ФАЙЛ ПО СТРОЕНИЮ ГИДРЫ Забирай из ВК — из Телеграм-канала — +0BlroBuXgs05ZTQy Готовься к ОГЭ вместе с Умскул! Вместо этого, гидра обменивается газами (включая кислород и углекислый газ) с окружающей средой через свою тонкую эпителиальную ткань. Гидра населяет пресные водоемы и обычно обитает в воде.
Урок по теме: «Гидра пресноводная»
Гидры дышат всей поверхностью тела растворенным в воде кислородом. Молочнокислые бактерии перерабатывают веществ больше, чем обыкновенные амёбы, так как процесс брожения менее эффективен, чем расщепление с участием кислорода. Поступление кислорода в их клетки осуществляется благодаря проницаемости клеточных мембран и диффузии (процесс выравнивания концентрации кислорода внутри организма и в окружающей его среде) (рис. 3–5). категория: биология. 41. alexej-golov. 4) всю поверхность тела.
Кислород в тело гидры происходит через
Получи ответ на вопрос у нас! Ответ дали 2 человека: Поступление кислорода в тело гидры происходит через — Онлайн Ответ Сайт. 1) жаберные щели 2) дыхальца 3) клетки щупалец 4) всю поверхность тела. Поступление кислорода в тело гидры происходит через 1) жаберные щели2).
Представители класса гидроидные и основные их особенности
Доказано, что каждая промежуточная клетка потенциально способна дать как половые, так и соматические клетки. Стволовые промежуточные клетки не мигрируют, однако их дифференцирующиеся клетки-потомки способны к быстрым миграциям. Нервные клетки и нервная система Править Нервные клетки образуют в эктодерме примитивную диффузную нервную систему — рассеянное нервное сплетение диффузный плексус. В энтодерме есть отдельные нервные клетки. Нервные клетки гидры имеют звездчатую форму. Всего у гидры около 5000 нейронов. У гидры имеются сгущения диффузного плексуса на подошве, вокруг рта и на щупальцах. По новым данным, у гидры имеется околоротовое нервное кольцо, сходное с нервным кольцом, расположенным на крае зонтика у гидромедуз. У гидры нет четкого деления на чувствительные, вставочные и моторные нейроны.
Одна и та же клетка может воспринимать раздражение и передавать сигнал эпителиально-мускульным клеткам. Тем не менее, есть два основных типа нервных клеток — чувствительные и ганглиозные. Тела чувствительных клеток расположены поперек эпителиального пласта, они имеют неподвижный жгутик, окружённый воротничком из микроворсинок, который торчит во внешнюю среду и способен воспринимать раздражение. Ганглиозные клетки расположены в основании эпителиально-мускульных, их отростки не выходят во внешнюю среду. По морфологии большинство нейронов гидры — биполярные или мультиполярные. В нервной системе гидры присутствуют как электрические, так и химические синапсы. Из нейромедиаторов у гидры обнаружены дофамин, серотонин, норадреналин, гамма-аминомасляная кислота, глютамат, глицин и многие нейропептиды вазопрессин, вещество Р и др. Гидра — наиболее примитивное животное, в нервных клетках которого обнаружены чувствительные к свету белки опсины.
Анализ гена опсина гидры позволяет предположить, что опсины гидры и человека имеют общее происхождение [2]. Основная статья: Книдоцит Стрекательные клетки образуются из промежуточных только в области туловища. Сначала промежуточная клетка делится 3-5 раз, образуя кластер гнездо из предшественников стрекательных клеток книдобластов , соединённых цитоплазматическими мостиками. Затем начинается дифференцировка, в ходе которой мостики исчезают. Дифференцирующиеся книдоциты мигрируют в щупальца. Стрекательные клетки наиболее многочисленные из всех клеточных типов, их у гидры около 55 000. Стрекательная клетка имеет стрекательную капсулу, заполненную ядовитым веществом. Внутрь капсулы ввёрнута стрекательная нить.
На поверхности клетки находится чувствительный волосок, при его раздражении нить выбрасывается и поражает жертву. После выстреливания нити клетки погибают, а из промежуточных клеток образуются новые. У гидры есть четыре типа стрекательных клеток — стенотелы пенетранты , десмонемы вольвенты , голотрихи изоризы большие глютинанты и атрихи изоризы малые глютинанты. При охоте первыми выстреливают вольвенты. Их спиральные стрекательные нити опутывают выросты тела жертвы и обеспечивают её удержание. Под действием рывков жертвы и вызванной ими вибрации срабатывают имеющие более высокий порог раздражения пенетранты. Шипы, имеющиеся у основания их стрекательных нитей, заякориваются в теле добычи, а через полую стрекательную нить в её тело вводится яд. Большое количество стрекательных клеток находится на щупальцах, где они образуют стрекательные батареи.
Обычно в состав батареи входит одна крупная эпителиально-мускульная клетка, в которую погружены стрекательные клетки. В центре батареи находится крупная пенетранта, вокруг неё — более мелкие вольвенты и глютинанты. Книдоциты соединены десмосомами с мускульными волокнами эпителиально-мускульной клетки. Большие глютинанты их стрекательная нить имеет шипы, но не имеет, как и у вольвент, отверстия на вершине , видимо, в основном используются для защиты. Малые глютинанты используются только при передвижении гидры для прочного прикрепления щупальцами к субстрату. Их выстреливание блокируется экстрактами из тканей жертв гидры. Выстреливание пенетрант гидры было изучено с помощью сверхвысокоскоростной киносъёмки. Оказалось, что весь процесс выстреливания занимает около 3 мс.
Это позволяет нематоцисте массой около 1 нг развивать на кончиках шипов диаметр которых составляет около 15 нм давление порядка 7 гПа, что сравнимо с давлением пули на мишень и позволяет пробивать толстую кутикулу жертв. Половые клетки и гаметогенез Править Как и всем животным, гидрам свойственна оогамия. Большинство гидр раздельнополы, но встречаются гермафродитные линии гидр. И яйцеклетки, и сперматозоиды образуются из i-клеток. Считается, что это особые субпопуляции i-клеток, которые можно отличить по клеточным маркерам и которые в небольшом количестве присутствуют у гидр и в период бесполого размножения. При оогенезе ооциты фагоцитируют целые оогонии, а затем несколько ооцитов сливаются, после чего ядро одного из них превращается в ядро яйцеклетки, а остальные ядра дегенерируют. Эти процессы обеспечивают быстрый рост яйцеклетки. Как недавно показано, при сперматогенезе имеет место программированная клеточная смерть части клеток-предшественников сперматозоидов и их фагоцитирование окружающими клетками эктодермы [6] Дыхание и выделение Править Дыхание и выделение продуктов обмена происходит через всю поверхность тела животного.
Вероятно, в выделении некоторую роль играют вакуоли, которые есть в клетках гидры. Главная функция вакуолей, вероятно, осморегуляторная ; они выводят излишки воды, которые постоянно поступают в клетки гидры путём осмоса. Раздражимость и рефлексы Править Гидры имеют сетчатую нервную систему. Наличие нервной системы позволяет гидре осуществлять простые рефлексы.
Нервные клетки животного способны возбуждаться.
Например, если дотронуться до него кончиком иглы, то сигнал от ощутивших прикосновение нервных клеток передастся остальным, а от нервных клеток — к эпителиально-мускульным. Кожно-мускульные клетки среагируют и сократятся, гидра сожмется в комок. Такая реакция — яркий пример рефлекса. Это сложное явление, состоящее из последовательных этапов — восприятия раздражителя, передачи возбуждения и ответной реакции. Строение гидры очень простое, поэтому и рефлексы однообразны.
Размножение Сперматозоид подплывает к гидре с яйцевой клеткой и проникает внутрь нее, причем ядра обеих половых клеток сливаются. После этого ложноножки втягиваются, клетка округляется, на ее поверхности выделяется толстая оболочка — образуется яйцо. Когда гидра погибает и разрушается, яйцо остается живым и падает на дно. С наступлением тёплой погоды живая клетка, находящаяся внутри защитной оболочки, начинает делиться, образующиеся клеточки располагаются в два слоя. Из них развивается маленькая гидра, которая выходит наружу через разрыв оболочки яйца.
Таким образом, многоклеточное животное гидра в начале своей жизни состоит всего из одной клетки — яйца. Это говорит о том, что предки гидры были одноклеточными животными. Бесполое размножение гидры При благоприятных условиях гидра размножается бесполым путём. На теле животного обычно в нижней трети туловища образуется почка, она растет, затем формируются щупальца и прорывается рот. Молодая гидра отпочковывается от материнского организма при этом материнский и дочерний полипы прикрепляются щупальцами к субстрату и тянут в разные стороны и ведет самостоятельный образ жизни.
Осенью гидра переходит к половому размножению. На теле, в эктодерме закладываются гонады — половые железы, а в них из промежуточных клеток развиваются половые клетки. При образовании гонад гидр формируется медузоидный узелок. Это позволяет предполагать, что гонады гидры — сильно упрощенные споросаки, последний этап в ряду преобразования утраченного медузоидного поколения в орган. Большинство видов гидр раздельнополы, реже встречается гермафродитизм.
Яйцеклетки гидр быстро растут, фагоцитируя окружающие клетки. Зрелые яйцеклетки достигают диаметра 0,5—1 мм. Оплодотворение происходит в теле гидры: через специальное отверстие в гонаде сперматозоид проникает к яйцеклетке и сливается с ней. Зигота претерпевает полное равномерное дробление, в результате которого образуется целобластула.
Легкие — это полые тонкостенные мешки, оплетенные густой сетью мельчайших кровеносных сосудов — капилляров. Диффузия кислорода из воздуха в капилляры происходит на внутренней поверхности легких. Соответственно, чем это внутренняя поверхность больше, тем активнее идет диффузия.
Земноводные рис. Доля кожного дыхания у разных земноводных может быть различной. Саламандра Рис. Кровеносная система позвоночных У пресмыкающихся кожа сухая, газообмен через нее практически не идет. Внутренняя поверхность легкого пресмыкающихся имеет более сложное устройство, чем у амфибий рис. В легких появляются многочисленные выросты и легочные перегородки, все это значительно увеличивает внутреннюю поверхность легких рис. Легкие пресмыкающегося Источник Птицы во время активного полета тратят кислород с огромной скоростью, и газообмен у них протекает в связи с этим наиболее сложно.
Легкие птиц представляют собой плотные губчатые тела, их внутренняя поверхность очень велика, бронхи сильно разветвлены. Часть ответвлений доходит до множества мелких полостей, стенки которых пронизаны капиллярами кровеносной системы. Другая часть бронхов проходит через легкие и за их пределами образует большие тонкостенные воздушные мешки. Они располагаются между внутренними органами, проникают в полые кости, между мышцами располагаются почти под кожей рис. Дыхательная система птиц Рис. Схема дыхания птиц В покое дыхание птиц обеспечивается движениями грудной клетки. Опускаясь, грудина увеличивает ее объем и растягивает воздушные мешки.
Устремляясь в них, воздух проходит через легкие, и происходит вдох, а при поднятии грудины происходит выдох. Частота дыхания в спокойном состоянии у птиц зависит от их размера — чем мельче птица, тем более часто она дышит. В полете движения грудной клетки исключены, а дыхание осуществляется за счет движение крыльев. При поднятии крыльев воздушные мешки растягиваются, а при опускании происходит выдох. При одном только вздохе усвоить кислород из воздуха невозможно, в воздушные мешки поступает воздух еще относительно богатый кислородом, при выдохе этот же воздух вторично проходит через легкие и отдает еще немного кислорода. Такое явление получило название двойного дыхания. Млекопитающие также обладают достаточно совершенной системой органов дыхания.
Она состоит из трахеи, бронхов и легких, по трахее и бронхам воздух проходит в легкие, где осуществляется газообмен рис. Легкое млекопитающего Рис. Ветвление бронхов в легких Легкие губчатые, в легких бронхи ветвятся рис. Альвеолы оплетены густой сетью мельчайших капилляров. Вентиляцию легких обеспечивает движение появившейся диафрагмы. Диафрагма отделяет брюшную полость от грудной, также дыханию способствует сокращение и расслабление межреберных мышц. Вдох сопровождается увеличением объема грудной клетки, а выдох приводит к ее уменьшению рис.
Дыхательная система человека Рис. Вдох и выдох Анаэробные животные Как вы уже знаете, многие простейшие анаэробны. Среди животных анаэробный обмен веществ встречается реже, но все же встречается. Так, способны обходиться без кислорода сосальщики рис. Как ни странно это звучит, но анаэробный обмен веществ играет важную роль в работе некоторых наших тканей. Сосальщик Рис. Ленточный червь Например, при активной работе, когда кислорода не хватает, поперечнополосатая мускулатура животных фактически осуществляет сбраживание глюкозы до молочной кислоты.
Мышечная боль, которую мы чувствуем после интенсивной физической работы, связана как раз с образованием в мышцах молочной кислоты.
Тема данного урока: «Дыхание и газообмен». Цель урока — обсудить термины «дыхание» и «газообмен», а также рассмотреть органы газообмена животных. Дыхание и газообмен Многим простейшим и огромному большинству животных жизненно необходим кислород.
Только с его помощью эти организмы могут медленно сжигать питательные вещества с получением энергии. Это медленное сжигание, или окисление органических веществ, называется дыханием. У термина «дыхание» сразу два значения. Дыхание в биохимическом смысле — это окисление питательных веществ, проходящее с выделением энергии.
Дыхание в физиологическом смысле — получение кислорода и выделение углекислого газа. Именно последнее мы будем рассматривать в нашем уроке. Газообмен — это обмен газов между организмом и окружающей средой. В организм постоянно поступает кислород, который потребляется всеми клетками, органами и тканями.
Из организма выделяется углекислый газ и некоторое количество других продуктов распада питательных веществ. Таким образом, газообмен — это дыхание и немного выделения. Некоторые простейшие — анаэробные организмы, т. Анаэробы бывают факультативными и облигатными.
Факультативно анаэробные организмы — это организмы, способные жить как в отсутствии кислорода, так и при его присутствии. Облигатные анаэробные организмы — это организмы, для которых кислород ядовит. Они могут жить только в отсутствии кислорода. Анаэробным организмам кислород для окисления питательных веществ не нужен рис.
Брачонелла — анаэробная инфузория Рис. Кишечные лямблии Другим простейшим, а их все же большинство, кислород нужен. Поступление кислорода в их клетки осуществляется благодаря проницаемости клеточных мембран и диффузии процесс выравнивания концентрации кислорода внутри организма и в окружающей его среде рис. Амебы Рис.
Зеленая водоросль хлорелла Рис. Инфузория-туфелька Источник Небольшие животные способны, как и простейшие, дышать через всю поверхность тела. Каждая клетка, к примеру, крошечной турбеллярии находится от поверхности недалеко. Кислород ко всем тканям и органам поступает путем простой диффузии.
С возрастанием размера тела возникает необходимость в транспорте кислорода к клеткам тела, расположенным внутри организма, далеко от внешней среды. В процессе эволюции возникают органы и системы органов, которые позволяют этот транспорт осуществить. Органы дыхания. Как осуществляется газообмен у животных различных систематических групп?
Губки — это фильтраторы. Через свое пористое тело они постоянно пропускают ток воды. Все клетки губок так или иначе контактируют с внешней средой и получают кислород оттуда рис. Губка на морском дне Источник Кишечнополостные имеют всего два клеточных слоя тела.
Наружный слой, эктодерма, напрямую контактирует с окружающей водой. Внутренний слой, энтодерма, контактирует с жидкостью кишечной полости, которая тоже, фактически, окружающая среда рис. И одни, и другие клетки получают кислород из жидкости путем простой диффузии. Строение кожно-мускульного мешка гидры Свободноживущие плоские черви специальных органов дыхания не имеют.
Гидра пресноводная: внешний вид, способ дыхания, размножение и местообитание
Если кратко описать людей с таким "веществом", можно заметить, что они общительные и гибкие. Кроме того, им свойственно идеализировать мир. Люди со 2-й группой крови - это прекрасные организаторы.
Считается, что это особые субпопуляции i-клеток, которые можно отличить по клеточным маркерам и которые в небольшом количестве присутствуют у гидр и в период бесполого размножения. При оогенезе ооциты фагоцитируют целые оогонии, а затем несколько ооцитов сливаются, после чего ядро одного из них превращается в ядро яйцеклетки, а остальные ядра дегенерируют. Эти процессы обеспечивают быстрый рост яйцеклетки. Как недавно показано, при сперматогенезе имеет место программированная клеточная смерть части клеток-предшественников сперматозоидов и их фагоцитирование окружающими клетками эктодермы [7] Дыхание и выделение[ править править код ] Дыхание и выделение продуктов обмена происходит через всю поверхность тела животного. Вероятно, в выделении некоторую роль играют вакуоли, которые есть в клетках гидры. Главная функция вакуолей, вероятно, осморегуляторная ; они выводят излишки воды, которые постоянно поступают в клетки гидры путём осмоса. Раздражимость и рефлексы[ править править код ] Гидры имеют сетчатую нервную систему.
Наличие нервной системы позволяет гидре осуществлять простые рефлексы. Гидра реагирует на механическое раздражение, температуру, освещённость [3] , наличие в воде химических веществ и на ряд других факторов внешней среды. Питание и пищеварение[ править править код ] Гидра питается мелкими беспозвоночными — дафниями и другими ветвистоусыми, циклопами , а также олигохетами-наидидами. Есть данные о потреблении гидрами коловраток и церкарий трематод. Добыча захватывается щупальцами с помощью стрекательных клеток, яд которых быстро парализует мелких жертв. Координированными движениями щупалец добыча подносится ко рту, а затем с помощью сокращений тела гидра «надевается» на жертву. Пищеварение начинается в кишечной полости полостное пищеварение , заканчивается внутри пищеварительных вакуолей эпителиально-мускульных клеток энтодермы внутриклеточное пищеварение. Непереваренные остатки пищи выбрасываются через рот. Так как у гидры нет транспортной системы, а мезоглея слой межклеточного вещества между экто- и энтодермой достаточно плотная, возникает проблема транспорта питательных веществ к клеткам эктодермы. Эта проблема решается за счёт образования выростов клеток обоих слоёв, которые пересекают мезоглею и соединяются через щелевые контакты.
Через них могут проходить мелкие органические молекулы моносахариды, аминокислоты , что обеспечивает питание клеток эктодермы. Размножение и развитие[ править править код ] При благоприятных условиях гидра размножается бесполым путём. На теле животного обычно в нижней трети туловища образуется почка, она растет, затем формируются щупальца и прорывается рот. Молодая гидра отпочковывается от материнского организма при этом материнский и дочерний полипы прикрепляются щупальцами к субстрату и тянут в разные стороны и ведёт самостоятельный образ жизни. Осенью гидра переходит к половому размножению. На теле, в эктодерме закладываются гонады — половые железы, а в них из промежуточных клеток развиваются половые клетки. При образовании гонад гидр формируется медузоидный узелок. Это позволяет предполагать, что гонады гидры — сильно упрощённые споросаки, последний этап в ряду преобразования утраченного медузоидного поколения в орган. Большинство видов гидр раздельнополы, реже встречается гермафродитизм. Яйцеклетки гидр быстро растут, фагоцитируя окружающие клетки.
Зрелые яйцеклетки достигают диаметра 0,5—1 мм. Оплодотворение происходит в теле гидры: через специальное отверстие в гонаде сперматозоид проникает к яйцеклетке и сливается с ней. Зигота претерпевает полное равномерное дробление , в результате которого образуется целобластула. Затем в результате смешанной деламинации сочетание иммиграции и деламинации осуществляется гаструляция. Вокруг зародыша формируется плотная защитная оболочка эмбриотека с выростами-шипиками. На стадии гаструлы зародыши впадают в анабиоз. Взрослые гидры погибают, а зародыши опускаются на дно и зимуют. Весной продолжается развитие, в паренхиме энтодермы путём расхождения клеток образуется кишечная полость, затем формируются зачатки щупалец, и из-под оболочки выходит молодая гидра. Таким образом, в отличие от большинства морских гидроидных, у гидры отсутствуют свободноплавающие личинки, развитие у неё прямое. Миграция и обновление клеток[ править править код ] В норме у взрослой гидры клетки всех трёх клеточных линий интенсивно делятся в средней части тела и мигрируют к подошве, гипостому и кончикам щупалец.
Там происходит гибель и слущивание клеток. Таким образом, все клетки тела гидры постоянно обновляются. При нормальном питании «избыток» делящихся клеток перемещается в почки, которые обычно образуются в нижней трети туловища. Регенеративная способность[ править править код ] Гидра обладает очень высокой способностью к регенерации. При разрезании поперек на несколько частей каждая часть восстанавливает «голову» и «ногу», сохраняя исходную полярность — рот и щупальца развиваются на той стороне, которая была ближе к оральному концу тела, а стебелек и подошва — на аборальной стороне фрагмента. При этом сам процесс регенерации не сопровождается усилением клеточных делений и представляет собой типичный пример морфаллаксиса. Гидра может регенерировать из взвеси клеток, полученных путём мацерации например, при протирании гидры через мельничный газ. В экспериментах показано, что для восстановления головного конца достаточно образования агрегата из примерно 300 эпителиально-мускульных клеток. Показано, что регенерация нормального организма возможна из клеток одного слоя только эктодермы или только энтодермы. Фрагменты разрезанного тела гидры сохраняют информацию об ориентации оси тела организма в структуре актинового цитоскелета : при регенерации ось восстанавливается, волокна направляют деление клеток.
Изменение структуры актинового скелета может привести к нарушениям в регенерации образованию нескольких осей тела [8]. Опыты по изучению регенерации и модели регенерации[ править править код ] Уже ранние опыты Абраама Трамбле показали, что при регенерации сохраняется полярность фрагмента.
Очень развита мезоглея. Достигают гораздо более крупных размеров, чем гидроидные медузы, например диаметр медузы цианеи волосистой достигает двух метров. Нервная система диффузного типа, однако, в отличие от гидры имеет значительные скопления нервных клеток по краю зонтика. Размножение медуз Гонады развиваются в энтодерме.
Медузы — раздельнополые животные. Оплодотворение в основном наружное. После оплодотворения образуется яйцо, из которого выходит личинка — планула. Планула садится на дно и образует кратковременную стадию полипа. На полипе образуются поперечные перетяжки — происходит стробиляция. От полипа отделяются молодые медузы — эфиры.
Попробуйте решить задание ЕГЭ: Установите соответствие между названиями классов и характеристиками животных, которые в эти классы входят: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца. Хорошо развита мезоглея В цикле развития преобладает медуза Медуза очень просто организована или отсутствует в жизненном цикле Есть пресноводные представители Имеют более развитые органы чувств Класс Гидроидные.
Активное движение воды создается для улучшения газообмена. Нет кровеносной системы с центральным органом. Роль гидровой системы в обмене газами Гидра, как и другие представители многоклеточных животных, нуждается в постоянном поступлении кислорода и удалении углекислого газа для поддержания обмена газами. Гидровая система играет важную роль в этом процессе. У гидры отсутствуют специализированные органы для дыхания, поэтому они получают кислород и выделяют углекислый газ через поверхность тела. Гидровая система гидры улучшает этот процесс. В гидровой системе гидры есть сеть полых клеток, известных как гидроциты или клетки-трубки, которые расположены по всему телу и связаны между собой системой каналов. Гидроциты позволяют гидре аккумулировать исключительно кислород, который поступает в организм из окружающей среды.
Когда гидра находится в водной среде, гидроциты открываются наружу и пропускают внутрь своего полости окружающую среду. Когда гидра находится на суше или в воде с пониженным содержанием кислорода, гидроциты закрываются и сохраняют кислород внутри себя. Гидровая система гидры также помогает ей удалить углекислый газ. В процессе обмена газами у гидры образуется углекислый газ, который должен быть удален из ее организма. Гидроциты открываются, и углекислый газ выходит через них в окружающую среду. Гидровая система гидры, таким образом, позволяет ей поддерживать постоянный обмен газами с окружающей средой, обеспечивая поступление необходимого кислорода и удаление отработанного углекислого газа. Преимущества гидровой системы в обмене газами у гидры: — Повышает эффективность обмена газами; — Позволяет гидре адаптироваться к различным условиям окружающей среды; — Обеспечивает необходимое количество кислорода; — Улучшает удаление углекислого газа из организма гидры. Оцените статью.
Гидра: удивительное животное, которое почти невозможно убить
Жизнедеятельность гидры Дыхание: • дышит растворенным в воде кислородом • поглощает кислород и выделяет. Отвечает Илиева Ульяна. 4)всю поверхность тела. 3 ответа - 0 раз оказано помощи. 4) всю поверхность тела. самое древнее чувство восприятия химического состава окружающей среды есть даже у одноклеточных организмов. 4. Существует целый ряд аномалий обоняния.
Органы дыхания кишечнополостных
Поступление кислорода в тело гидры происходит через 1)жаберные щели 2)дыхальца 3)клетки щупалец 4)всю поверхность тела. Гидра относится к типу Кишечнополостные, для которых нехарактерно наличие дыхательной системы, поэтому дышит гидра через всю поверхность тела. Вместо этого, гидра обменивается газами (включая кислород и углекислый газ) с окружающей средой через свою тонкую эпителиальную ткань. Гидра населяет пресные водоемы и обычно обитает в воде. Гидры дышат всей поверхностью тела растворенным в воде кислородом. Перечислите пути поступления кислорода в организм. (4). Какое значение в жизни растения имеет дыхание? Что такое годичные кольца? Что можно определить по годичным кольцам?