Новости гаргантюа черная дыра

это название одной из чёрных дыр в фильме "Интерстеллар", то есть это не физический термин, а, тысызыть, литературный (сценарий фильма - это всё ж литературное произведение. Мда). 3. Черные дыры и сингулярности. В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты. Гаргантюа — это сверхмассивная черная дыра, ставшая популярной в массовой культуре после фильма Интерстеллар, именно в неё затянуло Купера к концу фильма. Я постарался графически обыграть маршруты, будто это лучи света вокруг горизонта событий черной дыры.

Новая ночная схема Москвы, версия Гаргантюа (4.1)

Новая ночная схема Москвы, версия Гаргантюа (4.1) 3. Черные дыры и сингулярности. В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты.
Линзирование быстровращающейся черной дыры – Гаргантюа Да, вокруг сверхмассивной черной дыры по имени Гаргантюа обращается диск — это останки разорванных приливными силами звезд и планет, захваченных полем тяжести космического монстра.

Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков

это название одной из чёрных дыр в фильме "Интерстеллар", то есть это не физический термин, а, тысызыть, литературный (сценарий фильма - это всё ж литературное произведение. Мда). При этом ученые выяснили, что аппетит дыры стабильно выше так называемого предела Эддингтона – количества материи, которую может поглотить черная дыра. Эта черная дыра вовсе не похожа на Гаргантюа — аналог из фильма Нолана с МакКонахи в главной роли. это название одной из чёрных дыр в фильме "Интерстеллар", то есть это не физический термин, а, тысызыть, литературный (сценарий фильма - это всё ж литературное произведение. Мда). Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. По расчетам, черная дыра в тысячи раз больше, чем в Млечном пути, и насчитывает не 0,1% от массы балджа галактики, а все 59%.

Обои: черная дыра, Гаргантюа, темный - 3840x2160

Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. Эта черная дыра вовсе не похожа на Гаргантюа — аналог из фильма Нолана с МакКонахи в главной роли. В заключение отметим, что система Гаргантюа — поистине впечатляющее открытие, и нетрудно понять, почему ученые решили назвать ее в честь вымышленной черной дыры в «Интерстеллар». С массивной звездой, меньшей звездой-компаньоном и двумя. ЧЕРНАЯ ДЫРА НЕ СФЕРА! #shorts #новости #наука #космос #факты #физика #звезды #вселеннаяПодробнее. Может ли черная дыра стать машиной времени и отправить нас в прошлое?#чёрнаядыра #физика #космос.

Черные дыры. Kак умирают чёрные дыры?

Что они и сделали. Шесть лет спустя астрофизики из проекта EHT получили первое изображение реальной черной дыры в центре нашей галактики. И вот сюрприз: она действительно похожа на визуализацию из «Интерстеллара». На планете Миллер герои сталкиваются с приливной волной высотой в километр, и это не художественное преувеличение. Дело в том, что планета вращается вокруг гигантской черной дыры Гаргантюа и испытывает на себе гравитационные эффекты от такого соседства. Мифы По сюжету путешественники для перемещения в другую галактику использовали червоточину или «кротовую нору» , один конец которой обнаружился в окрестностях Сатурна. По сути, это такой скоростной тоннель между отдаленными точками пространства, который на данный момент существует только в виде математических расчетов.

При этом сам Кип Торн считает, что самостоятельное зарождение их в пространстве и времени маловероятно, и в сценарии «Интерстеллара» прибегли к помощи некой сверхразвитой цивилизации из пятого измерения, которая и создала червоточину. Под конец путешествия главный герой падает в черную дыру, получает данные, необходимые ученым для спасения человечества, и передает их на Землю очень изощренным способом. По идее, уже у границы черной дыры Купер должен был превратиться в спагеттину из-за действия приливных сил, но, по словам Кипа Торна, для сверхмассивных черных дыр, вращающихся с огромной скоростью, удалось рассчитать более оптимистичные сценарии — «мягкую сингулярность». В этих условиях герой тоже, скорее всего, погибнет, но в научно-фантастическом фильме, даже очень строго выстроенном, имеет шанс выжить. Марсианин В не столь отдаленном будущем земляне отправляют на Марс экспедицию Ares III, которая должна выполнить некоторые задания по сбору научных данных. Ученые уже несколько дней работают на поверхности планеты, когда на лагерь надвигается жестокая песчаная буря.

Команда вынуждена срочно эвакуироваться, но во время посадки на взлетный модуль теряет биолога Марка Уотни. Сочтя коллегу погибшим, опечаленные астронавты покидают планету и отправляются домой. Раненый Марк остается один в чужих и абсолютно неподходящих для человека условиях. К счастью, он обладает природным оптимизмом и большими знаниями. Новоявленный Робинзон рассчитывает выжить и дождаться прибытия следующей экспедиции. Научно-фантастическая драма с элементами комедии «Марсианин» была поставлена по одноименному произведению Энди Вейера, программиста по образованию, который увлекается изучением физики, орбитальной механики и космонавтики.

Его роман отличается дотошным описанием всех ухищрений, к которым пришлось прибегнуть герою для выживания в экстремальных условиях. Соответственно, когда режиссер Ридли Скотт взялся за экранизацию, к съемочному процессу было привлечено много консультантов, в том числе из NASA. Фильм задумывался как гимн науке и блестяще выполнил эту миссию, даже несмотря на то что после премьеры собрал богатый урожай научной критики. Правда Чтобы обеспечить себя хотя бы скудным, но пропитанием, Марк решает посадить в марсианском грунте картофель, использовав в качестве удобрения человеческие экскременты. В 2015 году этот момент вызвал много критики, считалось, что грунт красной планеты слишком токсичен для растения. Но уже через два года исследователи из Международного центра картофеля в Перу сообщили об успешных экспериментах по выращиванию клубней в условиях, приближенных к марсианским.

Селекционеры брали грунт из пустыни Пампа де ла Хойя, отличающийся повышенным содержанием солей. Гравитационный маневр, который предпринимают коллеги Марка Уотни, чтобы развернуться в сторону Марса и разогнаться, не придуман специально для этой истории. Он применяется в космонавтике уже давно, в том числе и во время злополучной миссии «Аполлон-13», когда терпящая бедствие ракета разворачивалась для полета к Земле, используя гравитацию Луны. Одним из предметов, которые спасают жизнь главному герою фильма, оказывается обыкновенный скотч. По словам астронома Владимира Сурдина, скотч является обязательной частью снаряжения космонавтов, так повелось со времен экспедиции на Луну, когда американские астронавты смогли починить сломавшееся крыло лунохода скотчем. Кстати, рулон оказался на борту совершенно случайно и не был предусмотрен протоколом.

Мифы На Марсе действительно бывают пылевые бури, и очень масштабные, так что вся обозримая поверхность планеты затягивается сплошной пеленой. Но их сила очень мала из-за разреженной атмосферы , так что марсианская буря не может причинить сколько-нибудь серьезных разрушений постройкам.

Куда делись пульсары? Неожиданная гипотеза была разработана в попытке ответить на вопрос: почему, несмотря на тщательные поиски, ученым так и не удалось обнаружить в центральном секторе нашей галактики Млечный путь ни одного пульсара? Пульсарами называют один из типов нейтронных звезд, образующихся после сверхновых. Его отличает очень быстрое вращение: некоторые делают оборот вокруг оси за доли секунды. Из-за этого излучение от таких звезд исходит, как свет от маяка, и наблюдателями на Земле считывается как мерцание отдельных импульсов. Несмотря на то, что пульсаров нет в радиусе примерно 25 парсеков от ядра галактики, до недавнего времени это ученых не слишком смущало: многие просто считали, что пока нет техники, способной их обнаружить, ведь как и все нейтронные звезды, пульсары по размерам сравнимы с небольшим городом на Земле, хоть и обладают массой больше, чем у Солнца.

По одной из уже существующих версий, в космосе есть «неработающие» пульсары, которые лишились возможности вращаться.

Именно такие размеры имеет и данная черная дыра, что и послужило основанием для её названия. Гаргантюа находится в нашей галактике, в центре Млечного Пути, и её масса составляет около 17 миллиардов масс Солнца. Её свойства стали известны благодаря множеству исследований, одним из которых является исследование гравитационных волн, которые были обнаружены в 2015 году. Эти волны были образованы из-за слияния двух черных дыр, одна из которых оказалась Гаргантюа. В массовой культуре черная дыра Гаргантюа стала символом невероятной притягательной силы, магической силы, которая может забрасывать людей в другие миры. Полученный снимок представляет изображение аккреционного диска, явления, происходящего в непосредственной близи от еще видимых границ материи, притягиваемой черной дырой, у горизонта событий.

Студией Double Negative была создана программа для генерирования высококачественных изображений на основании точных расчетов Кипа Торна. Так и были созданы те потрясающие кадры, которые теперь можно увидеть в фильме.

Гаргантюа интерстеллар [82 фото]

вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца. огромной чёрной дырой. Черная дыра Гаргантюа — это огромный астрономический объект, который находится в центре галактики M87 в созвездии Девы. Черная дыра в центре галактики M87, очерченная излучением раскаленного газа, который, вращаясь вокруг нее, образует кольцо. Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века! 8 апреля 2022 в 13:54. $ASTR-US. это настоящая черная дыра, сверхмассивная чёрная дыра Гаргантюа.

Гаргантюа черная дыра обои - 65 фото

Новости» Новости» Технологий " Изображение Межзвездной Черной дыры Гаргантюа оказалось не слишком Далеко от Реальности. 3-МИНУТНОЕ ЧТЕНИЕ. По Торну, Гаргантюа скорее похож на ещё более массивную сверхмассивную чёрную дыру, которая предположительно находится в ядре туманности Андромеды и которая оценивается в 100 миллионов солнечных масс (1.1–2.3 ; 108 M. Черная дыра Интерстеллар 4k. Названия нейтронной звезды и черной дыры, скорее всего, взяты из «Жизни Гаргантюа и Пантагрюэля», пентологии романов, написанных в XVI веке Франсуа Рабле и повествующих о приключениях двух гигантов: Гаргантюа и его сына Пантагрюэля. Почему в случае невращающейся черной дыры (рис. 8.4) кажется, что вторичные изображения звезд возникают из-за тени черной дыры, огибают ее и возвращаются обратно к тени, а не циркулируют вдоль замкнутых кривых, как в случае Гаргантюа (рис. 8.5)? Черная дыра, которая была названа Гаргантюа, является одной из самых массивных известных нам черных дыр во Вселенной. Её название происходит от персонажа французской литературы — Гаргантюа, которого описывали как огромного человека с необычайно большими размерами.

Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе

Червоточины пока не были обнаружены, но многие исследователи предполагают, что такие червоточины вполне могут существовать, опираясь на теорию относительности. Правда, никому до сих пор неизвестно, сможет ли космический корабль с экипажем внутри выйти из кротовой норы невредимым. Черная дыра и время Дальше можно обсуждать то, что происходит, когда героям удалось преодолеть большое расстояние и подобраться к черной дыре. Здесь уже затрагивается искривление времени. Думать о времени как о чем-то простом и равномерном является такой же ошибкой, как думать, что Земля плоская. Развитие науки позволило разрушить наше представление о времени. Когда главные герои попали на планету Миллер, то получили сведения о том, что час, проведенный там, равен семи годам на Земле. Это связано с тем, что планета вращается вокруг черной дыры на близком расстоянии от нее.

В фильме подробно объясняется влияние гравитации на время. Гаргантюа — черная дыра огромной массы, а объекты с большой массой способны создать сильную гравитацию. Гравитация искривляет пространство и время. Чем сильнее гравитационное поле, тем больше будет изменяться пространство и время, а значит, время будет идти медленнее. Искривление времени также является правдой. В реальном мире время идет быстрее в горах, хоть разница и небольшая.

Подобная форма «каннибализма», как считают Эйзенхардт и его коллеги, была характерна и для других «хот-догов». Это может объяснять, почему ученые часто находят в ранней Вселенной необычно яркие галактики с невозможно крупными черными дырами, и почему сами хот-доги скрываются от внешнего мира под толстым коконом из пыли и газа, состоящим, по всей видимости, из останков их прошлых трапез. А что думаете Вы?! Email адрес не будет опубликован. Сохранить Имя и почту, что бы не вводить их снова.

Прибор заметил яркую вспышку света в галактике, расположенной на расстоянии 500 млн световых лет от Земли в созвездии Треугольника. После первого наблюдения вспышки XRT продолжал наблюдать галактику и зафиксировал ещё девять дополнительных вспышек, которые происходили каждые несколько недель. Учёные считают, что Swift J0230 — хороший кандидат на повторяющееся событие разрушения приливами, в котором звезда, аналогичная нашему Солнцу, многократно подвергается воздействию чёрной дыры с массой почти в 200 000 раз больше массы Солнца. Команда исследователей оценивает, что звезда теряет около трёх масс Земли газа и материала каждый раз, когда она приближается к чёрной дыре. Когда XRT наблюдает определённую часть неба, то данные, собранные прибором, сразу же отправляются на Землю.

Конечно же, более ранние научные исследования на этот счет говорили о том, что любой объект, например, космический корабль, или живое существо, которые решат использовать черную дыру в качестве портала, очень быстро об этом пожалеют. Бесконечная гравитационная сингулярность и высокие температуры приведут к тому что объект будет растягиваться и сжиматься до тех пор, пока полностью не испарится. Путешествие сквозь черную дыру Научная команда профессора физики Гаурава Ханна из Университета штата Массачусетс в Дортмунде США и их коллеги из Колледжа Гвиннетт в штате Джорджия смогли показать, что не все черные дыры одинаковы. Объясняется это тем, что у больших и вращающихся черных дыр сингулярность действует несколько иначе, «нежнее» или «слабее» и поэтому имеется вероятность того, что она не будет повреждать те объекты, которые будут с ней взаимодействовать. На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей. Попробуйте сами и увидите, что огонь вас не будет обжигать. Гаурав Ханн и его коллега Лиор Бурко занимаются вопросами физики черных дыр более двадцати лет. В 2016 году Кэролайн Маллари, одна из аспиранток Ханна, вдохновленная блокбастером режиссера Кристофера Нолана «Интерстеллар» решила научным методом проверить, действительно ли главный герой фильма смог бы выжить при падении в гигантскую вращающуюся черную дыру Гаргантюа, обладающую массой в 100 миллионов раз превосходящую солнечную. Сам фильм, напомним, был поставлен по книге нобелевского лауреата по астрофизике Кипа Торна. Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа.

Гаргантюа черная дыра обои - 65 фото

Нейгебауэр составили инфракрасную карту центра Галактики для длин волн 2,2 и 10 мкм с разрешением 2,5", на которой выделили 20 обособленных источников, получивших название IRS1—IRS20 [26]. Четыре из них 1, 2, 3, 5 позиционно совпали с известными по радионаблюдениям компонентами радиоисточника Sgr A. Природа выделенных источников долгое время обсуждалась. Один из них IRS 7 идентифицирован как молодая звезда-сверхгигант, несколько других — как молодые гиганты. IRS 16 оказался очень плотным 106 масс Солнца на кубический парсек скоплением звёзд-гигантов и карликов. Остальные источники предположительно являлись компактными облаками H II и планетарными туманностями, в некоторых из которых присутствовали звёздные компоненты [27]. Последующее десятилетие характеризовалось постепенным ростом разрешающей способности оптических приборов и выявлением всё более подробной структуры инфракрасных источников. К 1985 году стало ясно, что наиболее вероятным местом нахождения центральной чёрной дыры является источник, обозначенный как IRS 16.

Были обнаружены также два мощных потока ионизированного газа, один из которых вращался по круговой орбите на расстоянии 1,7 пк от центра Галактики, а второй — по параболической на расстоянии 0,5 пк. Камера диапазона 1—2,5 мкм обеспечивала разрешение 50 угловых мкс [ источник не указан 2053 дня ] на 1 пиксель матрицы. Кроме того, был установлен 3D-спектрометр на 2,2-метровом телескопе той же обсерватории. С появлением инфракрасных детекторов высокого разрешения стало возможным наблюдать в центральных областях галактики отдельные звёзды. Изучение их спектральных характеристик показало, что большинство из них относятся к молодым звёздам возрастом несколько миллионов лет. Вопреки ранее принятым взглядам, было установлено, что в окрестностях сверхмассивной чёрной дыры активно идёт процесс звездообразования. Полагают, что источником газа для этого процесса являются два плоских аккреционных газовых кольца, обнаруженных в центре Галактики в 1980-х годах.

Однако внутренний диаметр этих колец слишком велик, чтобы объяснить процесс звездообразования в непосредственной близости от чёрной дыры. Звёзды, находящиеся в радиусе 1" от чёрной дыры так называемые «S-звёзды» имеют случайное направление орбитальных моментов, что противоречит аккреционному сценарию их возникновения.

При изучении результатов наблюдений ученые прибегли к помощи суперкомпьютеров в обсерватории Хайстак Массачусетский технологический институт, США и Институте радиоастрономии имени Макса Планка в Бонне Германия. Между тем в состав EHT в 2018 году добавился еще один телескоп GLT, миллиметровый телескоп в Гренландии, который серьезно увеличит базу интерферометра. Что хотели узнать астрофизики Предполагалось, что совместная работа телескопов поможет разглядеть тень черной дыры - это и удалось достичь. Измерения позволили протестировать общую теорию относительности и получить очередное доказательство существования черных дыр. Черные дыры прежде оставались гипотетическими объектами, хотя у астрономов и не оставалось сомнений в том, что они существуют. Ранее было получено большое количество косвенных свидетельств их существования, начиная от наблюдений тесных двойных систем и до гравитационных волн.

Первое научно обоснованное изображение черной дыры получил французский астрофизик Жан-Пьер Люмине в 1979 году. Однако непосредственных наблюдений черных дыр до сих пор не существовало - черные дыры невелики, но при этом сильно удалены. Кроме этого, детальные наблюдения помогут проверить экзотические гипотезы, например гипотезу о кротовых норах - гипотетическую особенность пространства-времени, представляющую собой как бы тоннель в пространстве.

Другими словами, аппарат и его экипаж могут пережить такое путешествие Важным моментом здесь является то, что физические эффекты, оказываемые на корабль, не будут растут бесконечно. Они ограничены определенным пределом, даже несмотря на то, что будет казаться, что нагрузка на корабль будет расти бесконечно с приближением к черной дыре. Конечно же, в исследовании Маллари обсудить можно в нашем Telegram-чате есть несколько важных упущений и допущений, с учетом которых в ином случае конечный результат может быть совсем другим. Например, в представленной модели предполагается, что черная дыра полностью изолирована от воздействия внешних факторов, таких как постоянные гравитационные и иные возмущения, вызываемые, например, расположенной рядом звездой или же попадающим в черную дыру внешним излучением. Следует понимать, что обычно вокруг настоящих черных дыр скапливается очень много различного материала: пыль, газ, радиация и так далее. Исходя из всего этого, логичным продолжением работы Маллари будет повторное исследование данного контекста, но уже с учетом условий более реалистичных астрофизических черных дыр. Использование методов компьютерного моделирования для прогнозирования эффектов воздействия на объекты, находящиеся рядом с черными дырами — вполне распространенная практика. Реальной возможности проверить свои теории у современной науки пока нет, поэтому ученым приходится активно полагаться на гипотезы и симуляции, которые помогают понять базовые вещи, делать прогнозы и новые открытия.

Научно-фантастическая драма «Интерстеллар» создана режиссером Кристофером Ноланом в тесном сотрудничестве с видным американским астрофизиком, впоследствии лауреатом Нобелевской премии Кипом Торном. Сейчас ее называют одним из самых научно достоверных фантастических фильмов в истории кинематографа. Но, поскольку это все-таки художественное произведение, оно содержит некоторые допущения, двигающие сюжет. По словам Кипа Торна: «Часть из показанного в фильме — чистая правда, другая часть основана на научных предположениях, а еще часть — чистой воды спекуляция». Правда Поскольку действие космической части картины плотно связано с черными дырами, требовалось как-то визуализировать их на экране. Кип Торн взялся за эту задачу вместе со своими учениками, потом подключились мастера компьютерных спецэффектов, и результатом их работы стала восхитительная не только с кинематографической, но и с научной точки зрения черная дыра Гаргантюа. Черная дыра, как известно, поглощает свет и не отдает его. По идее, выглядит это не очень интересно, но хитроумный Торн с коллегами сообразил, что ее должны окружать притягиваемые газ и вещество разрушающихся звезд. Всё это кружится вокруг дыры по сложной траектории, которую вполне можно просчитать. Что они и сделали. Шесть лет спустя астрофизики из проекта EHT получили первое изображение реальной черной дыры в центре нашей галактики. И вот сюрприз: она действительно похожа на визуализацию из «Интерстеллара». На планете Миллер герои сталкиваются с приливной волной высотой в километр, и это не художественное преувеличение. Дело в том, что планета вращается вокруг гигантской черной дыры Гаргантюа и испытывает на себе гравитационные эффекты от такого соседства. Мифы По сюжету путешественники для перемещения в другую галактику использовали червоточину или «кротовую нору» , один конец которой обнаружился в окрестностях Сатурна. По сути, это такой скоростной тоннель между отдаленными точками пространства, который на данный момент существует только в виде математических расчетов. При этом сам Кип Торн считает, что самостоятельное зарождение их в пространстве и времени маловероятно, и в сценарии «Интерстеллара» прибегли к помощи некой сверхразвитой цивилизации из пятого измерения, которая и создала червоточину. Под конец путешествия главный герой падает в черную дыру, получает данные, необходимые ученым для спасения человечества, и передает их на Землю очень изощренным способом. По идее, уже у границы черной дыры Купер должен был превратиться в спагеттину из-за действия приливных сил, но, по словам Кипа Торна, для сверхмассивных черных дыр, вращающихся с огромной скоростью, удалось рассчитать более оптимистичные сценарии — «мягкую сингулярность». В этих условиях герой тоже, скорее всего, погибнет, но в научно-фантастическом фильме, даже очень строго выстроенном, имеет шанс выжить. Марсианин В не столь отдаленном будущем земляне отправляют на Марс экспедицию Ares III, которая должна выполнить некоторые задания по сбору научных данных. Ученые уже несколько дней работают на поверхности планеты, когда на лагерь надвигается жестокая песчаная буря. Команда вынуждена срочно эвакуироваться, но во время посадки на взлетный модуль теряет биолога Марка Уотни. Сочтя коллегу погибшим, опечаленные астронавты покидают планету и отправляются домой. Раненый Марк остается один в чужих и абсолютно неподходящих для человека условиях. К счастью, он обладает природным оптимизмом и большими знаниями. Новоявленный Робинзон рассчитывает выжить и дождаться прибытия следующей экспедиции. Научно-фантастическая драма с элементами комедии «Марсианин» была поставлена по одноименному произведению Энди Вейера, программиста по образованию, который увлекается изучением физики, орбитальной механики и космонавтики. Его роман отличается дотошным описанием всех ухищрений, к которым пришлось прибегнуть герою для выживания в экстремальных условиях. Соответственно, когда режиссер Ридли Скотт взялся за экранизацию, к съемочному процессу было привлечено много консультантов, в том числе из NASA. Фильм задумывался как гимн науке и блестяще выполнил эту миссию, даже несмотря на то что после премьеры собрал богатый урожай научной критики. Правда Чтобы обеспечить себя хотя бы скудным, но пропитанием, Марк решает посадить в марсианском грунте картофель, использовав в качестве удобрения человеческие экскременты. В 2015 году этот момент вызвал много критики, считалось, что грунт красной планеты слишком токсичен для растения.

Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе

Космический Гаргантюа: обнаружена самая «прожорливая» черная дыра Астрономы обнаружили черную дыру — чемпиона по «обжорству». Данная галактика сейчас находится в стадии активного звездообразования, в ней каждый год рождаются десятки новых светил. А в ее центре находится относительно небольшая сверхмассивная черная дыра. Астрономов удивила необычайно высокая яркость галактики, характерная для активной фазы поглощения материи черной дырой.

Однажды он узнает о том, что есть секретное подразделение NASA, которое готовит важную миссию — поиски подходящей для переселения людей планеты. Купер оставляет семью и соглашается на опасное космическое путешествие, скорее всего, в один конец. Научно-фантастическая драма «Интерстеллар» создана режиссером Кристофером Ноланом в тесном сотрудничестве с видным американским астрофизиком, впоследствии лауреатом Нобелевской премии Кипом Торном. Сейчас ее называют одним из самых научно достоверных фантастических фильмов в истории кинематографа. Но, поскольку это все-таки художественное произведение, оно содержит некоторые допущения, двигающие сюжет. По словам Кипа Торна: «Часть из показанного в фильме — чистая правда, другая часть основана на научных предположениях, а еще часть — чистой воды спекуляция». Правда Поскольку действие космической части картины плотно связано с черными дырами, требовалось как-то визуализировать их на экране.

Кип Торн взялся за эту задачу вместе со своими учениками, потом подключились мастера компьютерных спецэффектов, и результатом их работы стала восхитительная не только с кинематографической, но и с научной точки зрения черная дыра Гаргантюа. Черная дыра, как известно, поглощает свет и не отдает его. По идее, выглядит это не очень интересно, но хитроумный Торн с коллегами сообразил, что ее должны окружать притягиваемые газ и вещество разрушающихся звезд. Всё это кружится вокруг дыры по сложной траектории, которую вполне можно просчитать. Что они и сделали. Шесть лет спустя астрофизики из проекта EHT получили первое изображение реальной черной дыры в центре нашей галактики. И вот сюрприз: она действительно похожа на визуализацию из «Интерстеллара». На планете Миллер герои сталкиваются с приливной волной высотой в километр, и это не художественное преувеличение. Дело в том, что планета вращается вокруг гигантской черной дыры Гаргантюа и испытывает на себе гравитационные эффекты от такого соседства. Мифы По сюжету путешественники для перемещения в другую галактику использовали червоточину или «кротовую нору» , один конец которой обнаружился в окрестностях Сатурна.

По сути, это такой скоростной тоннель между отдаленными точками пространства, который на данный момент существует только в виде математических расчетов. При этом сам Кип Торн считает, что самостоятельное зарождение их в пространстве и времени маловероятно, и в сценарии «Интерстеллара» прибегли к помощи некой сверхразвитой цивилизации из пятого измерения, которая и создала червоточину. Под конец путешествия главный герой падает в черную дыру, получает данные, необходимые ученым для спасения человечества, и передает их на Землю очень изощренным способом. По идее, уже у границы черной дыры Купер должен был превратиться в спагеттину из-за действия приливных сил, но, по словам Кипа Торна, для сверхмассивных черных дыр, вращающихся с огромной скоростью, удалось рассчитать более оптимистичные сценарии — «мягкую сингулярность». В этих условиях герой тоже, скорее всего, погибнет, но в научно-фантастическом фильме, даже очень строго выстроенном, имеет шанс выжить. Марсианин В не столь отдаленном будущем земляне отправляют на Марс экспедицию Ares III, которая должна выполнить некоторые задания по сбору научных данных. Ученые уже несколько дней работают на поверхности планеты, когда на лагерь надвигается жестокая песчаная буря. Команда вынуждена срочно эвакуироваться, но во время посадки на взлетный модуль теряет биолога Марка Уотни. Сочтя коллегу погибшим, опечаленные астронавты покидают планету и отправляются домой. Раненый Марк остается один в чужих и абсолютно неподходящих для человека условиях.

К счастью, он обладает природным оптимизмом и большими знаниями. Новоявленный Робинзон рассчитывает выжить и дождаться прибытия следующей экспедиции. Научно-фантастическая драма с элементами комедии «Марсианин» была поставлена по одноименному произведению Энди Вейера, программиста по образованию, который увлекается изучением физики, орбитальной механики и космонавтики. Его роман отличается дотошным описанием всех ухищрений, к которым пришлось прибегнуть герою для выживания в экстремальных условиях. Соответственно, когда режиссер Ридли Скотт взялся за экранизацию, к съемочному процессу было привлечено много консультантов, в том числе из NASA. Фильм задумывался как гимн науке и блестяще выполнил эту миссию, даже несмотря на то что после премьеры собрал богатый урожай научной критики.

Как рассказали представители Double Negative, изначально они пытались воссоздать черную дыру при помощи тех же моделей, которые используются астрофизиками и космологами. Вместо того чтобы следить за движением отдельных лучей, используя эйнштейновские уравнения, мы начали отслеживать пути и искажение в формах целых пучков лучей.

Как объясняют ученые, вращение черной дыры будет порождать сложные гравитационные возмущения, которые будут особым образом искривлять свет, попадающий в ближайшие окрестности черной дыры.

Однако группа исследователей из Университета штата Массачусетс в Дортмунде США считает, что эта фантазия на самом деле не так уж и далека от реальности. Черные дыры являются, возможно, самыми загадочными объектами во Вселенной. Они — результат гравитационного коллапса сверхмассивных звезд, приводящего к созданию настоящей сингулярности — объекта бесконечной плотности, появившегося вследствие сжатия целой звезды до крошечной точки.

Эти горячие точки бесконечной плотности обладают настолько мощной гравитацией, что способны в буквальном смысле разрывать пространство-время. Согласно предположениям, этот факт открывает возможность использовать эти объекты для гиперпространственных путешествий. Конечно же, более ранние научные исследования на этот счет говорили о том, что любой объект, например, космический корабль, или живое существо, которые решат использовать черную дыру в качестве портала, очень быстро об этом пожалеют. Бесконечная гравитационная сингулярность и высокие температуры приведут к тому что объект будет растягиваться и сжиматься до тех пор, пока полностью не испарится.

Путешествие сквозь черную дыру Научная команда профессора физики Гаурава Ханна из Университета штата Массачусетс в Дортмунде США и их коллеги из Колледжа Гвиннетт в штате Джорджия смогли показать, что не все черные дыры одинаковы. Объясняется это тем, что у больших и вращающихся черных дыр сингулярность действует несколько иначе, «нежнее» или «слабее» и поэтому имеется вероятность того, что она не будет повреждать те объекты, которые будут с ней взаимодействовать.

Почему первое изображение черной дыры не похоже на то, что было в "Интерстеллар"

Что же такое квазар Подобными свойствами обладает сверхмассивная черная дыра, иными словами, квазар. Это ядро галактики, у которого есть сверхмощное гравитационное поле, существующее за счет своей массы миллионы или миллиарды масс Солнца. Принцип формирования сверхмассивных черных дыр пока установить не удалось. Согласно одной версии, причиной такого коллапса служат слишком сжатые газовые облака, газ в которых предельно разряжен, а температура невероятно высока. Вторая версия — это приращение масс различных малых черных дыр, звезд и облаков к единому гравитационному центру. Наша галактика Сверхмассивная черная дыра в центре Млечного Пути не входит в разряд самых мощных. Дело в том, что сама галактика имеет спиралевидную структуру, что, в свою очередь, заставляет всех ее участников находиться в постоянном и достаточно быстром движении. Таким образом, гравитационные силы, которые могли бы быть сосредоточены исключительно в квазаре, как бы рассеиваются, и от края к ядру увеличиваются равномерно. Несложно догадаться, что дела в эллиптических или, скажем, неправильных галактиках, обстоят противоположным образом.

На «окраинах» пространство крайне разряженное, планеты и звезды практически не движутся. А вот в самом квазаре жизнь буквально бьет ключом. Параметры квазара Млечного Пути Используя метод радиоинтерферометрии, исследователи смогли рассчитать массу сверхмассивной черной дыры, ее радиус и гравитационную силу. Как было отмечено выше, наш квазар тусклый, супермощным его назвать трудно, но даже сами астрономы не ожидали, что истинные результаты будут такими. Более того, по очевидным данным, эта черная дыра даже не поглощает материю, а объекты, которые находятся в ее окружении, не нагреваются. Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена. Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие звездные скопления. Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус.

Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей. Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы. Гравитационный радиус этого квазара в 10 раз меньше основного диаметра.

Представленная черная дыра выглядит почти так, как и ожидали ученые, полагаясь на теорию относительности. Слева — изображение черной дыры в центре M87.

В центре — изображение, полученное путем симуляции, справа — размытое изображение симуляции для соответствия разрешению телескопа. Однако обычные люди, складывающие впечатления о черных дырах на основе фильмов, могли ожидать что-то подобное кадру из "Интерстеллар": Однако в действительности разница не столь большая, как кажется. Изображение, представленное в "Интерстеллар", почти корректно. Главное отличие в том, что вокруг центра вымышленной черной дыры находится полоса материи, которой нет на M87. Причина в том, что мы наблюдаем за объектом со стороны одного из полюсов, а не с экваториальной части.

Диск материи вокруг M87 просто скрыт с нашей позиции. Аналогия элементарна — если смотреть на Сатурн со стороны полюса, то диск не будет пересекать экваториальную часть.

Стивен Хокинг, по его собственному признанию, решил опровергнуть Бекенштейна его же оружием - термодинамикой. Излучение Хокинга. Коль скоро 2 и 3 наделены физическим смыслом, первый закон термодинамики диктует, что черная дыра должна иметь температуру T.

Но позвольте, какая может быть у нее температура?! Ведь в таком случае дыра должна излучать, что противоречит ее главному свойству! Действительно, классическая черная дыра температуры, отличной от абсолютного нуля, иметь не может. Однако если предположить, что микросостояния черной дыры подчиняются законам квантовой механики , что, вообще говоря, практически очевидно, то противоречие легко устранимо. Согласно квантовой механике, а точнее, ее обобщению - квантовой теории поля, может происходить спонтанное рождение частиц из вакуума.

При отсутствии внешних полей пара частица-античастица, рожденная таким образом, аннигилирует обратно в вакуумное состояние. Однако если поблизости есть черная дыра, ее поле притянет ближайшую частицу. Тогда, по закону сохранения энергии-импульса, другая частица уйдет на бoльшее расстояние от черной дыры, унося с собой "приданое" - часть энергии-массы коллапсара иногда говорят, что "черная дыра потратила часть энергии на рождение пары", что не совсем корректно, ибо выживает не вся пара, а только одна частица. Как бы то ни было, в результате удаленный наблюдатель обнаружит поток всевозможных частиц, излучаемых черной дырой, которая будет расходовать свою массу на рождение пар, пока полностью не испарится, превратившись в облако излучения 2. Температура черной дыры обратно пропорциональна ее массе, таким образом, более массивные испаряются медленнее, ибо время их жизни пропорционально кубу массы в четырехмерном пространстве-времени.

Черные дыры и сингулярности В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты. Увы, если бы фантасты знали о современной физике чуть больше, они бы не были столь несправедливы к черным дырам. Дело в том, что коллапсары фактически защищают Вселенную от гораздо более грозных монстров... Сингулярностью называется точка пространства, в которой его кривизна неограниченно стремится к бесконечности, - пространство-время как бы рвется в этой точке. Современная теория говорит о существовании сингулярностей как о неизбежном факте 3 - с математической точки зрения, решения уравнений, описывающие сингулярности, также равноправны, как и все прочие решения, описывающие более привычные объекты Вселенной, которые мы наблюдаем.

Есть тут, однако, очень серьезная проблема. Дело в том, что для описания физических явлений необходимо не только иметь соответствующие уравнения, но нужно также задать граничные и начальные условия. Так вот, в сингулярных точках эти самые условия задать нельзя в принципе , что делает предсказательное описание последующей динамики невозможным. А теперь представим, что на раннем этапе существования Вселенной когда она была достаточно малой и плотной образуется множество сингулярностей. Тогда в областях, которые находятся внутри световых конусов этих сингулярностей иными словами, причинно-зависимых от них никакое детерминистское описание невозможно.

Мы имеем абсолютный и бесструктурный хаос, без намека на какую-либо причинность. Далее, эти области хаоса расширяются со временем по мере эволюции Вселенной. В результате к настоящему времени подавляющая часть Вселенной была бы совершенно стохастичной случайной и ни о каких "законах природы" не могло бы быть и речи. Не говоря уже о блондинках, планетах и прочих неоднородностях вроде нас с вами. К счастью, ситуацию спасают наши ненасытные обжоры.

Математическая структура уравнений фундаментальной теории и их решений указывает на то, что в реальных ситуациях пространственные сингулярности должны появляться не сами по себе, а исключительно внутри черных дыр. Как тут не вспомнить мифологических титанов, пытавшихся воцарить Хаос на Земле, но низвергнутых Зевсом и Ко в Тартар и благополучно заключенных там навеки… Таким образом, черные дыры отделяют сингулярности от остальной Вселенной и не позволяют им влиять на ее причинно-следственные связи. Этот принцип запрета существования "голых" англ. Пенроузом в 1969 году, получил название гипотезы космической цензуры. Как это часто бывает с фундаментальными принципами, полностью он не доказан, но принципиальных нарушений пока замечено не было - Космический цензор на пенсию пока не собирается.

Стало быть, фундаментальная квантовая теория с учетом ОТО также принадлежит к этому типу? Так какая же из формул верна: 4 , базирующаяся на ОТО и свойствах черных дыр в квазиклассическом приближении, или 5 , основанная на экстраполяции обычной квантовой теории поля до планковских масштабов? В настоящее время имеются весьма сильные аргументы в пользу того, что "мертва" скорее формула 5 , чем 4. Это, в свою очередь, может означать, что подлинно фундаментальная теория материи не просто очередная модификация квантовой теории поля, сформулированной "по объему", а некая теория, "живущая" на определенной поверхности, ограничивающей этот объем. Гипотеза получила название голографического принципа , по аналогии с оптической голограммой, которая, будучи плоской, тем не менее дает объемное изображение.

Принцип сразу же вызвал большой интерес, ибо теория "на поверхности" - это нечто принципиально новое, вдобавок сулящее упрощение математического описания: ввиду понижения пространственной размерности на единицу, поверхности имеют меньшее число геометрических степеней свободы. Первое дает рецепт вычисления статистической энтропии 4 для общего случая материального тела, как определенной величины, вычисляемой на светоподобных мировых поверхностях, ортогональных поверхности тела да простит меня неискушенный читатель за эту фразу. Общая идея состоит в следующем. Что принять за меру энтропии в искривленном пространстве-времени, то есть как ее посчитать правильно? Например, в случае распределения шара по ящикам см.

Но в четырехмерном пространстве-времени объем чего бы то ни было величина не абсолютная помните лоренцево сокращение длин? Ну а понятие "ящика", сами понимаете, несколько выходит за рамки элементарных понятий фундаментальной науки. В общем, необходимо определить меру энтропии через элементарные понятия дифференциальной геометрии, которые были бы ковариантными , то есть значения которых менялись бы в зависимости от положения наблюдателя четко определенным образом.

И вы приходите к выводу, что эта черная дыра с массой 10 Mслн едва ли вращается вообще — ее момент количества движения близок к нулю. Зная массу и момент количества движения, можно теперь, пользуясь формулами ОТО, рассчитать все свойства, которыми должна обладать черная дыра. Наиболее интересны свойства ее поверхности, или горизонта — границы, из-за которой все, что падает в дыру, уже не может вернуться; границы, из-за которой не выбраться звездолету и даже любому виду излучения: радиоволнам, свету, рентгеновским или гамма-лучам.

Поскольку эта дыра не вращается, ее горизонт имеет форму сферы, длина большой окружности которой при массе 10 Mслн составляет 185 км, что равно, например, периметру Лос-Анджелеса. Эта величина ничтожна по сравнению с длиной вашей орбиты 1 млн км. И тем не менее в столь крошечный объем втиснута масса вдесятеро больше солнечной! Но насколько позволяют судить ваши наблюдения, она сотворена из вакуума — пустоты. Снаружи от горизонта вещества нет вовсе, если не считать атомов водорода, падающих в дыру из межзвездного пространства, и вашего корабля. И так как они никогда больше не появятся и не передадут никакой информации наружу, вы можете полагать в своих дальнейших расчетах, что они полностью исчезли из нашей Вселенной.

Единственное, что после них осталось,— сильное гравитационное притяжение, которое влияет на вашу орбиту так же, как и до коллапса, и которое на сфере с экватором длиной 185 км становится столь огромным, что преодолевает любое сопротивление и, тем самым, создает горизонт. Однако вас уже предупредили, что не следует доверять подобным вычислениям по двум причинам. Во-первых, чудовищное гравитационное поле черной дыры полностью искажает геометрию пространства возле нее: у горизонта диаметр круга может быть гораздо больше, чем отношение длины окружности к числу я. Во-вторых, понятие диаметра имеет смысл лишь тогда, когда вы его можете измерить. Но чтобы измерить диаметр горизонта черной дыры, вам придется проникнуть внутрь него, а очутившись там, вы никогда не сможете вернуться в нашу Вселенную. Вам не удастся даже передать результаты своих измерений на Землю — сигналы не выйдут за горизонт из-за неумолимого тяготения.

Но тут же вы вспоминаете, что, хотя снаружи черная дыра чрезвычайно проста, о ее внутренности этого сказать нельзя. Хотя по массе и моменту количества движения черной дыры вы в состоянии вычислить все ее свойства снаружи, вы не можете ничего узнать о ее внутренности. Она может иметь неупорядоченную структуру и быть сильно несимметричной. Все это будет зависеть от деталей коллапса, в результате которого образовалась черная дыра, а также от особенностей последующего втягивания межзвездного водорода. Так что диаметр дыры просто нельзя рассчитать на основе той убогой информации, которая имеется в вашем распоряжении. Получив эти результаты, вы можете исследовать окрестности горизонта черной дыры.

Не желая рисковать человеческой жизнью, вы отправляете десятисантиметровый робот по имени R3D3 со встроенным передатчиком, который должен передать результаты своих исследований на корабль. Робот получает довольно простое задание: с помощью ракетного двигателя он должен сойти с круговой орбиты вашего звездолета и начать падать к черной дыре. Падая, R3D3 будет передавать на корабль информацию о состоянии своих электронных систем и о пройденном расстоянии. Для этого может быть использован ярко-зеленый луч лазера. Вы рассчитываете принять лазерный сигнал, расшифровать его для определения состояния аппаратуры и пройденного расстояния, а также измерить цвет длину волны излучения. Вы знаете, что, хотя лазер все время испускает зеленый луч, вы будете видеть его все более красным по мере приближения робота к горизонту черной дыры.

Отчасти излучение «покраснеет» за счет того, что ему придется затратить энергию на преодоление сильного гравитационного поля черной дыры, и отчасти — из-за доплеровского смещения, связанного с удалением источника излучения от вас. Измеряя «покраснение» лазерного излучения, вы сможете рассчитать скорость падения робота. Итак, эксперимент начинается. R3D3 сходит с круговой орбиты и падает по радиальной траектории. Как только он начинает падать, вы пускаете часы, по которым фиксируется время прихода лазерных импульсов. По истечении 10 с вы получаете от него сообщение, что все системы функционируют нормально и он уже опустился на 2600 км.

Здесь и далее прим. Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт — на расстоянии 8000 км и приближается со скоростью 15 тыс. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость — 30 тыс.

А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено — лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом. По мере того как возбуждение спадает и вы подавляете налет сожаления по поводу участи робота, ваше внимание вновь обращается к записанным данным. В них зафиксированы подробности изменения окраски лазерного излучения. Вы знаете, что свет представляет собой колебания электромагнитного поля и что каждый цвет характеризуется своей собственной длиной волны.

Там, в записях — история этого удлинения. Из них следует, что пока R3D3 падал, длина волны принимаемого вами излучения сначала менялась очень медленно, а затем все быстрее и быстрее. Следует предположить, однако, что длина волны продолжала все так же удваиваться и после этого, так что после огромного числа удвоений длина волны стала бесконечной и возле горизонта все еще испускались чрезвычайно слабые и длинноволновые сигналы. Означает ли это, что R3D3 так и не пересек горизонт и никогда не сможет сделать этого? Вовсе нет. Эти последние сигналы с многократно удваивавшейся длиной волны будут бесконечно долго «выбираться» из «тисков» гравитационного поля черной дыры.

Но слабые сигналы от него будут продолжать приходить, поскольку время их пребывания в пути оказалось бесконечно велико. Они — следы далекого прошлого. Подчеркнем, что реализовать такую систему отсчета на самом горизонте и внутри него невозможно. Поэтому никаких нарушений принципа причинности, конечно, не происходит. После многочасового изучения данных, полученных от робота, и продолжительного сна, необходимого для восстановления сил, вы приступаете к следующему этапу исследований. На этот раз вы решаете самостоятельно обследовать окрестности горизонта событий, правда, рассчитываете сделать это с большей предосторожностью, чем ваш посланник: вместо свободного падения к горизонту, вы собираетесь снижаться постепенно.

Попрощавшись с командой, вы влезаете в спускаемый аппарат и покидаете корабль, оставаясь сначала на той же круговой орбите. Затем, включая ракетный двигатель, слегка тормозите, чтобы замедлить свое орбитальное движение. При этом вы начинаете по спирали приближаться к горизонту, переходя с одной круговой орбиты на другую. Ваша цель — выйти на круговую орбиту с периметром, слегка превышающим длину горизонта. Поскольку вы движетесь по спирали, длина вашей орбиты постепенно сокращается: от 1 млн км до 500 тыс. Находясь в состоянии невесомости, вы подвешены в своем аппарате, предположим, ногами — к черной дыре, а головой — к орбите вашего корабля и звездам.

Но постепенно вы начинаете ощущать, что кто-то тянет вас за ноги вниз и вверх — за голову. Вы соображаете, что причина — притяжение черной дыры: ноги ближе к дыре, чем голова, поэтому они притягиваются сильнее. То же самое справедливо, конечно, и на Земле, но разница в притяжении ног и головы там ничтожна — меньше 10—6, так что никто этого не замечает. Двигаясь же по орбите длиной 80 тыс. Несколько озадаченный вы продолжаете движение по закручивающейся спирали, но удивление быстро сменяется беспокойством: по мере уменьшения размеров орбиты, силы, растягивающие вас, будут нарастать все стремительнее. При длине орбиты 64 тыс.

Скрипя зубами от натуги, вы продолжаете движение по спирали. При длине орбиты 25 тыс. Больше вы не в состоянии выдержать в вертикальном положении. Пытаетесь решить эту проблему, свернувшись калачиком и подтянув ноги к голове, уменьшив тем самым разность сил. Но они уже настолько велики, что не дадут вам согнуться — снова вытянут вертикально вдоль радиального по отношению к черной дыре направления. Что бы вы ни предпринимали, ничто не поможет.

И если движение по спирали будет продолжаться, ваше тело не выдержит — его разорвет на части. Итак, достичь окрестности горизонта нет никакой надежды... Разбитый, преодолевая чудовищную боль, вы прекращаете свой спуск и переводите аппарат сначала на круговую орбиту, а затем начинаете осторожно и медленно двигаться по расширяющейся спирали, переходя на круговые орбиты все большего размера, пока не доберетесь до звездолета. В изнеможении добравшись до капитанской рубки, вы изливаете свои беды бортовому компьютеру. Вам рассказывали о растяжении в направлении от головы к ногам в процессе подготовки к полету. Это ведь те же самые силы, что вызывают океанские приливы на Земле».

Но почему же робот R3D3 оказался столь стойким к действию приливных сил? Вы догадываетесь, что это произошло по двум причинам: он был изготовлен из сверхпрочного титанового сплава и имел размеры, значительно меньшие, чем ваши. Его высота, помнится, равнялась 10 см и, стало быть, приливная сила, действующая на него, была, соответственно, гораздо слабее. Но затем вы приходите к неутешительному выводу: даже проткнув горизонт, R3D3 должен был продолжать падать в область со все возрастающими приливными силами. Вы вспоминаете, что еще в 1965 г. Пенроуз использовал законы ОТО Эйнштейна для доказательства того, что такая сингулярность «проживает» внутри любой черной дыры, а в 1969 г.

Лившицем, И. Халатниковым и В. Это были «золотые годы» теоретических исследований черных дыр. Но одна ключевая особенность их поведения ускользнула тогда от физиков, они лишь догадывались о ней. И только гораздо позже, в 2013 г.

Тайны черных дыр: 6 занимательных вопросов астрофизикам

Названия нейтронной звезды и черной дыры, скорее всего, взяты из «Жизни Гаргантюа и Пантагрюэля», пентологии романов, написанных в XVI веке Франсуа Рабле и повествующих о приключениях двух гигантов: Гаргантюа и его сына Пантагрюэля. Почему в случае невращающейся черной дыры (рис. 8.4) кажется, что вторичные изображения звезд возникают из-за тени черной дыры, огибают ее и возвращаются обратно к тени, а не циркулируют вдоль замкнутых кривых, как в случае Гаргантюа (рис. 8.5)? Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века!

Похожие новости:

Оцените статью
Добавить комментарий