Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов. Что наиболее важно, кубит достиг времени когерентности в квантовом состоянии, конкурентоспособного с другими современными кубитами. Последние новости о разработке собраны в этой статье. Каждый лишний кубит играет большую роль – ведь он сразу повышает мощность вычислений в два раза.
В России создан первый сверхпроводящий кубит
Начинаем погружаться в основу основ квантовой связи и квантовой информатики, так что сегодня узнаем, что такое кубит, для чего он нужен и в каких направления. Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. Куби́т — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений. — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам. Как и двоичные биты, кубиты лежат в основе вычислений, с одним большим отличием: кубиты, как правило, являются сверхпроводниками электронов или других субатомных частицами.
Как работает квантовый компьютер
- Что такое кубит?
- Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес
- Что такое кубит?
- Кудиты лучше кубитов? Российские учёные доказали превосходство отечественной технологии
- В России представлен 16-кубитный квантовый компьютер
Инвестиции в квантовые компьютеры: на что стоит обратить внимание
Однако многие сомневаются в том, что машины D-Wave можно называть полноценными квантовыми компьютерами, поскольку они способны решать лишь узкий круг вычислительных задач. С этим мнением не согласны в Google. Американская IBM готовится вывести на рынок квантовые компьютеры с вычислительной мощностью 50 кубитов. Произойдет это, как утверждают в компании, уже в ближайшие несколько лет.
С помощью квантовых компьютеров, получивших предварительное название IBM Q, можно будет, в частности, «распутать» сложные молекулярные и химические взаимодействия, что приведет к открытию новых лекарств и материалов, считают в IBM. Большие изменения ждут сферу логистики: будут найдены оптимальные пути для наиболее эффективной доставки товаров. Квантовые компьютеры также позволят найти новые способы моделирования финансовых данных и выделить ключевые глобальные факторы риска, что обезопасит инвестиции.
В сфере искусственного интеллекта и машинного обучения можно будет обрабатывать очень большие объемы данных например, связанные с поиском изображений или видео. Ранее IBM создала квантовый компьютер мощностью 5 кубитов. Практически одновременно с IBM о планах выпустить коммерческий 50-кубитовый квантовый компьютер заявила компания Google.
Причем сроки названы примерно те же — ближайшие 5 лет. Над созданием квантового компьютера поисковик начал работать еще в 2014 году. Успехи конкурентов подстегивают еще одного крупного игрока — компанию Microsoft.
В ноябре прошлого года она объявила о решении удвоить свои усилия в области создания квантового компьютера. В отличие от IBM и Google, компания Билла Гейтса делает ставку на интригующую, но пока недоказанную концепцию топологического квантового вычисления.
Духова , Института физики металлов им. Михеева Екатеринбург , Института физики ионных пучков и исследования материалов Германия и Университета Аалто Финляндия. Российские ученые повысили производительность квантовых процессоров с помощью кудитов Ученые НИТУ МИСиС и Российского квантового центра предложили подход к реализации квантовых алгоритмов с использованием дополнительных уровней квантовой системы, который позволил на порядок повысить итоговое качество выполнения квантовых алгоритмов. Российские ученые знают, как сделать квантовый процессор мощнее По словам ученых, основной способ повышения производительности квантовых процессоров — увеличение числа их кубитов — наименьшей единицы информации в квантовом компьютере. Однако ионы или атомы, которые часто выступают в роли кубитов, имеют больше двух уровней и могут работать не только как кубиты, но и как кудиты, которые являются расширенной версией кубита и могут находиться в трех кутриты , четырех кукварты , пяти куквинты и более состояниях.
Дополнительные состояния позволяют плотнее кодировать данные в физических носителях, что, в свою очередь, дает возможность реализовывать все более сложные и комплексные квантовые алгоритмы. Таким образом возрастает мощность квантового процессора , и операции могут производиться значительно быстрее, пояснили исследователи. По состоянию на апрель 2023 года, большая часть исследований, посвященных квантовым операциям, сосредоточена на кубитах — все операции, которые применяются к квантовой системе, представляются в виде одно- и двухкубитных квантовых вентилей, преобразующих входные состояния кубитов в выходные по определенному закону. Для работы с кудитами важно найти новые подходы с математической точки зрения. Ученые Университета МИСиС и Российского квантового центра рассмотрели один из способов использования куквинтов — 5-уровневых кудитов — и представили модель декомпозиции обобщенного вентиля Тоффоли. В качестве примера рассмотрен квантовый алгоритм Гровера для поиска по неупорядоченной базе данных. Известно, что, используя только этот вентиль, можно построить любую обратимую классическую логическую схему, например, арифметическое устройство или классический процессор.
Такое рассмотрение помогает одновременно и сократить число физических носителей информации, и использовать дополнительный уровень в качестве вспомогательного состояния для упрощения декомпозиции многокубитных вентилей, или как их еще называют — гейтов — сложных логических операций с кубитами. Благодаря этому подходу при реализации квантовых алгоритмов на куквинтах становится возможным сократить число двухчастичных гейтов, то есть задействующих две физические системы», — рассказал заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров. Заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров В качестве раскладываемого многокубитного гейта ученые выбрали часто встречающийся в квантовых алгоритмах многокубитный гейт Тоффоли — обобщенную на n кубитов версию универсального контролируемого обратимого вентиля. Его применение инвертирует состояние n-го кубита, если все остальные n-1 кубитов находятся в состоянии 1. Как отметили исследователи, располагая в каждом куквинте по два кубита и используя пятый уровень в качестве вспомогательного, можно значительно сократить число двухчастичных гейтов в его разложении по сравнению с расположениями на кубитах и таким образом повысить качество выполнения квантовых алгоритмов. Для демонстрации процессов был выбран именно этот алгоритм, так как для его выполнения необходимо неоднократно реализовать многокубитные гейты. Мы сравнили три способа декомпозиции многокубитных вентилей в рамках выполнения данного алгоритма на 2-10 кубитах, когда в качестве носителей информации используются кубиты, кутриты и куквинты, и продемонстрировали, как сокращается число двухчастичных гейтов», — пояснила эксперт научного проекта НИТУ МИСиС, научный сотрудник РКЦ Анастасия Николаева.
Например, для 8-кубитного алгоритма Гровера на кубитах требуется выполнить больше 1000 двухчастичных гейтов, в то время как для его реализации на куквинтах их потребуется всего 88. Полученные учеными результаты применимы к квантовым процессорам , основанным на различных физических платформах, таких как ионы, нейтральные атомы, сверхпроводящие цепи и другие. Статья опубликована в научном журнале Entropy. Баумана одни из первых в мире смогли реализовать двухкубитную операцию, используя сверхпроводящие флаксониевые кубиты — альтернативу популярным трансмонам. Особенность флаксониумов состоит в более продолжительном жизненном цикле и большей точности операций, что дает возможность выполнять более длинные алгоритмы. Как известно, одна из основных проблем разработки универсального квантового вычислителя заключается в кубитах, а именно — из каких квантовых объектов лучше всего делать процессоры для квантовых компьютеров : электронов, фотонов, ионов, сверхпроводников или других кандидатов в «квантовые транзисторы». За последние десять лет сверхпроводниковые кубиты получили огромный толчок в развитии.
При этом самыми коммерчески успешными сверхпроводящими кубитами по состоянию на 2022 год являются трансмоны, которые активно исследуются и используются в квантовых разработках Google , IBM и других мировых лабораторий, рассказали в НИТУ МИСИС. По словам ученых, главная задача кубита — целостно хранить и обрабатывать информацию. Случайный шум и даже просто наблюдение способны привести к потере или изменению данных. Для устойчивой работы сверхпроводниковых кубитов часто необходима чрезвычайно низкая температура окружающей среды — близкая к нулю Кельвин, что в сотни раз холоднее температуры открытого космоса. В ходе испытаний для защиты кубитов от шума исследователи добавили в цепь супериндуктор — сверхпроводниковый элемент с высоким уровнем сопротивления переменному току, который представляет собой цепочку из 40 джозефсоновских контактов — структур из двух сверхпроводников, разделенных тонким слоем диэлектрика. Основной плюс флаксониумов заключается в том, что с ними можно работать на низкой частоте — порядка 600МГц.
Квантовые компьютеры работают принципиально иначе, чем классические. Для решения любых алгоритмических задач они используют квантовые биты — кубиты.
Кубиты могут существовать одновременно в нескольких состояниях, поэтому при проведении вычислений не перебирают последовательно все возможные комбинации, как обычный компьютер, а делают вычисления моментально. В итоге та задача, на выполнение которой у обычного компьютера ушла бы неделя, может выполняться на квантовом компьютере за секунду. В настоящее время усилия ведущих игроков сосредоточены в направлении разработки специализированных квантовых вычислителей для конкретной задачи так делает D-Wave и универсальных квантовых компьютеров для решения разных задач IBM, Google. Первый двухкубитный квантовый компьютер появился в 1998 году. Он работал на так называемом явлении « ядерного магнитного резонанса ». Компьютер использовался в Оксфордском университете, в исследовательском центре IBM и Калифорнийским университетом в Беркли вместе с сотрудниками из Стэнфордского университета и Массачусетского технологического института. В 2018 году IBM предложила сторонним компаниям использовать ее 20-кубитный квантовый компьютер через облако. Google представила 53-кубитный компьютер Sycamore и заявила о достижении квантового превосходства.
Квантовое превосходство подразумевает способность квантовых вычислительных устройств решать те проблемы, которые не могут решить классические компьютеры. По заявлению компании, Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Самому мощному суперкомпьютеру Summit для той же задачи понадобилось бы около 10 тыс. Компания утверждала, что Summit справится с задачей для Sycamore в худшем случае за 2,5 дня, но полученный ответ будет точнее, чем у квантового компьютера. Это позволил предположить теоретический анализ. В России квантовые технологии также привлекают внимание исследователей. Так, в 2010 году для проведения исследовательских работ в этой области был организован Российский квантовый центр. В 2019 году была разработана сначала единая дорожная карта, а после — дорожная карта на каждое отдельное направление: квантовые вычисления, квантовые коммуникации и квантовые сенсоры.
Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», говорит, что создание квантовых процессоров стало одной из основных задач дорожной карты, утвержденной в июле 2020 года.
И тут нам на помощь приходит квантовая запутанность. Ее суть заключается в том, что можно получить пару частиц, которые связаны друг с другом говоря научным языком — если, к примеру, проекция спина одной запутанной частицы отрицательна, то другой обязательно будет положительной. Как это выглядит на пальцах? Допустим, у нас есть две коробки, в которых лежит по бумажке. Мы разносим коробки на любое расстояние, открываем одну из них и видим, что бумажка в ней в горизонтальную полоску. Это автоматически означает, что другая бумажка будет в вертикальную полоску. Но вот проблема в том, что как только мы узнали состояние одной бумажки или частицы , квантовая система рушится — неопределенность исчезает, кубиты превращаются в обычный биты. Поэтому вычисления на квантовых компьютерах по сути одноразовы: мы создаем систему, которая состоит из запутанных частиц где находятся их вторые «половинки» мы знаем. Мы проводим вычисления, и после этого «открываем коробку с бумажкой» — узнаем состояние запутанных частиц, а значит и состояние частиц в квантовом компьютере, а значит и результат вычислений.
Так что для новых вычислений нужно снова создавать кубиты — просто «закрыть коробку с бумажкой» не получится — мы ведь уже знаем, что нарисовано на бумажке. Возникает вопрос — раз квантовый компьютер может моментально подбирать любые пароли — как защитить информацию? Неужели с приходом таких устройств исчезнет конфиденциальность? Конечно же нет. На помощь приходит так называемое квантовое шифрование: оно основано на том, что при попытке «прочесть» квантовое состояние оно разрушается, что делает любой взлом невозможным.
В России создан первый сверхпроводящий кубит
Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. Кубит отличается от бита тем, что он представляет собой фактически не два отдельных состояния, а два состояния, которые как бы перекрываются. Куби́т — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений. Чтобы создать кубит, ученые должны найти место в материале, где они могут получить доступ к этим квантовым свойствам и управлять ими. Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается.
В погоне за миллионом кубитов
Однако новые задачи стали расти как грибы после дождя. Если бы в 50-е годы создателям компьютеров сказали, что через 70 лет основные мощности компьютерного времени будут потрачены на игры или на майнинг криптовалют, они посмеялись бы над подобной ересью. Не сомневаюсь, что такая же история повторится и с квантовыми компьютерами. Эта техника будет совершенствоваться, начнет проникать в самые разные сферы жизни, кардинально их меняя. А когда это произойдет, когда квантовый компьютер станет достаточно мощным, те страны, у которых его не будет, окажутся неконкурентоспособными. А это уже вопрос не только технологического суверенитета, но и национальной безопасности. Поэтому ведущие государства активно включились в гонку, вкладывая в разработки миллиарды долларов. Что такое квантовый "рубильник" Итак, квантовый компьютер сулит революцию, какую когда-то совершил в нашей жизни традиционный. Можно на пальцах объяснить его суть?
Руслан Юнусов: Чтобы было понятней, начну с классического компьютера. Сегодня каждый школьник знает, что для кодирования информации применяется двоичная система с "0" и "1". Они реализуются в транзисторе, у которого есть два положения: "включен" и "выключен". В любом смартфоне таких "рубильников" несколько миллиардов. Принципиально важно, что в каждый момент времени каждый из миллиарда "рубильников" может быть только в одном положении. Это наименьшая единица информации - один бит. В квантовом компьютере все иначе. Квантовый бит кубит может быть одновременно и в состояниях "0" и "1", и во всех их комбинациях.
Кубит - это элементарная единица информации в квантовых вычислениях. Конечно, с точки зрения большинства людей, это звучит совершенно невероятно, но квантовая физика открывает такую возможность. Именно она позволяет квантовому компьютеру за счет параллельного выполнения сразу нескольких операций быстро решать задачи, которые не по силам мощному суперкомпьютеру. Самое главное, что квантовый выбирает из множества вариантов решения по-настоящему лучший, а не просто оптимальный. Основа традиционного компьютера - кремниевый транзистор, а на чем строится квантовый? Руслан Юнусов: Здесь пока ситуация неопределенная. Мир еще не выбрал лучшую технологию. Сейчас конкурируют 4 варианта кубитов: на одиночных атомах, ионах, сверхпроводниках, фотонах.
У каждой платформы есть свои плюсы и минусы. Возможно, какая-то одна в конце концов вытеснит остальных конкурентов. А может, останутся все, и каждая окажется наилучшей для определенного класса задач. Ваше превосходство О фантастических возможностях квантового компьютера говорят лет 40, но вот о кардинальных прорывах не слышно. Зато есть достаточно авторитетные скептики, которые утверждают, что он вообще никогда не будет создан. Что это игрушка, которой морочат голову и умело выбивают огромные деньги, удовлетворяя собственное любопытство. Руслан Юнусов: Да, такое мнение существует. Но скептики всегда были, есть и будут.
Цифровые данные записываются на т. Однако проблема заключалась в том, что такие структуры крайне неустойчивы. Они легко разрушаются под воздействием внешних воздействий, а устройства для хранения таких систем сложны в разработке. Относительно недавно ученые обнаружили, что в качестве кубитов можно использовать искусственно созданные атомы, в частности, т. По законам квантовой физики, слой диэлектрика оказывается проницаемым для электронов. Построенные из нескольких джозефсоновских контактов системы работают как атомы: они могут излучать и поглощать свет, пребывать в нейтральном и возбужденном состоянии.
Использование оптимизаторов при программировании схем для конкретного процессора. Также проводятся исследования, направленные на увеличение времени декогеренции, на поиск новых и доработку известных физических реализаций квантовых объектов, на оптимизацию схем коррекции и прочее и прочее.
Прогресс есть посмотрите выше на характеристики более ранних и топовых на сегодняшний день чипов , но пока идет медленно, очень очень медленно. Первый в мире протокол квантового интернета Нидерландские ученые разработали первый в мире протокол для так называемого квантового интернета, работающего без помех и максимально защищенного от взлома. Идея принадлежит специалистам исследовательского центра QuTech. Протокол, работающий на канальном уровне, разработан группой ученых под руководством профессора Стефани Вейнер Stephanie Wehner. Также они проработали общую концепцию квантовых сетей, которые в будущем, по их мнению, могут заменить собой традиционный интернет и локальные сети. В основе идеи специалистов QuTech лежит принцип очень быстрой обработки кубитов, поскольку они не могут находиться в памяти длительное время. Это обеспечит высокую скорость передачи информации, а явление квантовой запутанности, еще одна основа протокола, даст возможность максимально защитить передаваемые данные. Явление квантовой запутанности подразумевает взаимозависимость двух и более объектов, в данном случае кубитов, и их неразрывную связь друг с другом.
Попытка перехвата данных приведет к изменению квантового состояния одного или нескольких кубитов и, как следствие, к потере передаваемой информации. Другими словами, информацию может получить исключительно целевое устройство — несанкционированный доступ к ней исключен. Технические подробности о работе первого протокола квантовой сети Стефании Вейнер оставила в тайне. Она уточнила лишь, что для работы квантового интернета вполне сгодится физическая инфраструктура обычного интернета. Какие компании разрабатывают квантовые компьютеры уже сегодня?
Естественно, не для распихивания людей по автобусам. Задач множество. Главная — базы данных и поиск по ним, работа с BigData станет невероятно быстрой. Shazam, прокладывание маршрутов, нейронные сети, искусственный интеллект — все это получит невероятный толчок! Кроме того симуляции и моделирование квантовых систем! Зачем это надо — спросите вы? Это очень важно, так как появится возможность строить модели взаимодействия сложных белковых соединений. Это станет очень важным шагом для медицины, открывающим просто умопомрачительные просторы для создания будущих лекарств, понимания того как на нас влияют разные вирусы и так далее. Простор огромен! Чтобы вы примерно понимали какая это сложная задачка, мы вернемся в примеру с монеткой. Представьте что вам надо заранее смоделировать что выпадет — орел или решка. Надо учесть силу броска, плотность воздуха, температуру и кучу других факторов. Ну не так уж! А теперь представьте, что у вас не один человек, который кидает монетку, а миллион разных людей, в разных местах, по-разному кидают монетки. И вам надо рассчитать что выпадет у всех! Вот примерно настолько сложная эта модель о взаимодействии белков. Кроме того, вы наверняка слышали о том, что квантовые компьютеры сделают наши пароли просто пшиком, который можно будет подобрать за секунды. Но это уже совсем другая тема… Вывод Какой вывод из всего этого мы можем сделать, квантовый компьютер — это принципиально новая система. Она отличается от обычных компьютеров в самом фундаменте, в физических основах на которых работает. Их на самом деле даже нельзя сравнивать! Это все равно, что сравнивать обычные счеты и современные компьютеры! И конечно есть большие сомнения, что вы когда-нибудь сможете прийти в магазин и купить свой маленький квантовый процессор. Но они вам и не нужны.
Что такое квантовый компьютер
- Квантовые компьютеры. Почему их еще нет, хотя они уже есть? -
- Многокубитные системы и запутанность
- Как устроен и зачем нужен квантовый компьютер
- Квантовые компьютеры
- Квантовый компьютер: что это, отличие от обычного, как купить и стоит ли покупать
Как устроен и зачем нужен квантовый компьютер
Эксперт рассказал, из чего состоит квантовый компьютер, что такое кубиты и для чего они нужны | Но пока до реального взлома всё же невероятно далеко — чтобы взломать код биткоина, нужны десятки миллионов кубитов. |
Анонсирован выпуск первого в мире квантового компьютера с более чем 1000 кубитов | Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. |
Миллион задач в секунду: как работают квантовые компьютеры
Стоит уточнить, что когда мы говорим о суперпозиции, мы говорим о вероятности кубита оказаться в каждом из промежуточных состояний. А в каком состоянии он действительно находится, мы узнаем только когда на него «посмотрим». Сравнение бита и кубита, визуализация от Microsoft Кратко о свойствах квантовых битов Суперпозиция — не единственное свойство субатомных частиц. В физике также есть понятия запутанности, квантовой интерференции, коллапса и декогеренции. Запутанность — состояние квантовых частиц двух и более , при котором между ними устанавливается некая связь, даже если они находятся за тысячи километров друг от друга. То есть если вы измените один кубит, запутанный с ним тоже изменится. Добавляя в систему запутанные кубиты, можно экспоненциально увеличить вычислительные возможности квантовых компьютеров. Интерференция — следствие суперпозиции и один из самых загадочных принципов квантовой механики, который упрощенно подразумевает, что частица скажем, фотон может пересекать свою же траекторию и мешать собственному движению. Так как каждое состояние кубита описывается амплитудой вероятностей, эти состояния формируют интерференционную картину. Если хотите разобраться в терминах, почитайте про опыт с двумя щелями Томаса Юнга.
Интерференция может быть конструктивной и деструктивной — создатели квантовых компьютеров используют эти эффекты, чтобы влиять на вероятность определенного состояния для ускорения вычислений. Декогеренция — что-то вроде неконтролируемого коллапса волновой функции. Если в систему кубитов попадет любой шум из окружающей среды электрические и другие помехи, не заметные глазу , суперпозиция нарушится, информация может потеряться что критическим образом повлияет на точность решения задач. Ограничение декогеренции — ключевая задача при создании квантового компьютера. Как устроены квантовые компьютеры? Вопреки ожиданиям, современные квантовые компьютеры не очень большие — размером примерно с холодильник но есть еще коробка с электроникой размером с комод. А вот детально они устроены гораздо сложнее привычных компьютеров. Обычно они состоят из: Квантовой системы. Технологии могут отличаются, но в основном роль кубитов играют либо ионы с разными уровнями энергии, либо сверхпроводящие цепи с разными колебательными состояниями, либо топологические кубиты например, майорановские частицы.
Некоего кластера, в котором находятся кубиты и в котором они будут как можно дольше стабильны.
В настоящее время усилия ведущих игроков сосредоточены в направлении разработки специализированных квантовых вычислителей для конкретной задачи так делает D-Wave и универсальных квантовых компьютеров для решения разных задач IBM, Google. Первый двухкубитный квантовый компьютер появился в 1998 году. Он работал на так называемом явлении « ядерного магнитного резонанса ». Компьютер использовался в Оксфордском университете, в исследовательском центре IBM и Калифорнийским университетом в Беркли вместе с сотрудниками из Стэнфордского университета и Массачусетского технологического института. В 2018 году IBM предложила сторонним компаниям использовать ее 20-кубитный квантовый компьютер через облако. Google представила 53-кубитный компьютер Sycamore и заявила о достижении квантового превосходства. Квантовое превосходство подразумевает способность квантовых вычислительных устройств решать те проблемы, которые не могут решить классические компьютеры. По заявлению компании, Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Самому мощному суперкомпьютеру Summit для той же задачи понадобилось бы около 10 тыс.
Компания утверждала, что Summit справится с задачей для Sycamore в худшем случае за 2,5 дня, но полученный ответ будет точнее, чем у квантового компьютера. Это позволил предположить теоретический анализ. В России квантовые технологии также привлекают внимание исследователей. Так, в 2010 году для проведения исследовательских работ в этой области был организован Российский квантовый центр. В 2019 году была разработана сначала единая дорожная карта, а после — дорожная карта на каждое отдельное направление: квантовые вычисления, квантовые коммуникации и квантовые сенсоры. Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», говорит, что создание квантовых процессоров стало одной из основных задач дорожной карты, утвержденной в июле 2020 года. По его словам, работа ведется в нескольких плоскостях: развитии фундаментальной науки и первых прикладных внедрениях квантовых продуктов. Россия стала одним из 17 технологически развитых государств с официально утвержденной квантовой стратегией. Индустрия 4. На реализацию дорожной карты предусмотрено финансирование в размере 23,7 млрд рублей.
Это специальная функция, которая среди всех возможных вариантов находит нужный нам. Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно: 1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров! Думаете, что всё это звучит слишком хорошо, чтобы быть правдой? Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго.
У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ. Ну то есть как верный? Он всегда будет содержать в себе минимальную возможность ошибки вследствие своей сложной квантовой природы, но ее можно сделать ничтожно малой, просто прогнав вычисления множество раз! Квантовые компьютеры сегодня Теперь перейдем к самому интересному — какое состояние сейчас у квантового компьютера? А то их пока как-то не наблюдается на полках магазинов! На самом деле все, что я описал выше, это не такая уж и фантастика. Квантовые компьютеры уже среди нас и уже работают. Кроме того в каждом большом институте есть исследовательские группы, которые занимаются разработкой и исследованием квантовых компьютеров.
Сундар Пичаи и Дэниэл Сэнк с квантовым компьютером Google. В Google создали квантовый компьютер с 53 кубитами и смогли решить задачку, за 200 секунд, на решение которой у обычного компьютера ушло бы 10000 лет! Конечно IBM было очень обидно и они начали говорить, что задача слишком специальная, и вообще не 10000 лет, а 2. Так что теперь вопрос считанных лет, когда квантовые компьютеры начнут использоваться повсеместно! IBM, например, только что анонсировали что в 2023 году создадут коммерческий квантовый компьютер с 1121 кубитами! Чтобы вы понимали калькулятор Google даже не считает сколько будет 2 в 1121 степени, а просто говорит — бесконечность! И это совсем не предел. Уже ведется разработка компьютеров на миллионы кубитов — именно они откроют истинный потенциал квантовых вычислений. Более того, вы уже сейчас можете попробовать самостоятельно попробовать квантовые вычисления! IBM предлагает облачный доступ к самым современным квантовым компьютерам.
Но зачем вообще нужны квантовые компьютеры и где они будут применяться? Естественно, не для распихивания людей по автобусам. Задач множество. Главная — базы данных и поиск по ним, работа с BigData станет невероятно быстрой.
Обычный компьютер справится с этим лучше. Сила же квантового компьютера именно в том, что мы берём несколько кубитов, которые как вы помните можно представлять как крутящиеся монетки, и взаимодействуем именно с вероятностями их выпадения в 0 орел или 1 решка , а не самими результатами 0 и 1. Вот это уже куда более интересно. В наших алгоритмах мы больше не мыслим концепциями «прочитай здесь, если 1, переложи туда», а начинаем как бы настраивать взаимодействие наших монеток кубитов пока они еще крутятся, чтобы в итоге получить интересующий нас результат. Как вы понимаете, никто не гарантирует какой стороной упадёт первый кубит, а значит и нельзя ничего гарантировать про второй, и так далее. Получается как будто дерево расчёта вариантов исхода алгоритма.
Это и даёт нам вот ту самую экспоненциальную скорость вычислений в квантовом компьютере. В конце же наше дерево вычислений всё равно приведёт к одному результату с наибольшей вероятностью, а к другим с наименьшей. Это и будет ответ алгоритма. Если хотите более подробного разбора дерева по шагам, рекомендую вот эту годную статью. Мы не перебираем все варианты одновременно, как объясняют во многих статьях для новичков. Мы скорее настраиваем вероятности наших кубитов по ходу программы так, чтобы правильный результат засветился на выходе с большей вероятностью, чем неправильный. Условно говоря, мы подкручиваем наши монетки и говорим как им вращаться друг относительно друга, чтобы в итоге они выпали на стол в комбинацию, например, «орел-решка-орел» 010. Это и будет правильный ответ алгоритма. Тогда в 1 случае из 10 квантовый компьютер будет вполне легально нам врать, выдавая неправильный ответ. Тогда мы просто запускаем алгоритм много-много раз как настоящие боги инженерии!
Побеждают, как обычно, китайцы. Белые же европейцы в это время воюют за запрет термина «превосходство» потому что оно оскорбительно и нетолерантно. Лет через пять меня точно отменят за этот пост. На практике же момент «квантового превосходства» не означает ничего, кроме того, что можно будет открыть шампанское и выпить за технологический прогресс. Сейчас объясню. Все эксперименты по квантовому превосходству по прежнему проводятся на специально подобранных задачках, которые квантовый компьютер должен щёлкать на раз, а классический пыхтеть тысячелетиями. Читеры вставляют палки в колёса, короче, и всё равно не могут догнать. Разве что иногда. Именно поэтому квантовое превосходство интересно журналистам и историкам, но точно не инженерам. Я как инженер жду не формального победителя первого забега, а того, кто покажет мне первый стабильный квантовый компьютер.
Сейчас с этим всё плохо. С текущим количеством шумов они попросту бесполезны для практических задач. Компьютер, который считает быстро, но постоянно врёт — разве это годится? Превосходство у них, блин. Случайно подняться на гору легко — куда сложнее подниматься на неё каждый день. Можно использовать эту фразу как кредо по жизни. The Алгоритм Время программировать программы! На уроках информатики в 8 классе сегодня каждому школьнику рассказывают, что любой компьютер на самом деле состоит из кучки простейших операций над одним или двумя битами, называемых логическими вентилями или логическими гейтами, если вы дитя улиц и учились по английскому учебнику, как я. Хитро соединив проводами пару-тройку вентилей можно получить сумматор или простейшую память — всё это базовые элементы любого процессора. Потом они соберут из этих операций жирные высокоуровневые языки программирования.
Начнется бум кремния, крах доткомов, курсы «профессия Data Scientist за неделю» и вот уже даже бездомные пишут на React за еду. Короче, в квантовых компьютерах всё то же самое! Только уровень развития тут пока плавает где-то до изобретения ассемблера. Представляете сколько всего еще впереди? Я обещал вам квантовый Hello, World — держите. Как и любой Hello World, он абсолютно бесполезен. Он лишь подбрасывает две монетки, связывает одну с другой и говорит орлами они упали или решками. Разберём всё подробно по шагам. Итак, нам нужна схема из 2 кубитов и 2 обычных битов. Импортируем все нужные тулзы и начинаем рисовать.
Дальше накидываем гейты. Потому что можем. Я хочу перевести первый кубит в суперпозицию гейтом H, то есть «подбросить» эту монетку. Физически обоснованный! Но мы не хотим читать 0 или 1, мы хотим программировать на вероятностях. Потому вторым гейтом я наложу условие CNOT. Если наш кубит выпадает в 1 — он автоматически перевернёт и соседний кубит. То есть сделает из 0 в 1.
Квантовые компьютеры
или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Подобная пространственная конфигурация, как показали последующие опыты, позволила ученым продлить типичное время работы кубитов на базе квантовых точек более чем на два порядка. Ученые пытаются освоить базовый вычислительный элемент, известный как кубит, чтобы сделать квантовые компьютеры более мощными, чем электронные машины. Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. С точки зрения физики кубит — это элементарная частица, например электрон, а значение кубита — это значение одного из физических свойств этой частицы.
Что такое квантовый компьютер и как он работает
Сердце квантовых компьютеров - как создаются кубиты? | Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей. |
Что такое квантовый компьютер? Принцип работы кубитов и квантовых вычислений | Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа. |