Новости актуальность искусственного интеллекта

на помощь психологам придут инструменты, связанные с методами искусственного интеллекта, – машинное обучение, искусственные нейронные сети, когнитивные архитектуры, большие языковые модели. Год 2030 выбран не случайно, по мнению «AI100» именно к этому времени человечество переживет главный бум внедрения искусственного интеллекта в повседневную жизнь. Искусственный интеллект (ИИ) — это общее понятие, которое описывает машинные алгоритмы и технологии, направленные на создание интеллектуальных систем. В торгово-финансовом секторе искусственный интеллект так же хорошо себя показывает в работе. Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение.

Ученые рассказали о пользе, опасности и перспективах искусственного интеллекта

Традиционные проблемы, связанные с ИИ, такие как усиление существующих предубеждений в данных для обучения или отсутствие прозрачности решений, вновь обрели актуальность. Новые алгоритмы и нейросети позволяют внедрить искусственный интеллект практически в любые сферы. Проблема: Проект решает проблему понимания актуальности и потенциала искусственного интеллекта в различных сферах жизни и определения вызовов перед Strong AI.

Что такое искусственный интеллект?

  • Онлайн-курсы
  • Обзор развития ИИ-технологий: как изменится экономика, образование и общество?
  • ВЦИОМ. Новости: Искусственный интеллект: угроза или светлое будущее?
  • Топ-10 ИИ (AI) 2023 года: революция в технологии

«Искусственный интеллект в нашей жизни»

Новые тренды ИИ-технологий в смартфонах приведут к поддержке искусственного интеллекта на уровне платформы и развитию больших языковых моделей, способных работать без передачи запросов в облако. Например, новая операционная система MagicOS 8. Раньше для таких взаимодействий требовалось несколько касаний экрана, а теперь технологии ИИ способны понимать тип контента, контекст, учитывать пользовательские привычки и сокращать длинную последовательность нажатий до одного действия. Продвинутая камера играет важную роль при выборе смартфона, а использование ИИ в процессе съемки стало повсеместным. Отцы и дети Традиционно считается, что молодежь, особенно поколение Z до 26 лет , является наиболее продвинутыми пользователями технологий. Однако представители возрастной группы 26—44 лет также активно прибегают к помощи искусственного интеллекта. Например, при управлении «умным домом» с помощью голосового ассистента или обработке больших объемов информации различия между поколениями стираются — эти сферы применения ИИ пользуются практически одинаковым спросом у респондентов из разных возрастных групп. Тем не менее люди старшего возраста от 45 до 55 лет чаще отмечают, что ИИ-технологии пока не принесли им никакой конкретной пользы.

Названы риски массового использования искусственного интеллекта: почему некоторые страны хотят его запретить Блеск и нищета СhatGPT Поделиться Можно ли простыми словами объяснить неспециалисту, что такое искусственный интеллект ИИ , которым нас в последнее время пугают? Хотя, к примеру, все мы как минимум пользуемся смартфонами, где уже сталкиваемся с технологиями ИИ. А жить рядом с ИИ и быть свободным от него невозможно. Чтобы быть в курсе этого «нового наступления на человечество», я прошла ускоренные курсы по нейронным сетям, провела ряд встреч с экспертами, сходила на несколько конференций по ИИ, перелопатила гору информации. Легче было вскопать гектар земли и посадить на нем, например, картошку. В последнее время в разговорной речи стало модненьким употреблять выражение «уметь в... Например, «уметь в журналистику» значит хорошо писать тексты, «уметь в цифры» — хорошо считать и т. Так давайте попробуем научиться «уметь в ИИ». Фото: freepik. Цунами, извержение вулкана, просто вселенский информационный потоп. Эти потоки закручивают, бросают человека из стороны в сторону. В итоге невозможно увидеть цельной картины происходящего. Люди запутываются окончательно. Оно и понятно: калейдоскоп текстов, передач в духе клипового потока сознания взрывает мозг. Одни авторы пугают, что скоро исчезнут многие профессии и десятки миллионов людей потеряют работу. Другие сетуют, что школьники и студенты быстро сориентировались и используют самую медийно раскрученную систему ChatGPT для выполнения учебных заданий. Масса заметок по каждому чиху, связанному с ИИ. Яндекс будет нанимать гуманитариев для дообучения своей GPT-подобной системы с зарплатой 150 тысяч рублей просто за общение с программой. И бесконечные новости о том, как картины, созданные нейросетями, побеждают на выставках; как ИИ работает в медицине, геологии... Проще сказать, где он не применяется. Но самое главное, что искусственный интеллект не просто показывает эффектные фокусы. Он реально стал практическим инструментом, практически незаменимым по жизни. Чистая математика в основе Для понимания, как все работает, нам понадобятся всего три определения: что такое ИИ, ML машинное обучение и NN нейронные сети. Без них никак не обойтись, потому что они ключевые. Искусственный интеллект ИИ — это общее понятие, которое описывает машинные алгоритмы и технологии, направленные на создание интеллектуальных систем. Машинное обучение Machine Learning, ML — это класс методов ИИ, позволяет компьютерам обучаться на основе больших объемов данных, извлекая из них закономерности. Используется в основном для решения различных задач классификации и прогнозирования. Нейронные сети Neural Networks, NN — это одна из технологий машинного обучения, которая моделирует работу мозга человека. Нейронные сети могут использоваться для решения множества различных задач: для распознавания образов например, автомобильных номеров на фотографии , перевода голосового сообщения в текстовое, генерации изображений по тексту, создания моделей чего-либо, текстов, картин и т. То есть нейронные сети — это один из способов реализации машинного обучения. Вообще специалисты стараются меньше употреблять словосочетание «искусственный интеллект». Они предпочитают термин «машинное обучение». Это связано с тем, что существуют два принципиально разных способа использовать компьютер для решения задач. Классический заключается в том, что есть исходные данные. И есть формула алгоритм , которая обеспечивает преобразование исходных данных в выходные результат. Второй способ применяют, когда у человека не получается разработать алгоритм самому. Есть входные и выходные данные, а алгоритм неизвестен. И вот чтобы компьютер мог решить задачу например, распознавания лиц людей или товаров в магазине , применяются методы машинного обучения. Вы скажете, зачем нам сдались все эти определения?! Но я попрошу не торопиться. Ведь все, что скрывается за написанными выше понятиями, очень помогает нам в повседневной жизни. Повторюсь, почти у каждого из нас есть смартфон, компьютер. Мы регулярно забиваем свои запросы в поисковые системы, и они выдают нам нужные ответы. Например, тот же прогноз погоды. Или когда мы используем навигатор, управляя машиной, — он ведь тоже подстраивается под наши привычки и предпочтения.

Из них 0,8-1,3 трлн руб. Собственные базовые модели генеративного искусственного интеллекта в мире разрабатывают около десяти стран, в том числе Россия, при этом наша страна занимает 7-е место в мире по уровню поддержки государством сферы разработки искусственного интеллекта. Подобный фокус не случаен — внедрение искусственного интеллекта будет иметь гораздо более широкие последствия для страны, чем непосредственно экономический эффект, в частности развитие искусственного интеллекта положительно повлияет на качество и продолжительность жизни, повысит качество образования, создаст новые рабочие места. Это сократит временные затраты и позволит сотрудникам сосредоточиться на более творческих задачах. Для России такие перспективы скорее привлекательны: с учетом прогнозируемого к 2030 г.

Системы NLP способны анализировать, понимать и генерировать тексты, что находит применение в переводах, чат-ботах, анализе социальных медиа и многих других областях. Компьютерное зрение Computer Vision. Этот аспект ИИ занимается обработкой и анализом изображений и видео. Системы компьютерного зрения могут распознавать объекты, лица, образы, а также анализировать сцены и даже эмоции на лицах. Обучение с подкреплением Reinforcement Learning. Этот метод обучения подразумевает, что агент учится взаимодействовать с окружающей средой с целью получения наилучшей награды. Агент делает определенные действия и на основе полученных результатов улучшает свои стратегии. Автономные системы. Системы с искусственным интеллектом, способные действовать автономно в разнообразных средах, таких как роботы, автономные автомобили, беспилотные дроны и другие. Перспективы искусственного интеллекта связаны с дальнейшим развитием технологий и созданием умных систем, способных выполнять сложные задачи. Обучение с подкреплением и глубокое обучение позволяют системам учиться и совершенствоваться, что приводит к созданию адаптивных решений для различных областей, таких как медицина, финансы, образование и промышленность [4]. Компьютерное зрение и обработка естественного языка делают возможным взаимодействие между человеком и машиной более естественным и продуктивным.

ТОП 10 искусственных интеллектов в 2023 году

Оно оценивает состояние рынка искусственного интеллекта в России и мире, потенциальный экономический эффект от внедрения технологии и выделяет ключевые тренды и области применения ИИ. В каких отраслях, тесно связанных с искусственным интеллектом, Россия не только конкурирует, но и опережает Европу и США, в подробном обзоре от ФедералПресс. «Эпоха искусственного интеллекта началась»: Билл Гейтс опубликовал эссе о том, как нейросети изменят нашу жизнь. Искусственный интеллект Сбера теперь доступен во всех умных устройствах Sber под управлением ОС Салют ТВ. В этой статье мы объясним, что означает искусственный интеллект, расскажем, зачем нужен ии, и рассмотрим, что относится к искусственному интеллекту. Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение.

Массовая безработица и безграничные возможности? Как сегодня поживает искусственный интеллект

Одним из самых интересных достижений в области ИИ является использование нейронных сетей. Нейронные сети — это набор алгоритмов, предназначенных для распознавания шаблонов и обучения на входных данных. Они вдохновлены структурой и функциями человеческого мозга, состоящего из миллионов взаимосвязанных нейронов, которые взаимодействуют друг с другом для передачи информации в мозг человека. Нейронные сети состоят из слоев взаимосвязанных узлов или нейронов, каждый из которых обрабатывает информацию и отправляет ее на следующий слой. Первый слой нейронов получает входные данные, а последний слой производит выходные данные. Слои между входным и выходным слоями называются скрытыми слоями и отвечают за обработку и анализ входных данных [1]. Процесс обучения нейронной сети включает в себя ввод в нее входных данных и корректировку весов и смещений нейронов для повышения точности выходных данных. Чем больше данных обучает сеть, тем лучше она распознает закономерности и делает точные прогнозы машинное обучение. Нейронные сети имеют несколько приложений в различных областях, включая распознавание изображений и речи, обработку естественного языка и прогнозное моделирование. Цель нейронной сети — находить закономерности в данных и делать прогнозы на основе выявленных корреляций.

Во время обучения в сеть подается большое количество размеченных данных, а веса связей между нейронами корректируются до тех пор, пока сеть не сможет точно предсказать правильный результат для заданного ввода. Нейронные сети оказались невероятно эффективными в широком спектре приложений. Специалисты в области экономики считают, что, в финансах их можно использовать для прогнозирования цен на акции или обнаружения мошенничества. Разработчики программ в сфере медицины также замечают, что в здравоохранении их можно использовать для анализа медицинских изображений и выявления заболеваний. Рабочие процессы медицинских учреждений неразрывно связаны со сбором, обработкой и анализом различных медицинских изображений к которым относятся рентген, КТ, цифровые гистологические исследования и так далее. А также, искусственный интеллект в медицине использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе большого объема сложных медицинских данных. Исходя из этого можно сделать вывод, что нейронные сети и искусственный интеллект всегда были и являются сквозными технологиями. В области лингвистики специалисты считают, что нейронные сети и искусственный интеллект можно использовать для улучшения распознавания речи и обработки естественного языка [2]. Одним из ключевых преимуществ нейронных сетей является их способность обучаться и адаптироваться к новым данным.

Одно из ключевых преимуществ этих технологические инновации Это способность быстро и эффективно анализировать огромные объемы данных о пациентах. Сюда входят данные медицинской визуализации, генетического профиля, электронных медицинских карт и носимых устройств. Диагностические инструменты на основе искусственного интеллекта могут анализировать это огромное количество информации, чтобы выявить закономерности, аномалии и потенциальные риски для здоровья, которые специалистам-практикам может быть сложно обнаружить. Более того, эти достижения могут сделать здравоохранение более персонализированным. Принимая во внимание уникальную генетическую структуру человека, историю болезни и стиль жизни факторов, диагностика на основе искусственного интеллекта может адаптировать рекомендации и планы лечения к конкретным потребностям каждого пациента.

Такой персонализированный подход повышает точность диагностики и общее качество оказания медицинской помощи. Лучшее прогнозирование спроса и автоматизация рабочих процессов в розничной торговле В розничной торговле происходит революция благодаря технологиям на базе искусственного интеллекта, которые меняют способы прогнозирования тенденций и прогнозирования спроса. Эти достижения помогают ритейлерам оптимизировать свою планирование запасов , что приводит к увеличению потенциального дохода. Такое сокращение логистических затрат приводит к повышению рентабельности. Это не только приводит к экономии средств, но и высвобождает ценные человеческие ресурсы для решения более стратегических задач.

Это сводит к минимуму возникновение нехватки товаров на складе, что может привести к потере продаж и недовольству клиентов. Это приводит к повышению удовлетворенности и лояльности клиентов. Ожидается, что в 2023 году ИИ продолжит играть заметную роль в секторе розничной торговли, а его приложения расширятся за пределы управления запасами, цепочками поставок и логистикой. Вот некоторые области, где ИИ может оказать существенное влияние: Автоматизация кассового аппарата: Кассовые системы на базе искусственного интеллекта, такие как магазины без касс, станут более распространенными, что сократит время ожидания и улучшит общее впечатление от покупок. Персонализация опыта магазина: Алгоритмы искусственного интеллекта будут анализировать данные клиентов, чтобы предоставлять персонализированные рекомендации по продуктам, предложениям и впечатлениям в магазинах, повышая вовлеченность клиентов и продажи.

Оформление витрин: Решения на основе искусственного интеллекта оптимизируют планировку магазинов и размещение продуктов на основе данных в реальном времени, повышая видимость продуктов и продажи. Предотвращение потерь: Системы наблюдения на базе искусственного интеллекта помогут ритейлерам более эффективно выявлять и предотвращать кражи и мошенничества. Поддержка клиентов: чат-боты с искусственным интеллектом и виртуальные помощники обеспечит мгновенную поддержку клиентов, улучшив время отклика и качество обслуживания. Улучшенное обнаружение мошенничества и персонализация в сфере финансовых технологий кредиты: pixabay В мире финансовых услуг крайне важно уделять приоритетное внимание безопасности и устанавливать доверительные отношения с клиентами. Обнаружение и предотвращение мошеннических или несанкционированных транзакций позволяет быстро сэкономить деньги, повысить безопасность и укрепить отношения между финансовым учреждением и его клиентами.

Финансовые компании теперь используют технологию искусственного интеллекта для улучшения процессов идентификации клиентов и управления рисками. С помощью процедур идентификации на основе искусственного интеллекта компании могут с самого начала собирать более подробную информацию о своих клиентах, включая их личность, пригодность и потенциальные риски. Кроме того, модели машинного обучения позволяют быстро обнаруживать мошеннические транзакции и предпринимать необходимые действия для сокращения потерь клиентов. Кроме того, ИИ имеет возможность проверять клиентов с помощью различных методов, таких как биометрические данные, распознавание речи или распознавание лиц.

Моделирование и симуляция сложных систем, анализ больших объемов данных и поиск закономерностей в них помогают в прогнозировании пандемий, климатических изменений и других масштабных явлений. ИИ способен ускорить научные исследования, обнаруживать новые лекарства и материалы, снижая затраты времени и ресурсов. ИИ имеет потенциал преобразовать медицину и здравоохранение, делая диагностику более точной и персонализированной. Системы ИИ могут анализировать медицинские изображения, выявлять патологии и помогать врачам в принятии решений.

В области геномики ИИ помогает идентифицировать гены, связанные с заболеваниями, и разрабатывать индивидуализированные лечения. Автономные автомобили, дроны и роботы становятся реальностью благодаря ИИ. Системы распознавания и обработки данных позволяют автономным транспортным средствам функционировать в сложных ситуациях на дорогах и в воздухе. Это обещает повысить безопасность, снизить количество аварий и оптимизировать использование ресурсов. Однако с возросшим влиянием ИИ на общество появляются и вопросы этики и социальных последствий [5]. Необходимо обеспечить прозрачность и объяснимость решений, принимаемых системами ИИ. Также стоит разработать стандарты для обработки и защиты данных, чтобы избежать нарушения приватности. Перспективы искусственного интеллекта ошеломляют своим разнообразием и потенциалом.

Согласно исследованию, то, как тот или иной смартфон обрабатывает фотографии и видео или помогает работать с текстом, часто становится фишкой при выборе. По набору умных сервисов в смартфоне мужчины и женщины имеют схожие предпочтения. Новые тренды ИИ-технологий в смартфонах приведут к поддержке искусственного интеллекта на уровне платформы и развитию больших языковых моделей, способных работать без передачи запросов в облако. Например, новая операционная система MagicOS 8. Раньше для таких взаимодействий требовалось несколько касаний экрана, а теперь технологии ИИ способны понимать тип контента, контекст, учитывать пользовательские привычки и сокращать длинную последовательность нажатий до одного действия. Продвинутая камера играет важную роль при выборе смартфона, а использование ИИ в процессе съемки стало повсеместным. Отцы и дети Традиционно считается, что молодежь, особенно поколение Z до 26 лет , является наиболее продвинутыми пользователями технологий. Однако представители возрастной группы 26—44 лет также активно прибегают к помощи искусственного интеллекта.

Хочу убедиться, что мне звонил ВЦИОМ

  • Искусственный интеллект в действии - «Ведомости. Импортозамещение»
  • Обзор развития ИИ-технологий: как изменится экономика, образование и общество?
  • Все материалы
  • ВЦИОМ. Новости: Искусственный интеллект: угроза или светлое будущее?

Статьи и новости

Фактически речь идет о моделях, которые умеют преобразовывать текст в картинку. Одна из них — Midjourney. Программа генерирует изображение по запросу на английском языке. Чем детальнее прописан текстовый запрос, тем точнее конечный результат. Полученные таким способом изображения неидеальны. Но уже сейчас ИИ может выполнять за дизайнеров и художников значительную часть их работы. Последним лишь останется довести ее до ума.

Эта нейросеть работает по запросам пользователя, и ее уже прозвали «убийцей Google». И недаром. Список того, что умеет ChatGPT, поражает воображение. Например, этот бот-«интеллектуал» может написать школьное сочинение.

Многие творческие деятели обеспокоены, что нейросети могут заменить писателей, художников. Они также задаются вопросом: есть ли душа, есть ли творческая ценность в продуктах от нейросетей? Художники опасаются, что нейросеть, создавая изображение, будет генерировать продукт на основе чужих работ, тем самым нарушая авторские права. Кроме того, они беспокоятся, что работа человека обесценится, а навыки, которые они приобретали в течение многих лет, просто будут бесполезны. Профессиональные художники также считают, что нейросеть нарушает законы, перспективы, не уделяют внимание гармоничности, сочетанию цветов и т. К тому же ИИ копирует стиль некоторых художественных мастеров, но назвать плагиатом это, по мнению ряда пользователей, тоже нельзя, так как он генерирует новые изображения.

И технически, и визуально это легко доказать, считают некоторые специалисты. А вот из-за чего художникам действительно стоит переживать, так это из-за того, что нейросети могут отнять у них работу, считают многие. Но, возможно, некоторые художники сами постепенно захотят прийти к помощи ИИ и направлять свои знания и умея в эту область. Хотя, конечно, останутся и те, кто будет придерживаться традиционных методов создания произведений искусства. Анна-Мария Лонь, эксперт по продвинутой аналитике компании Axenix, в комментарии "Известиям" выразила несогласие с тем, что человек вытесняется технологией. Многие художники рисуют в диджитал-программах, и ни у кого сейчас не возникает сомнений, что это тоже искусство. Анна-Мария Лонь Например, летом 2022 года на конкурсе изобразительных искусств в Колорадо в категории "Цифровое искусство" выиграла картина, полностью сгенерированная программой искусственного интеллекта Midjourney. Ее автор Джейсон Аллен отмечает, что при генерации изображений нейросетью работа человека очень важна: от него требуется редактировать картины в Photoshop и улучшать их качество с помощью ИИ-редактора. Олег Юсупов также уверен, что нейросети привносят в искусство новую эстетику, которую эксперт называет алгоритмической. Нас ждет новый этап — фиджитализм от слов physical и digital , который объединит в себе цифровой и физический мир", — сказал эксперт.

Художника такая технология никогда не заменит, так как первый создает стиль, смысл и форму, а ИИ учится", — считает Дворецкая. Владимир Арлазаров, генеральный директор компании Smart Engines и кандидат технических наук, уверен, что искусственный интеллект не станет конкурентом для художников, потому что процесс создания картин машинами кардинально отличается от художественного процесса. А работа искусственного интеллекта — это чистая комбинаторика, генерирование рисунков, в которых сочетаются уже известные человеку сюжеты и методы. Создать что-то принципиально новое текущий искусственный интеллект не способен, а художники делают это каждый день", — утверждает Арлазаров. Авторские права и ИИ: мнение юриста С развитием информационных технологий и ИИ вопросы правосубъектности искусственного интеллекта становятся предельно актуальными. РЕН ТВ пообщался с Печниковым Вячеславом Валентиновичем, президентом Московской юридической корпорации, членом Московского клуба юристов, который рассказал, могут ли возникнуть конфликты при создании произведений с помощью ИИ. По словам эксперта, нейросети действительно способны создавать уже вполне уникальные и оригинальные произведения художественные, текстовые.

Однако представители возрастной группы 26—44 лет также активно прибегают к помощи искусственного интеллекта. Например, при управлении «умным домом» с помощью голосового ассистента или обработке больших объемов информации различия между поколениями стираются — эти сферы применения ИИ пользуются практически одинаковым спросом у респондентов из разных возрастных групп. Тем не менее люди старшего возраста от 45 до 55 лет чаще отмечают, что ИИ-технологии пока не принесли им никакой конкретной пользы. Вместе с тем они отмечают свою общую заинтересованность в таких инновациях. Общий тренд на интерес к технологиям искусственного интеллекта и доверие к нему продемонстрировали респонденты с детьми. Заметна и тенденция на рост использования ИИ в повседневной жизни. Респондент мог указать несколько вариантов ответа. ООO «Техкомпания Онор».

Еще одно важное направление — использование прогнозной аналитики: анализ больших объемов данных позволяет обнаружить скрытые закономерности и неожиданные корреляции Это помогает выявить возможные риски, разработать план лечения и подобрать препараты для конкретного больного. Например, компания «К-Скай» разрабатывает платформу прогнозной аналитики Webiomed, которая позволяет оценить факторы риска и вероятность развития 40 самых распространенных заболеваний, включая сердечно-сосудистые и сахарный диабет. Сразу несколько крупных научных центров разрабатывают технологии создания цифровых двойников. Например, ученые Сеченовского университета планируют к 2025 году завершить разработку прототипов для лечения онкологии и кардиологических заболеваний. Компания «Таргетта» разработала образовательную VR-платформу для отработки практических навыков специалистов по рентгенографии. Платформа Syntelly, разработанная учеными Сколтеха и НТУ «Сириус», позволяет в разы сократить сроки разработки медицинских препаратов. Например, группа компаний ЦРТ разработала решение Voice2Med для голосового заполнения медицинских протоколов. Эта разработка была отмечена премией правительства РФ и сегодня используется уже в 60 регионах страны. Большой Брат следит... Однако 2023 год оказался особенным: начались массовые поставки систем автопилотирования тракторов на основе искусственного интеллекта в российские агрохозяйства. Более 100 машин вышли в апреле на поля 15 российских регионов, разработчиком стала компания Cognitive Pilot, «дочка» Сбера и Cognitive Technologies. Умная система управления тракторами объединяет возможности компьютерного зрения и спутниковой навигации и может в автономном режиме выполнять практически все основные операции: обработку почвы, культивацию, сев, опрыскивание, внесение удобрений, уборку трав, уход за пропашными культурами и многое другое. Причем не только днем, но и ночью Наибольшую популярность в России завоевали технологии «точного земледелия», основанные на применении беспилотников, космических спутников и анализе больших массивов данных. Искусственный интеллект помогает мониторить состояние почв, поддерживать в них необходимое содержание микроэлементов, оперативно и точечно решать проблемы с болезнями растений и распространением вредителей. Анализируя свежие снимки и многолетние данные, такие системы помогают выявить риски и спланировать оптимальный севооборот. К ним относятся облачный сервис «История поля» от компании «Геомир» его использует уже более двух тысяч агрохозяйств , приложение «СкайСкаут» от компании «ИнтТерра» разработчики обещают сократить расходы на 30 процентов за счет правильной расстановки приоритетов и оптимизации процессов , система «Агротроник» от ГК «Ростсельмаш» и многие другие. Например, на птицефабрике в Татарстане всеми процессами сбора и движения яиц с 2020 года управляет искусственный интеллект на базе программного решение Amaks. Искусственный интеллект и нейросети позволяют примерно в десять раз ускорить селекционную работу. Например, буквально накануне выхода данной публикации генетики из ИППИ РАН, Сколтеха и МФТИ сообщили о разработке алгоритма, который упростит предсказание функций генов у сельскохозяйственных растений, создавать новые сорта с необходимыми характеристиками с его помощью станет намного проще и быстрее. ИИ строит станки и машины Машиностроение — одна из ключевых отраслей промышленности, здесь особенно важно тщательно контролировать и синхронизировать все производственные процессы. При создании станков и агрегатов приходится учитывать множество параметров — от рыночной конъюнктуры и перспектив развития предприятий-потребителей до качества сырья и отдельных компонентов.

Что хотите найти?

За 2022 год на поддержку компаний, проектирующих разные ИИ-решения, было направлено 3,5 млрд рублей в виде целевых грантов. Всего в период с 2021 по 2023 год государство помогло 406 ИИ-проектам, а к 2024 году их количество планируется довести до 569. Это системы видеоаналитики, коммуникационные платформы, софт для работы с цифровыми медицинскими изображениями — есть варианты практически для каждой сферы бизнеса. Инструмент позволяет встраивать в приложения интеллектуальные технологии распознавания данных. Примеры решений для разных сфер бизнеса из реестра: Транспорт и логистика Система управления движением судов «Нави-Мастер». Видеопотоки типовых дефектов стальных канатов.

RU Роман Душкин. О том, что человек не останется без работы, уступив ее машинам, заявляют и экономисты. Меньше всего стоит опасаться за свое будущее «синим воротничкам», а работникам умственного труда нужно всего лишь быть в курсе новых технологий и своевременно прокачивать скиллы. Собственно говоря, основная задача машины — это выполнять самый примитивный функционал. Потапенко уверен, что чем более архаична и авторитарна система социального устройства, тем меньше шансов на применение искусственного интеллекта, потому что, грубо говоря, нужно обеспечивать занятость. По образованию инженер-конструктор-технолог Московский институт радиотехники, электроники и автоматики. С 2003-го по 2005 год управлял сетью «Пятерочка» в Москве и Московской области. Мы вторые после Соединенных Штатов по количеству гастарбайтеров и продолжим такими же быть. Другие специалисты полагают: даже если сокращение и произойдет, то это пойдет на пользу человечеству. Машины возьмут на себя рутинный труд, освободив создавшим их людям время для творчества и развития. Экономист Рустем Шайахметов рассказал, что в некоторых странах практикуется уменьшение рабочих часов во многом благодаря применению новых технологий. Во-первых, развивается искусственный интеллект.

Искусственный интеллект может быть тоже разрушительным. Во-первых, генеративный ИИ может создавать различные дипфейки и другой контент, где практически невозможно отличить правду от лжи. Во-вторых, ИИ может негативно повлиять на систему образования — сделать ее поверхностной, если будет сразу предлагать готовые ответы. Сейчас в каких-то школах запрещено приносить калькуляторы на уроки, чтобы дети научились самостоятельно выполнять математические действия. И это правильно. Важно учить фундаментальные основы для понимания того, как устроены различные вещи. Если что-то выйдет из строя, например тот же калькулятор, мы должны суметь сами справиться с задачей. В-третьих, искусственный интеллект может генерировать данные с ошибками, а человек принимать эту информацию за истину. Конечно, это проблема не самого ИИ, а данных, на которых его обучают. Если они изначально содержат какие-либо заблуждения, то и программа будет генерировать контент с различными искажениями. Чтобы решить эту проблему, стоит помечать данные, созданные искусственным интеллектом. ИИ на рынке труда — Как искусственный интеллект повлияет на рынок труда? Это уже серьезным образом влияет на работу маркетологов, дизайнеров, переводчиков, сотрудников call-центров. Все, что связано с обслуживанием клиентов, уже трансформируется под воздействием технологий ИИ. В будущем этот тренд будет только усиливаться. Они смогут объяснить, почему программа пришла к определенному решению, как именно происходил процесс генерации или предсказания, почему был получен именно такой результат. Вот это точно будет востребовано. Существующие профессии, такие как сценарист и режиссер, трансформируются, они будут работать, например, над тем, как сделать ИИ более человекоподобным, чтобы он правильно реагировал и имитировал эмоции. Искусственный интеллект в сочетании с робототехникой в первую очередь заменит профессии, которые связаны с риском для жизни, тяжелыми и опасными условиями труда: шахтеров, водителей самосвалов и другие. Кроме того, исчезнут или сильно изменятся профессии, где много рутины. Например, секретарей и даже программистов. ИИ не заменит ученых. У них появятся новые инструменты со встроенным искусственным интеллектом, которые ускорят процессы и этапы исследования, например сбор и обработку данных, проверку гипотез и даже их генерацию с помощью нейросетей. А самой профессии ученых ничего не грозит, потому что они создают нечто принципиально новое, чего раньше вообще не существовало.

Контент доступен только автору оплаченного проекта Актуальность применения искусственного интеллекта Обзор актуальности использования искусственного интеллекта в современном мире. Упоминание алгоритмов самообучения и их применение для достижения различных целей. Контент доступен только автору оплаченного проекта Перспективы развития Strong AI Информация о том, что Strong AI находится на начальной стадии развития и ожидается, что достигнет своего расцвета в перспективе 50 лет. Примеры применения Strong AI. Контент доступен только автору оплаченного проекта Применение искусственного интеллекта в медицине Исследование использования искусственного интеллекта в медицине. Примеры применения AI для диагностики, лечения и прогнозирования заболеваний. Контент доступен только автору оплаченного проекта Применение искусственного интеллекта в образовании Обзор использования искусственного интеллекта в образовательных процессах. Примеры AI в создании персонализированных образовательных программ и оценке успеваемости учащихся. Контент доступен только автору оплаченного проекта Применение искусственного интеллекта в финансах Исследование использования искусственного интеллекта в финансовой сфере. Примеры применения AI для прогнозирования рыночных трендов, управления рисками и оптимизации инвестиций.

«Искусственный интеллект в нашей жизни»

Искусственный интеллект. Машинное обучение, искусственный интеллект и нейросети из зыбких концепций превратились в функциональные решения, способные выполнять сложные задачи. Будущее искусственного интеллекта Искусственный интеллект перестал быть научной фантастикой и уже сейчас основательно входит в нашу жизнь. Искусственный интеллект (ИИ) — одна из самых перспективных областей в науке и технологиях. К 2024 г. искусственный интеллект сократил время медицинских скрининговых исследований на 60% и в 50 раз ускорил реакцию медицинской сестры на тревожные события. последние новости сегодня. Искусственный интеллект - все самые свежие новости дня по теме. ТАСС – ведущее государственное информационное агентство России.

Как искусственный интеллект изменит мир к 2030 году

Например, Alphabet использует искусственный интеллект для фильтрации спама пользователей Gmail и для улучшений рекомендаций результатов поиска. Amazon и Netflix используют нейросети для формирования подходящих рекомендаций для своих покупателей и пользователей. Другие компании напрямую зарабатывают на росте популярности искусственного интеллекта, продавая оборудование и программное обеспечение. По прогнозам, общие расходы на системы искусственного интеллекта достигнут 97,9 млрд долларов в 2023 году — против 37,5 млрд в 2019 году. Видеокарты, суперкомпьютеры и процессоры Nvidia. Один из главных претендентов на лидерство в области аппаратной составляющей для искусственного интеллекта — производитель графических чипов и видеокарт Nvidia, чьи решения стали стандартом в центрах обработки данных, машинном обучении и работе генеративных нейросетей.

По итогам 2022 года доход от центров обработки данных может превзойти доход от игровой индустрии. Кроме того, чипы компании используются в работе автономных автомобилей, которые должны обрабатывать огромные объемы данных с нескольких датчиков и камер в режиме реального времени: обнаруживать объекты дорожной инфраструктуры, пешеходов и другие транспортные средства и принимать сложные решения. Это требует огромных вычислительных мощностей, что и обеспечивают программные и аппаратные решения Nvidia. Другой крупный игрок — одна из старейших технологических компаний в США, ставшая прародителем современных нейросетей, — IBM. Еще в 2006 году компания представила суперкомпьютер IBM Watson — одну из первых когнитивных систем в мире, способных понимать естественный язык, обрабатывать запрос и выдавать ответ на него.

Но возможности IBM Watson широко применимы во многих отраслях.

Кроме того, ожидается, что подобные системы станут менее зависимы от преподавателей в плане информации, ведь каждый из учеников будет получать тот объем теории, который он в состоянии усвоить на данный момент. Ну и конечно ИИ сыграет ключевую роль в перепрофилировании тех, кто потерял работу из-за внедрения ИИ. Трудоустройство И здесь мы подходим к главной проблеме общества будущего — высокий уровень безработицы. Тенденция на снижение стоимости физического труда в сравнении с ростом оценки интеллектуального капитала и требований к нему приведет к серьёзным политическим, экономическим и социальным сдвигам. Поддерживать тот уровень жизни, что доступен среднестатистическому человеку сейчас, будет крайне сложно.

Поэтому либо высшим кастам придется стать беднее что вряд ли , либо число безработных и нищих будет расти быстрыми темпами. Результатом станет рост преступности, количества войн и локальных конфликтов. Безопасность Беспилотные аппараты, системы прогнозирования поведения и распознавания лиц будут использоваться массово правоохранительными органами и частными организациями. С одной стороны, при этом вырастет роль человека в принятии важных решений, с другой — людям будет необходимо доверить жизнь и безопасность машинам. А вот виртуальное пространство, несмотря на увеличение нагрузки, благодаря ИИ станет безопаснее.

Обучение с подкреплением и глубокое обучение позволяют системам учиться и совершенствоваться, что приводит к созданию адаптивных решений для различных областей, таких как медицина, финансы, образование и промышленность [4]. Компьютерное зрение и обработка естественного языка делают возможным взаимодействие между человеком и машиной более естественным и продуктивным. Искусственный интеллект обещает решать сложные задачи, с которыми сталкивается человечество.

Моделирование и симуляция сложных систем, анализ больших объемов данных и поиск закономерностей в них помогают в прогнозировании пандемий, климатических изменений и других масштабных явлений. ИИ способен ускорить научные исследования, обнаруживать новые лекарства и материалы, снижая затраты времени и ресурсов. ИИ имеет потенциал преобразовать медицину и здравоохранение, делая диагностику более точной и персонализированной. Системы ИИ могут анализировать медицинские изображения, выявлять патологии и помогать врачам в принятии решений. В области геномики ИИ помогает идентифицировать гены, связанные с заболеваниями, и разрабатывать индивидуализированные лечения. Автономные автомобили, дроны и роботы становятся реальностью благодаря ИИ. Системы распознавания и обработки данных позволяют автономным транспортным средствам функционировать в сложных ситуациях на дорогах и в воздухе. Это обещает повысить безопасность, снизить количество аварий и оптимизировать использование ресурсов.

Однако с возросшим влиянием ИИ на общество появляются и вопросы этики и социальных последствий [5].

Мы регулярно смотрим на кейсы в области развития технологий, науки, образования, промышленности, чтобы создавать клиентоцентричные решения, важные в масштабах страны. Команда дирекции по искусственному интеллекту и цифровым продуктам билайна обладает достаточными компетенциями в машинном обучении, чтобы создать систему, которая найдет неявные закономерности и всесторонне посмотрит на рынок искусственного интеллекта. Для обучения модели мы использовали данные, которые нам помогли собрать наши коллеги из Brand Analytics, компании-разработчика одноименной системы мониторинга и анализа соцмедиа и СМИ. В результате среди проанализированного тематического массива данных были новости, посвященные 544 компаниям, 248 из которых попали в наш рейтинг, так как были отмечены разработанной системой в контексте интересующих нас номинаций.

Мы хотели создать рейтинг с душой, но остаться беспристрастными. Считаю, мы справились». Наталья Соколова, управляющий партнер Brand Analytics: «Применение ML-технологий для обработки естественного языка — одно из ключевых направлений в развитии индустрии аналитики соцмедиа, лидером которой является Brand Analytics.

Похожие новости:

Оцените статью
Добавить комментарий