую пытались скрывать на протяжении как минимум последних 15 лет.

С тритием-то там никаких проблем. Дейтерид-лития-6 — вещество твердое и по своим характеристикам достаточно стабильное. Обычная взрывчатка, из которой состоит детонационная сфера первоначального инициатора триггера, со временем свои характеристики конечно меняет, но ее замена особой проблемы не создает. А вот к плутонию есть вопросы. Оружейный плутоний — он распадается. Постоянно и неостановимо. Из-за альфа-распада ядра Плутония-239 «теряют» альфа-частицы, представляющие из себя ядра атома Гелия , вместо него образуется примесь Урана 235. Соответственно, растёт критическая масса.

Для чистого Плутония 239 — это 11кг 10см сфера , для урана — 47 кг 17см сфера.

Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии. Водородная бомба самая мощная - это неоспоримый факт.

Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года.

Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна.

Рассказываем подробнее историю, возможно, самого опасного военного проекта времен второй половины 20 века.

Он настаивал, что уничтожать противника нужно там, где находятся главные транспортные узлы и логистические центры. Однако в нормальном, пригодном для боевого применения виде, торпеда не появилась. Сказались и замечания моряков, и отсутствие атомных подводных лодок, проектирование и строительство которых началось ближе к середине 50-х годов.

Возможный радиус поражения самой мощной бомбой в истории человечества. Фото: nuclearsecrecy.

В 1949 г. Первая советская водородная бомба РДС-6с мощностью 400 килотонн, была испытана 12 августа 1953 г. Ivy Mike весило 73,8 т и по своим габаритам больше напоминало небольшой завод, однако мощность его взрыва составила на тот момент рекордные 10,4 мегатонны. Ракетное вооружение на тот момент было несовершенным; бомбардировщиками, способными доставлять тяжелые заряды, ВВС СССР не располагали. Поэтому 12 сентября 1952 г. Первоначально предполагалось, что она будет носителем торпеды с термоядерным зарядом Т-15 мощностью до 100 мегатонн, основной целью которой будут базы ВМС и портовые города противника. Главным разработчиком торпеды был Андрей Сахаров.

Впоследствии в своей книге "Воспоминания" ученый писал, что контр-адмирал Петр Фомин, который отвечал за проект 627 со стороны флота, был шокирован "людоедским характером" Т-15. По словам Сахарова, Фомин говорил ему, "что военные моряки привыкли бороться с вооруженным противником в открытом бою" и что для него "отвратительна сама мысль о таком массовом убийстве". Впоследствии этот разговор повлиял на решение Сахарова заняться правозащитной деятельностью. Т-15 так и не была принята на вооружение из-за неудачных испытаний в середине 1950-х гг. С конца 1955 г. Однако в 1958 г. Спустя два года, 10 июля 1961 г. Работы были поручены сотрудникам КБ-11. Под руководством Андрея Сахарова группой физиков-теоретиков было разработано "изделие 602" АН-602.

Please wait while your request is being verified...

СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. В термоядерных бомбах используется другой принцип — термоядерный синтез, при котором такие лёгкие элементы, как водород или литий, сливаются в более тяжёлые, за счёт чего выделяется энергия, необходимая для взрыва. миллионнократная миниатюризация водородных бомб до размера наперстка - ради применения термоядерных микровзрывов. «Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия». Что такое водородная бомба, как она устроена, принцип действия термоядерного заряда и когда проведены первые испытания в СССР — написано ниже. Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.

Please wait while your request is being verified...

Однако, как сообщается, Советский Союз произвел и развернул небольшое количество нейтронных бомб во время холодной войны, и несколько других стран, таких как Франция и Китай, также заявили, что обладают ими. Таким образом, атомные бомбы, водородные бомбы и нейтронные бомбы — это все типы ядерного оружия, которые различаются по своей взрывной мощности, механизмe детонации и радиационному эффекту. Атомные бомбы основаны на делении ядер и выделяют огромное количество энергии в виде тепла, взрыва и излучения. Водородные бомбы, с другой стороны, основаны на ядерном синтезе и намного мощнее атомных бомб, высвобождая энергию, эквивалентную миллионам тонн тротила. Наконец, нейтронные бомбы предназначены для испускания большого количества нейтронного излучения при минимальных взрывах и тепловых эффектах, что делает их потенциально полезными для военных целей. Однако разработка и развертывание ядерного оружия имеют серьезные этические, политические и экологические последствия. Использование атомных бомб в Хиросиме и Нагасаки во время Второй мировой войны привело к гибели сотен тысяч людей и оставило долгосрочные последствия для здоровья из-за радиационного облучения. Продолжающееся обладание ядерными арсеналами и их модернизация несколькими странами сопряжены со значительным риском случайного или преднамеренного применения, что приведет к глобальным разрушениям и человеческим жертвам. Кроме того, при производстве, испытаниях и хранении ядерного оружия образуется большое количество радиоактивных отходов, что представляет долгосрочную угрозу для здоровья населения и окружающей среды. Ядерное оружие также отвлекает ресурсы от социального и экономического развития, усугубляя нищету, неравенство и конфликты.

Тем более, если учесть, что автор располагал далеко не всей возможной информацией. Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Именно тогда, вскоре после появления атомных бомб, Э. Подобно тому как от капсюля-детонатора провоцируется волна горения детонации в химическом взрывчатом веществе, в водородной бомбе Э. Теллера распространяется термоядерная волна по дейтерию, инициированная атомным взрывом. Если устойчивое незатухающее горение возможно, то оно, вызванное относительно скромной энергией атомного взрыва, затем при распространении выделяет произвольно большую энергию. Захватывающая перспектива, не правда ли? В 1951 году, когда я после окончания Московского университета оказался в группе Я. Зельдовича в КБ amp;ndash;11 , там с большим энтузиазмом занимались сходной проблемой отставая , по-видимому, на год-два от Лос-Аламоса.

Сейчас, когда узнаёшь у тех же Д. Например, для нас с самого начала представлялась очевидной невозможность разжигания чистого дейтерия — это могло осуществиться только через промежуточную область, насыщенную тритием. Но трития требуется так много, что его производство вступает в острую конкуренцию с производством военного плутония на промышленных реакторах. Нет ответа и на главный принципиальный вопрос: осуществим ли стационарный режим горения? Дело в том, что при любой детонации существует некоторый минимальный размер радиус детонационного шнура , ниже которого устойчивого режима не существует. Вещество вследствие собственного энерговыделения разлетается быстрее, чем успевает сгореть. Особенностью же высокотемпературной термоядерной плазмы является наличие не только нижнего, но и верхнего радиуса. Всякое вещество, предоставленное самому себе, стремится к термодинамическому равновесию, выравниванию температуры между веществом и излучением. Нетрудно подсчитать, что при рассматриваемых параметрах плазмы подавляющая часть энергии приходится на излучение.

Образуется, таким образом, паразитный сток энергии от вещества, то есть от горячих материальных частиц, вступающих в ядерную реакцию, в излучение. Этим объясняется наличие двух радиусов — разлётного и радиационного, причём первый должен быть больше некоторого значения, а второй — меньше некоторого другого. Трудность задачи состояла в том, что радиусы эти оказались близкими. До сих пор осталось невыясненным, есть ли между ними щель, необходимая для существования устойчивого распространения. Это, скажем так, теоретическая сторона вопроса. А вот как развивались события в плоскости политической. В 1951 году президент США Г. Трумэн направил комиссии по атомной энергии директиву о возобновлении работы по созданию водородной бомбы. К аналогичному выводу в группе Я.

Зельдовича пришли к концу 1953 года. То, что вещество горит тем полней и быстрей, чем выше его плотность, следует из самых общих соображений. Задача состояла в том, чтобы понять, как достичь высокой степени сжатия. У него возникла идея о фокусировке на дейтерии механической энергии, высвобождаемой при взрыве обычной атомной бомбы. Чтобы осуществить такую фокусировку, необходимо надлежащим образом направить ударную волну по окружающему материалу. Этот способ сулил колоссальное сжатие дейтерия. Когда Улам сообщил Теллеру о своей схеме сжатия дейтерия, во время их исторической встречи в начале 1951 года, Теллер предложил вариант, согласно которому не ударные волны сжатия от взрыва атомного устройства, а радиация от этого первичного взрыва должна вызвать так называемую имплозию, приводящую к сильнейшему сжатию дейтерия. Как развивались события дальше? В 1954 году США испытали боевую водородную бомбу, осуществив тем самым окончательный поворот к новой технологии, уцелевшей в основных чертах до наших дней.

Но уже в ноябре 1955 года на Семипалатинском полигоне взорвали нашу водородную бомбу новейшего образца. Стало ясно, что в споре с американскими учёными русские сумели ликвидировать разрыв. Притом в столь короткие сроки, что это не поддавалось, с точки зрения американцев, какому-либо разумному объяснению, кроме одного — шпионаж. Было выдвинуто немало и других версий, так или иначе объясняющих успех советских учёных, но спор и по сей день не закончен. Виднейший теоретик Лос-Аламоса Г. Бете считает, что открытие Улама-Теллера имело случайный характер. И потому признать, что русский проект развивался по аналогичному пути без американского влияния, — значит уверовать в совершенно невероятное совпадение.

На основе исследований ученых разработка бомбы началась по двум направлениям. Первый — «слойка», представляющая собой атомный заряд, который окружен несколькими слоями легких и тяжелых элементов. Второй — «труба», в которой плутониевая бомба погружалась в жидкий лейтерий. Впоследствии именно первую модель выбрали для дальнейших испытаний. К моменту взрыва полигон быль тщательно подготовлен: 16 самолетов, 7 танков, орудий и минометов, 1300 измерительных, регистрирующих и киносъемочных приборов, 1700 различных индикаторов. Специально для аппаратуры, регистрирующей термоядерные процессы, в 5 м от места подрыва соорудили бункер. Сам заряд установили на стальной башне, на высоте 30 м закрепили бомбу. Около 7:30 утра 12 августа 1953 года горизонт озарила вспышка света от взрыва. Мощность взрыва в 20 раз превысила показатели первой атомной бомбы.

Скончавшийся 10 лет назад Холл после войны занялся биологией и за два года до смерти письменно признался в былых прегрешениях. В 90-е годы в печать проникли слухи, что Москва пользовалась услугами еще одного сотрудника лос-аламосской лаборатории законспирированного под кличкой Персей , но о нем до сих пор ничего доподлинно не известно. Рид и Стиллман утверждают, что этот агент действительно существовал, и даже приводят кое-какие факты его биографии американец, провел детство с родителями за рубежом, в 30-е годы закончил университет в США, несколько лет работал в другой стране, с 1942 года — в Лос-Аламосе, тогда же был завербован советским агентом Моррисом Коэном. Имени Персея они не называют, поскольку его уже нет в живых и опровергнуть эти обвинения он не в состоянии. В отличие от Фукса и Холла, после войны Персей остался в Лос-Аламосе и сильно поднялся по служебной лестнице. К этому времени он порвал с советской разведкой и чувствовал себя в полной безопасности. Но весной 1954 года к нему обратился советский агент с просьбой последний раз помочь друзьям прошлых лет по всей видимости, под угрозой разоблачения — и Персей не смог отказаться. Почему эта дата столь важна? Радиохимический анализ убедил советских физиков, что это была настоящая водородная бомба, которой у СССР еще не было.

Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР

научный руководитель Атомного проекта СССР. Работа создателей первой водородной бомбы, в том числе и сотрудников КБ-11, была высоко оценена советским правительством. Принцип работы и преимущества вакуумной бомбы. Получение нового химического соединения, позволившего создать водородную бомбу, показывает, что может быть в принципе создано еще более страшное оружие — кобальтовая бомба. Полностью же на использование твёрдого термоядерного горючего советские разработчики перешли только в водородной бомбе, взорванной в 1955 году.

Как устроена водородная бомба

Дальнейшее ее поддержание определяется тем, как долго контейнер будет удерживать термоядерные процессы внутри себя, не давая выхода тепловой энергии наружу. Выгорание термоядерного топлива идет от оси цилиндра к его краю. Температура фронта горения достигает 300 миллионов кельвин. Полное развитие взрыва вплоть до выгорания термоядерного топлива и разрушения контейнера занимает пару сотен наносекунд. Последствия схожие с обычными ядерными боеприпасами, с двумя поправками. При чисто термоядерном взрыве образуются в основном гелий и поток быстрых нейтронов, вызывающих незначительную наведенную радиацию.

В ней предполагалось цилиндрическое расположение заряда. Второе изделие РДС-6С. Ее конструкция представляла собой «слоеный пирог» из урана и термоядерного горючего, окруженных взрывчатым веществом. Эту альтернативную схему водородной бомбы предложил Андрей Сахаров. В итоге успешной будет именно «сахаровская слойка», а американская идея окажется тупиковой.

Уже через несколько дней после принятия секретной правительственной директивы многие талантливые физики и математики окажутся в Арзамасе-16. Среди них будет выпускник физического факультета Ленинградского университета Юрий Трутнев. Они говорят: "Мы хотим вас отправить в очень интересное место, и очень интересная работа. Как вы? Мне объяснили: "Вам нужно пройти на бульвар.

Напротив ресторана "Узбекистан" пройдете, двор 13, в дворницкую, там вам объяснят". Пошел, прихожу туда. Открыл дверь, смотрю - газовые горелки, кирпичи на них греются, и бабка какая-то сидит. Я говорю: "Сюда я попал? Пришел парень и говорит мне: "Вам нужно завтра с утра ехать во Внуково, встать около статуи Сталина.

Там к вам подойдут, и вы дальше полетите туда, куда нужно"», - делится воспоминаниями Юрий Трутнев, первый зам. Для разработчиков супероружия были созданы самые комфортные условия. За этим лично следил Лаврентий Берия. Сахарову выделили отдельный коттедж с обстановкой, кухарку и экономку.

Что такое бомба? Атомные электростанции работают по принципу высвобождения и сковывания ядерной энергии. Этот процесс обязательно контролируется. Высвобожденная энергия переходит в электричество.

Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам. Атомная бомба Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее. Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации.

Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли.

Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища.

Водородная бомба — это тоже наше, родное. Первый советский термоядерный боеприпас был испытан в 1953 году.

Американцы на атолле Бикини провели испытания тогда ещё просто взрывного устройства, не годного для практического применения. Как и в случае «космической гонки», целью которой было создание не столько ракет-носителей, сколько баллистических ракет, СССР имел очень веские основания спешить с созданием водородной бомбы. И позже у Хрущёва были не менее веские и вполне рациональные основания для создания не принятой на вооружение и изначально не предназначавшейся для этого «Царь-бомбы» потенциальной мощностью 100 Мегатонн. Прогремевший над Новой Землёй сильнейший в истории человечества взрыв, сопровождавшийся хвастовством о семи бомбах, которых достаточно, для того чтобы над Британскими островами снова плескалось море, произвёл нужный эффект.

Причина, по которой без водородной бомбы СССР не мог никак, была прежде всего экономической. Уже в 50-х годах продолжение гонки вооружений по правилам «поддержания паритета» стало проблематичным ввиду банальной нехватки электроэнергии, которая для обогащения урана г азодиффузным методом требовалась в немыслимом количестве. В абсолютном исчислении СССР мог ответить лишь в 10 раз меньшим количеством киловатт, и отставал по темпам производства ядерных зарядов на порядок. Соответственно, если США готовились к использованию тактических «пушечных» зарядов, в которых 10 кг плутония взрывались как 50-150 тонн тротилла, советские конструкторы ломали головы над тем, как выдавить лютой имплозией 50 килотонн из всего 6 кг плутония.

Успехи наличествовали, но переломить ситуацию таким образом было невозможно… Другое дело, если мощность боеприпаса при прежнем расходе ядерного горючего исчисляется десятками Мегатонн. В такой ситуации отставание по количеству зарядов уже не имело значения. На это Хрущёв и намекал.

Похожие новости:

Оцените статью
Добавить комментарий