Новости что такое кубит

Новый квантовый компьютер достигает когерентности кубита на заряде электрона в 0,1 миллисекунды.

От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы

Недавно нам выпала возможность послушать как звучат кубиты в ролике о работе квантового компьютера IBM. Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации. Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. Они могут работать, как обычные кубиты, так и как кудиты, представляющие собой расширенную версию кубитов.

Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир

По данным QuantumCTek, чип Xiaohong используется для проверки килокубитной системы, уже разработанной компанией независимо. Международная гонка кубитов Доцент CAS Лян Футянь Liang Futian сказал, что ключевые показатели чипа Xiaohong, как ожидается, достигнут уровня производительности чипов основных международных облачных платформ квантовых вычислений, таких как IBM. IBM заявила о выпуске чипа на тысячу кубитов в декабре 2023 г. Журнал Nature назвал его первым в мире. В январе 2024 г. Ранее D-Wave заявляла также о важных результатах исследований, демонстрирующих успешное устранение квантовых ошибок QEM в прототипе Advantage2.

Запутанность — состояние квантовых частиц двух и более , при котором между ними устанавливается некая связь, даже если они находятся за тысячи километров друг от друга. То есть если вы измените один кубит, запутанный с ним тоже изменится. Добавляя в систему запутанные кубиты, можно экспоненциально увеличить вычислительные возможности квантовых компьютеров. Интерференция — следствие суперпозиции и один из самых загадочных принципов квантовой механики, который упрощенно подразумевает, что частица скажем, фотон может пересекать свою же траекторию и мешать собственному движению. Так как каждое состояние кубита описывается амплитудой вероятностей, эти состояния формируют интерференционную картину. Если хотите разобраться в терминах, почитайте про опыт с двумя щелями Томаса Юнга. Интерференция может быть конструктивной и деструктивной — создатели квантовых компьютеров используют эти эффекты, чтобы влиять на вероятность определенного состояния для ускорения вычислений. Декогеренция — что-то вроде неконтролируемого коллапса волновой функции. Если в систему кубитов попадет любой шум из окружающей среды электрические и другие помехи, не заметные глазу , суперпозиция нарушится, информация может потеряться что критическим образом повлияет на точность решения задач.

Ограничение декогеренции — ключевая задача при создании квантового компьютера. Как устроены квантовые компьютеры? Вопреки ожиданиям, современные квантовые компьютеры не очень большие — размером примерно с холодильник но есть еще коробка с электроникой размером с комод. А вот детально они устроены гораздо сложнее привычных компьютеров. Обычно они состоят из: Квантовой системы. Технологии могут отличаются, но в основном роль кубитов играют либо ионы с разными уровнями энергии, либо сверхпроводящие цепи с разными колебательными состояниями, либо топологические кубиты например, майорановские частицы. Некоего кластера, в котором находятся кубиты и в котором они будут как можно дольше стабильны. Кластеры обычно охлаждают до температуры, близкой к абсолютному нулю, или стабилизируют с помощью химических компонентов. Цель — защитить кубиты от любых внешних помех.

Устройства для передачи сигналов кубитам, чтобы манипулировать их состоянием. Часто это делают с помощью микроволновых импульсов или лазерного света с определенной длиной волны.

Именно достоверность лимитирует сложность алгоритма. Точнее сказать пока не могу: не проверяли. Модернизировав адресацию и считывание, мы повысили число кубитов, с которыми можно работать. Мы занимаемся и улучшением достоверности. На сегодня она лимитирована двумя факторами. Это значит, что у нас есть только одна частота, и на ней вся мощность. Чем меньше шумов в лазере, тем выше достоверность. Задача нетривиальная, в мире не так много людей умеют это делать.

Это одни из самых точных и чистых спектральных лазеров в мире. Он изготовлен, идет измерение характеристик и калибровка. После того как мы поставим новый, немного изменим систему привязки к нему лазера. Хотим использовать схему injection locking. Смысл такой: берем свет, прошедший через резонатор, и заводим его в лазерный диод, и этот лазерный диод начинает генерировать точно такое же излучение, какое прошло через резонатор. Излучение, пройдя через резонатор, становится очень чистым. В итоге мы глубоко улучшаем лазерную систему, которая используется для взаимодействия с ионами. Нам надо, чтобы они двигались всегда одинаково, а сейчас они двигаются в течение большого промежутка времени — дня например, немного по-разному. С высокой достоверностью — В целом удается повысить достоверность? Мы далеко продвинулись, но последние проценты всегда самые сложные.

Мы также увеличиваем время когерентности нашей системы, модернизируя систему компенсации магнитного поля вблизи иона. Добиваемся, чтобы магнитное поле было одинаковым и стабильным. Раньше мы для этого использовали катушки и прецизионные источники тока, сейчас переходим на постоянные магниты. Это тоже должно расширить спектр задач, которые мы сможем решать на нашем компьютере.

Россия активно включилась в квантовую гонку — для исследователей в области квантовой физики запустили мегагранты, а до конца 2024 в стране может появиться 100-кубитный квантовый компьютер.

А в Китае стартап Shenzhen SpinQ Technology разработал, пожалуй, самый доступный квантовый компьютер для школ и колледжей. Первые образцы китайского квантового компьютера отправились в Тайвань и Гонконг. В гонку стран включился даже Иран, правда, неудачно — в сети появилась новость об их удивительном квантовом компьютере. Но пользователей в интернете не так просто обмануть — подвох нашли быстро. Иранская разработка оказалась обычным процессором.

Пока купить квантовый компьютер могут лишь крупные компании и научные лаборатории, где цена будет оправдана. Но пока вычислительные машины на кубитах не настолько превосходят обычные ЭВМ и подходят лишь для определенного рода задач. Впрочем, в ближайшее десятилетие ученые панируют это изменить. А облачные вычисления на процессорах будущего доступны простым пользователям уже 8 лет: IBM в 2016 году запустила облачную платформу IBM Q Experience с удалённым доступом к квантовому компьютеру. Самый мощный квантовый компьютер для коммерческого использования на сегодня содержит 5 000 кубитов.

Это разработка немецкого исследовательского центра на базе канадской системы D-Wave, Advantage, так назвали машину. Ее возможности можно протестировать — вычисления доступны через облако. Первые квантовые ЦОД Сейчас квантовые машины используют в основном в лабораториях — им нужны особые условия. Это не ПК и не ноутбук, который можно легко взять с собой в дорогу — компьютер на кубитах по размеру больше холодильника. Суть в том, что чем больше кубитов, тем более неустойчивой становится система.

Пока самый успешный концепт холодильника для квантовых компьютеров представила D-Wave. Несмотря на особые условия размещения, которые не просто обеспечить, в сети уже появились новости о строительстве первых квантовых дата-центров — IBM планирует построить первый ЦОД для суперкопьютеров в Германии. С его помощью компания планирует облегчить доступ к передовым вычислениям исследовательским и государственным учреждениям. Но квантовые технологии не только научный прорыв, а еще и вызов для ученых — для защиты квантовых данных уже недостаточно обычных методов асимметричного шифрования, любые данные с суперкомпьютером можно взломать за несколько минут. Для безопасной и быстрой передачи данных уже сейчас прокладывают квантовые магистральные связи — в России такая линия соединяет Москву, Санкт-Петербург и Нижний Новгород, в ближайшие несколько лет продолжат подключать и другие города.

Анонсирован выпуск первого в мире квантового компьютера с более чем 1000 кубитов

При этом бит может иметь несколько состояний одновременно — быть и нулём, и единицей. Или вообще многоуровневой системой, но мейнстрим сейчас — кубит, у него два уровня. Вычислительная мощность растёт экспоненциально с добавлением кубитов в систему 2n. А в обычной системе она растёт квадратично n2. Современная наука находится в стадии понимания, что такое квантовая механика. Все законы частиц, взаимодействия атомов между собой описываются законами квантовой механики. Эта наука отличается от того, что было до неё. Например, в квантовой механике есть принцип суперпозиции, благодаря которому размерность пространства состояний растёт экспоненциально. Классический компьютер просто не может это смоделировать. А квантовый компьютер сам построен на таких явлениях и умеет работать с такими системами.

Плюс в квантомеханической системе есть амплитуды вероятности с комплексными числами — у обычных компьютеров такого нет. Если взять задачу по разложению какого-то числа в 2 048 бит, то классический алгоритм будет раскладывать его за тысячу шагов и за 1 000 000 000 000 лет. А алгоритм Шора, если бы был квантовый компьютер с нужным количеством кубит, сделает это за 107 шагов — примерно 10 секунд. Пока таких квантовых компьютеров нет, но те, которые есть, уже умеют делать то, на что классическому компьютеру понадобится огромное количество времени. Физик Дэвид ди Винченцо грамотно сформулировал пять основных критериев: 1 Сформулировать, что такое кубит. Они бывают разные, сегодня есть несколько известных платформ — на атомах, ионах, сверхпроводниках, фотонах. Понять, как сделать так, чтобы кубит одновременно был нулем и единицей. В каждой из платформ введение в суперпозицию — отдельная задача и это позволяют делать разные физические принципы. За каждым из этих явлений стоит много инженерных сложностей.

Например, если измерить кубит, его состояние изменится и его нельзя клонировать. Или шумы, электромагнитные волны, частицы плохо влияют на систему, поэтому большинство платформ охлаждают всю систему до низких температур, чтобы минимизировать влияние шумов и пыли. Но и работать в криогенике намного сложнее. Всё это усложняет создание квантовых компьютеров, поэтому сейчас максимально есть около 130 кубитов. Например, IBM выпустил 128-кубитную систему. Но есть не только физические, но и логические кубиты. В чём разница? Чтобы достичь нужного уровня, — делают логические кубиты, то есть из большого количества физических кубитов делают один логический кубит, программируют на него протоколы коррекции ошибок, алгоритм и получается, что это один кубит с высоким показателем точности.

Вы не можете объяснить их только тем фактом, что кубит в состоянии 1 или в состоянии 0. Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255.

Что происходит, если у вас не один кубит, а тысяча, и все они взаимодействуют друг с другом в результате чего получается то самое состояние квантовой «запутанности»? Законы квантовой механики действуют непреклонно — придется просчитывать все возможные значения всех тысяч бит. Это 2 в тысячной степени — больше, чем количество атомов в наблюдаемой Вселенной! Если у вас 53 кубита, как в «Сикоморе» от Google, то получится 2 в степени 53, или около 9 квадриллионов значений. В чем суть эксперимента по квантовому превосходству? Цель эксперимента Google — с помощью 53 кубит «Сикомора» произвести вычисление, для симуляции которого обычному компьютеру действительно понадобилось бы 9 квадриллионов шагов. Кубиты в «Сикоморе» расположены в прямоугольной сетке, которая позволяет каждому кубиту взаимодействовать с соседними. От обычного компьютера снаружи холодильной камеры к «Сикомору» идет сигнал, сообщающий каждому кубиту, как ему себя вести, с каким из соседей взаимодействовать и когда. Иначе говоря, это программируемое устройство — именно поэтому оно и называется компьютером. В конце все кубиты измеряют, получая случайную строку из 53 битов.

Какая последовательность взаимодействий используется для получения этой строки, неважно. В эксперименте Google они были случайными. Затем можно снова выполнить ту же самую последовательность, чтобы сэмплировать другую случайную 53-битную строку точно таким же образом — и так далее, так часто, как вам нужно. По оценке Google, чтобы повторить пробное вычисление, которое заняло у «Сикомора» 3 минуты 20 секунд, понадобилось бы 10 тысяч лет и 100 тысяч традиционных компьютеров, на которых запущены самые быстрые на сегодняшний день алгоритмы. Эта задача так сложна, что с помощью обычного компьютера оказалось невозможно даже проверить результаты вычисления! Так что для проверки работы квантового компьютера в самых сложных случаях Google полагался на аналогии с более простыми. Почему IBM говорит, что Google ничего не достиг Компания IBM, которая сконструировала свой собственный 53-кубитный процессор, тут же опубликовала опровержение. Компания заявляет, что с помощью мощнейшего суперкомпьютера на планете она сможет повторить эти вычисления за 2,5 дня, а не за 10 тысяч лет. Для этого понадобится суперкомпьютер Summit в Национальной лаборатории Ок-Риджа в штате Теннесси, площадь которого занимает пару баскетбольных полей. IBM утверждает, что может записать все 9 квадриллионов возможных состояний, используя не умещающиеся в моем воображении 250 петабайт физической памяти суперкомпьютера.

Что характерно, IBM не считает, что такое моделирование будет легким: на момент написания этой статьи компания так и не провела его. Кто и что в итоге доказал?

Это свойство позволяет квантовым компьютерам выполнять несколько вычислений одновременно, что делает их намного быстрее классических компьютеров.

Суперпозиция — не единственное свойство, которое отличает кубиты от классических битов. Другим важным свойством является запутанность. Когда кубиты запутаны, они становятся связанными так, что их состояния коррелируют, независимо от расстояния между ними.

Это свойство позволяет квантовым компьютерам выполнять операции, которые были бы невозможны с классическими компьютерами. Для создания кубитов квантовые компьютеры используют различные технологии, включая сверхпроводящие схемы, ионные ловушки и фотонику. Одна из самых популярных технологий создания кубитов — сверхпроводящие схемы.

Сверхпроводящие схемы состоят из крошечных витков сверхпроводящего провода, охлажденных почти до нуля. Схемы становятся сверхпроводящими при чрезвычайно низких температурах, что подразумевает, что они имеют нулевое электрическое сопротивление. Это свойство позволяет электронам перемещаться по цепям без потери энергии.

Для выполнения операций с кубитами квантовые компьютеры используют серию квантовых вентилей, похожих на логические вентили, используемые в классических вычислениях. Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение. Поддержание когерентности кубитов является критической и трудной задачей при построении квантового компьютера.

Редакция 3 января 2022 Квантовые компьютеры могут решать задачи, которые обычным компьютерам кажутся невозможными. Обычные компьютерные чипы могут обрабатывать только определенное количество информации за один раз, и мы очень близки к достижению их физического придела. Напротив, уникальные свойства материалов для квантовых вычислений позволяют обрабатывать больше информации намного быстрее. Эти достижения могут произвести революцию в определенных областях научных исследований.

Определение материалов с определенными характеристиками, понимание фотосинтеза и открытие новых лекарств — все это требует огромных объемов вычислений. Теоретически квантовые вычисления могут решить эти проблемы быстрее и эффективнее. Квантовые вычисления также могут открыть возможности, о которых мы даже не задумывались. Это как микроволновая печь против обычной духовки — разные технологии с разными целями.

Но мы еще не достигли цели. На данный момент одна компания заявила, что ее квантовый компьютер может выполнять определенные вычисления быстрее, чем самые быстрые классические суперкомпьютеры. До ученых, регулярно использующих квантовые компьютеры для ответа на научные вопросы, еще далеко. Чтобы использовать квантовые компьютеры в больших масштабах, нам необходимо улучшить технологию, лежащую в их основе — кубиты.

Кубиты — это квантовая версия самой основной формы информации обычных компьютеров, битов. Что особенного в кубитах? В атомном масштабе физика становится очень странной. Электроны, атомы и другие квантовые частицы взаимодействуют друг с другом иначе, чем обычные объекты.

В определенных материалах мы можем использовать это странное поведение. Некоторые из этих свойств — особенно суперпозиция и запутанность — могут быть чрезвычайно полезны в вычислительной технике. Принцип суперпозиции заключается в том, что кубит может находиться в нескольких состояниях одновременно. С традиционными битами у вас есть только два варианта: 1 или 0.

Эти двоичные числа описывают всю информацию на любом компьютере. Кубиты сложнее. Представьте себе кастрюлю с водой. Когда у вас есть вода в кастрюле с крышкой, вы не знаете, кипит она или нет.

Обычно вода либо кипит, либо нет — точка зрения не меняет ее состояния. Но если бы горшок находился в квантовой сфере, вода представляющая квантовую частицу могла одновременно кипеть и не кипеть, или любая линейная суперпозиция этих двух состояний могла бы быть справедливой. Если бы вы сняли крышку с этой квантовой кастрюли, вода сразу же перешла бы в то или иное состояние.

Что такое квантовый компьютер? Принцип работы кубитов и квантовых вычислений

Технологии квантовых компьютеров в 2022: достижения, ограничения | Quantum Crypto Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение.
Квантовые компьютеры Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе.
Технологии квантовых компьютеров в 2022: достижения, ограничения Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей.
ЧТО ТАКОЕ КУБИТ или двухкубитовые квантовые вентили осуществляют логические операции над кубитами.
Будущее квантовых компьютеров: перспективы и риски Именно на базе кубитов такого типа сегодня чаще всего разрабатывают квантовые вычислительные устройства.

Что такое квантовые вычисления?

Количество кубитов в квантовых компьютерах — это обман. Вот почему Обычные компьютеры работают на битах, квантовые — на кубитах, то есть используют принципы элементарных частиц, которые позволяют экспоненциально наращивать вычислительную мощность.
Что такое квантовые вычисления? Как и двоичные биты, кубиты лежат в основе вычислений, с одним большим отличием: кубиты, как правило, являются сверхпроводниками электронов или других субатомных частицами.
Количество кубитов в квантовых компьютерах — это обман. Вот почему Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света.
Что такое квантовые вычисления – как они изменят интернет Кубит — это носитель квантовой информации и аналог бита в квантовом мире, основной элемент любых квантовых вычислителей.
Анонсирован выпуск первого в мире квантового компьютера с более чем 1000 кубитов — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам.

От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы

Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. Последние новости о разработке собраны в этой статье. Российские ученые изготовили и испытали первый в нашей стране сверхпроводящий кубит.

Физик Алексей Устинов о российских кубитах и перспективах их использования

Однако не исключено, что первые попытки лабораторной реализации подобных алгоритмов или их элементов начнут появляться к концу десятилетия. Рост числа кубитов по годам Другим возможным подходом к борьбе с шумами является не коррекция, а подавление ошибок [14]. Наиболее распространёнными являются подходы с так называемой экстраполяцией к нулевому шуму и с применением в схеме дополнительных параметризованных гейтов, призванных статистически подавлять влияние специфических шумов. Преимуществом подхода является то, что он не требует увеличения числа физических кубитов в алгоритме. Метод экстраполяции к нулевому шуму является наиболее простым методом подавления ошибки, и он отлично подходит для применения в вариационных квантовых алгоритмах. Данный тип алгоритмов — самый реальный кандидат на практическое использование в NISQ-устройствах. Вариационный алгоритм сочетает использование квантового вычислителя для ускоренного расчёта некоторой целевой функции с использованием классического оптимизатора. Можно сказать, что прямая реализация принципа, высказанного Ричардом Фейнманом: для расчёта состояний квантово-механической системы используется квантовый вычислитель. В зависимости от того, какая квантовая схема используется, оптимизируемая целевая функция может решать задачи квантовой химии, оптимизации или даже криптоанализа [15, 16].

Интереснее всего то, что неизвестны точные асимптотики эффективности квантовых вариационных алгоритмов. В отдельных случаях они способны демонстрировать результаты, превосходящие и классический оптимизатор, и даже квантовый алгоритм Гровера. В совокупности со сравнительно низкими требованиями по числу кубитов вариационные алгоритмы можно оценить как потенциально одну из самых близких к практическому внедрению технологию из области квантовых вычислений. Сверхпроводники Долгое время квантовые компьютеры на основе сверхпроводящих кубитов удерживали рекорд по доступному объёму вычислительного регистра. Именно на машине такой архитектуры было продемонстрировано практическое квантовое превосходство [1]. В основе физической реализации данного типа кубитов лежит квантование уровней энергии электрического колебательного контура в условиях сверхпроводимости. Такой подход обеспечивает достаточно высокую степень точности исполнения операций, однако поддержание вычислителя в сверхпроводящем состоянии требует создания криогенных температур в значительном объёме. Это, в свою очередь, ведёт к существенной чувствительности вычислителей данного типа к внешнему воздействию, а также создаёт дополнительные препятствия для масштабирования.

Тем не менее, достижением 2022 года является представленный компанией IBM вычислитель Osprey с 433 сверхпроводящими кубитами [17]. Если представленный годом ранее Eagle, обладающий 127 кубитами, теоретически позволял промоделировать отдельные элементы атаки S-AES с простейшей коррекцией ошибок, например, с девятикубитным кодом Шора, то в регистре Osprey можно проводить эксперименты со значительно более сложными и совершенными кодами коррекции. В контексте этого вызывает интерес исследование методов подавления ошибки на уровне логических кубитов. Точная оценка перспектив этих подходов требует более подробных экспериментальных данных, однако, можно утверждать, что IBM пока достаточно успешно поддерживают тренд роста числа кубитов сверхпроводниковых вычислителей. Озвученным прогнозом специалистов IBM стало получение компьютера с 4000 кубитов к 2025 году. И, несмотря на всю кажущуюся амбициозность данного заявления, фундаментальных ограничений, которые могли бы препятствовать достижению заявленных параметров, нет. Если специалисты IBM справятся с подавлением шумов и поддержанием когерентности для регистра с таким количеством кубитов — они смогут выполнить обещание. Холодные атомы Вычислители на основе холодных атомов не требуют криогенного охлаждения кубитов.

Теоретически, за счёт возможности наращивания числа оптических ловушек, удерживающих атомы, и большей устойчивости к шумам, вычислители данного типа обладают несколько большим потенциалом масштабирования, по сравнению с квантовыми компьютерами на основе сверхпроводящих цепей. В то же время возникающие при работе с атомными кубитами ошибки в значительной мере поддаются контролю за счёт методов подавления. Это было продемонстрировано в 2021 году с представлением программируемого атомного симулятора на 256 кубитов [18]. По количеству кубитов для архитектуры на основе холодных атомов рекорд прошлого года — 256 кубитов на программируемом симуляторе, остаётся актуален. Однако произошел прорыв в технологии реализации двухкубитных гейтов. Поскольку атомы электрически нейтральны, они не взаимодействуют на расстоянии. Реализация двухкубитного гейта для них требует возбуждения одного из атомов в состояние с очень высокой энергией, называемое ридберговским. В таком состоянии радиус, на котором атомы могут взаимодействовать, существенно увеличивается и наблюдается эффект ридберговской блокады: если один атом уже находится в ридберговском состоянии, это приводит к смещению электронных уровней соседнего атома, что не позволяет возбудить его в ридберговское состояние при помощи характерного лазерного импульса.

На основе этого эффекта может быть построен запутывающий гейт [19]. Новый подход использует ультракороткие лазерные импульсы для одновременного возбуждения атомов в ридберговские состояния за пределами режима ридберговской блокады [20]. Это даёт возможность преодолеть характерное временное ограничение и перейти от микросекундного временного масштаба к наносекундному. И, хотя рекордная точность операции пока не продемонстрирована, такой подход за счёт скорости взаимодействия атомов ведёт к значительному снижению вероятности возникновения ошибки при применении двухкубитного гейта. Новый тип запутывающих гейтов не предоставляет технологию для реализации квантовых операций с гигагерцовой частотой. Однако он позволяет преодолеть характерный временной барьер, так что вычислитель, построенный на гейтах такого типа, теоретически сможет по порядку величины приблизиться к быстродействию классических компьютеров. В совокупности со сравнительно долгим временем жизни атомного кубита данная технология в перспективе существенно повышает потенциал масштабируемости вычислителей на основе холодных атомов. Оптические кубиты Электрическая нейтральность атомов обеспечивает им меньшую чувствительность к шумам окружающей среды, но, в то же время, создаёт сложности для обеспечения взаимодействия атомов между собой.

Это заставляет использовать более сложные схемы реализации двухкубитных гейтов, такие как гейты на основе ридберговской блокады. Ещё дальше в этом направлении заходят кубиты на основе фотонов. Фотоны практически не взаимодействуют ни с окружением, ни между собой. За счёт этого они, с одной стороны, практически не подвержены влиянию шума, но, с другой, реализация запутывающего гейта для фотонных кубитов в ряде случаев связана с фундаментальными ограничениями. По этой причине до недавнего времени оптические квантовые вычислители оценивались как наиболее перспективные на временном горизонте от 10 лет. Но в 2021-2022 годах стали доступны новые технические возможности, позволяющие обойти характерные для оптической архитектуры фундаментальные ограничения. Существуют несколько способов кодирования кубита в состоянии фотона. Наиболее простые — поляризационный кубит и двухрельсовая кодировка.

Поляризационный кубит подразумевает сопоставление состояний 1 и 0 ортогональным поляризациям, например, вертикальной и горизонтальной. Двухрельсовая кодировка предлагает кодировать один кубит в паре оптических мод, сопоставленных состояниям 0 и 1, в одной из которых находится фотон. В обоих случаях из-за слабого взаимодействия фотонов реализация двухкубитного гейта требует использования нелинейной среды. Причём величина нелинейности должна на много порядков превосходить достижимые значения. Ввиду технической невозможности прямой реализации был найден альтернативный подход, названный протоколом KLM Knill, Laflamme, Milburn [21]. Он позволяет реализовывать двухкубитный запутывающий гейт с использованием только линейных элементов, однако получаемая схема имеет ограниченную вероятность успешного срабатывания. Такой подход уже является приемлемым для экспериментальных задач, и позволяет реализовывать квантовые вариационные алгоритмы с малым числом кубитов. Однако конечная вероятность успешного срабатывания гейта ведёт к экспоненциально малой вероятности срабатывания всей схемы при её масштабировании, что недопустимо.

Преодоление этого ограничения потребовало выработки ещё одного альтернативного подхода.

Что может остановить прогресс? Допустим, если время жизни системы 0,001 секунда, то можно не успеть вычислить что-то важное. Надо думать, как удерживать качество вычислений и масштабировать их. Возьмем компанию IonQ — в неё проинвестировали уважаемые инвестиционные фонды со всего мира, она даже стала публичной. Они делают системы на ионах, и проблема в том, что там есть ионные ловушки, но есть предел количества ионов, который можно уловить. И надо придумать механизм связывания ловушек между собой.

С этим пока большие проблемы — это сильно мешает масштабировать систему. У других платформ есть похожие серьезные проблемы. Еще есть проблемы с оборудованием — иногда под квантовые компьютеры нужно изобретать новые устройства. Например, специальную оптику, лазеры, вакуумное оборудование, криогенные камеры. Проблем много, но это путь развития — микроэлектроника уже прошла его. Это нормально: под каждый новый процесс промышленность адаптируется и придумываются новые проводящие металлы и другие открытия. Просто вся система пока на ранней стадии зрелости.

На что обратить внимание? Например, количество кубитов — это показатель? Если совсем не понимаешь, — эти бенчмарки очень поверхностно раскроют суть прогресса, а иногда даже введут в заблуждение. Как, например, с количеством кубитов — на самом деле это хорошо, но не говорит о том, насколько система умеет вычислять и с какой точностью. Для меня важно количество связанных между собой логических кубитов, точность вычисления, время жизни системы и способность вычислять практические алгоритмы. Поэтому кажется, что этим занимается очень ограниченное число организаций. Не значит ли это, что такие устройства будут работать только в пользу корпораций и государств?

И можно писать свои квантовые схемы и считать алгоритмы. Каждый разработчик заинтересован в увеличении количества практических задач, которые можно делать на их квантовом компьютере, поэтому стоимость удешевляется. По количеству инвестиций в сектор можно сделать вывод о том, что прогресс есть. Это косвенный параметр — если сотни инвесторов вкладывают и отрасль растёт, это говорит о многом. Видимо, мы близки к решениям, которые станут практическими. Но при этом есть всего 80 организаций, которые делают квантовые компьютеры. Но цифры говорят, что в hardware проинвестировали 1,5 млрд.

В центре желтая дверь видна чистая комната. Ее монтаж пока еще не закончен. Цель эксперимента, который мы поставили, была пока самой простой из тех, которые только возможны.

Мы не манипулировали квантовым состоянием, мы фактически установили, что у объекта существуют два уровня, соответствующих состояниям ноль и один. Мы также измерили частоту перехода между этими уровнями под действием микроволновых фотонов, которая зависела от внешнего магнитного поля, то есть померили спектр нашего квантового устройства. Вообще, когда мы измеряем кубит при помощи изменяющейся индуктивности, мы фактически меряем вероятность пребывания кубита в возбужденном состоянии состояния с энергией выше минимальной.

Поскольку кубит связан со всей окружающей средой, он живет там не бесконечно. Сколько живет ваш кубит? Это не так много по современным достижениям.

Но еще несколько лет назад характерные времена были наносекунды, то есть за 13 лет произошел прогресс примерно в миллион раз. Кубиты, которые мы здесь мерили, соответствуют среднему уровню на настоящий момент. Фактически мы просто научились мерить эти кубиты, и теперь мы планируем начать их производить здесь, в России.

У нас будет инструмент для того, чтобы можно было делать с ними измерения. Мерить время когерентности, производить квантовые манипуляции, то есть делать квантовые преобразования, которые соответствуют логическим операциям. И как скоро можно ждать первых функционирующих операций?

Дело в том, что такие логические гейты, то есть схемы, реализующие простейшие логические алгоритмы на сверхпроводящих схемах, уже продемонстрированы как минимум в трех крупных университетах: это Йель, Университет Санта-Барбары в Калифорнии и группа моего бывшего аспиранта, ныне профессора Андреаса Вальрафа Andreas Wallraff в Цюрихе. Я не говорю еще о том, что, например, компания D-wave уже создала 100-битный квантовый компьютер на принципе квантовой релаксации это когда система релаксирует состояние с минимальной энергией. Подобные компьютеры позволяют вычислять состояния определенного класса систем и решать задачи, скажем, нахождения объекта среди многих других одинаковых объектов.

Поэтому у нас есть идеи делать что-то такое, что позволит привнести совершенно новый элемент, может быть, позволит в чем-то обойти основную группу команд, которые работают с кубитами. Я просто скажу, почему это имеет отношение к кубитам. В первом спины ориентированы одинаково, а в сверхпроводнике они объединены в пары в куперовских парах спины электронов противоположно направлены.

Поэтому на первый взгляд при прохождении через ферромагнетик пары должны распадаться, но если слой ферромагного материала достаточно тонкий, этого не происходит. При этом, однако, при правильном подборе материала происходит сдвиг фаз волновых функций на значение числа пи отсюда и название. На самом деле внешнее магнитное поле при работе кубита нужно ровно для этого же.

На самом деле кубиты при этом живут достаточно долго по сравнению со временем, которое требуется на выполнение одной логической операции. Кроме того, существуют специальные методы, так называемые «методы коррекции ошибок» в квантовых вычислениях.

Правда, мы слишком любим котиков, поэтому лучше покажем мем с тарелками.

В ходе эксперимента Шредингера возникает суперпозиция Тарелки Шредингера одновременно находятся в двух состояниях — мы не знаем, какие из них разобьются, а какие останутся целы. Зато можем предсказать это, основываясь на траектории их падения, циркуляции воздуха в помещении и скорости открытия дверцы. То есть можем математически подсчитать вероятность того, что они разобьются.

Своеобразное математическое гадание. Суперпозиция Вместо битов квантовый компьютер использует кубиты — это частица, которая может находиться в позиции 1, 0, между ними, а также одновременно во всех возможных состояниях… с какой-то вероятностью. Нахождение в любой из комбинаций называется суперпозицией.

Кубит может принять значение любого из квадратов в сфере, а бит — только 1 или 0 И вот тут-то загвоздка — значение этой частицы зависит от многих факторов, в том числе и измерения. Мы не знаем точно, в каком именно состоянии находится кубит, пока не решим его измерить. Запутано, правда?

Благодаря кубитам со сложными задачами, на решение которых даже суперкомьютеру нужны недели, квантовый справится за считанные минуты. Какие задачи может решать квантовый компьютер Кубиты помогают быстро обрабатывать данные, поэтому их применение почти безгранично: Медицина Квантовые технологии уже применяют для ускоренной разработки, тестирования лекарств и диагностики некоторых заболеваний на ранней стадии. Например, FAR Biotech исследует биоактивные молекулы и белки и новые структурные классы, которые невозможно было бы обнаружить без мощных квантовых компьютеров.

Свои исследования компания направляет на борьбу с онкозаболеваниями. В теории в будущем квантовые вычисления откроют новые горизонты в генной инженерии, помогут создавать новые лекарства и моделировать ДНК. Прогнозирование От финансового сектора до прогноза погоды — кубиты просчитывают множество переменных в разы быстрее, чем обычные компьютеры.

Это значит, что прогнозы станут точнее, можно будет определить скорость ветра, температуру, влажность, движение облачных масс за секунды. Криптография В 1994 году Питер Шор разработал квантовый алгоритм разложения числа на простые множители. В теории с его помощью компьютеры смогут взломать любые шифры — это прорыв в области криптографии и одновременно большой риск.

Любые пароли, если технологию используют злоумышленники, не будут иметь значения — машина получит доступ к любой кредитке, разложив число на два простых множителя. Но для взлома понадобятся мощности, которых пока квантовые компьютеры не достигли.

Категории статьи

  • В России создан первый сверхпроводящий кубит
  • Кубит. Большая российская энциклопедия
  • Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес
  • Что такое кубиты и как они помогают обойти санкции?🤔 |
  • КОММЕНТАРИЙ УЧЕНОГО

От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы

Инвестиции в квантовые компьютеры: на что стоит обратить внимание Они могут работать, как обычные кубиты, так и как кудиты, представляющие собой расширенную версию кубитов.
Как работает квантовый компьютер: простыми словами о будущем Последние новости о разработке собраны в этой статье.
Квантовый компьютер: что это, отличие от обычного, как купить и стоит ли покупать Начинаем погружаться в основу основ квантовой связи и квантовой информатики, так что сегодня узнаем, что такое кубит, для чего он нужен и в каких направления.
Как работают квантовые процессоры. Объяснили простыми словами Увеличивается количество используемых кубитов, модернизируются системы поддержания кубитной когерентности, ведутся поиски оптимальной технологии изготовления многокубитных архитектур.

Технологии квантовых компьютеров в 2022: достижения, ограничения

Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. Отечественные кубиты состоят из четырех джозефсоновских контактов и выполнены методом литографии из тончайших пластин алюминия, толщиной всего 2 нанометра, которые разделены слоем диэлектрика. IBM объявила о выпуске квантового процессора Eagle с рекордным количеством кубитов (127). Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей.

Почему от квантового компьютера зависит национальная безопасность и когда он появится в России

Есть неплохие кандидаты на роль кубитов, но каждый из них несёт багаж недостатков. Учёные из Нидерландов попытались создать гибридные кубиты, сочетая лучшие и нивелируя худшие их свойства, и преуспели в этом. Перспективный гибридный кубит лёгок в производстве, прост в управлении и стабилен. Правда, пока только в лаборатории и на бумаге. Учёный держит квантовый чип пинцетом, перед установкой на плату. Источник изображения: QuTech Исследователи уже не раз горели желанием сочетать сверхпроводящие и спиновые явления.

Кубиты на основе сверхпроводников, которые используют стабильные состояния электромагнитных полей или моды, хорошо изучены и используются на практике в составе квантовых компьютеров IBM, Google и других. Такие кубиты хорошо взаимодействуют на больших расстояниях и легко управляются, хотя они относительно большие и имеют предел по скорости выполнения операций. Спиновые кубиты на атомах или элементарных частицах малы и могут массово выпускаться даже на полупроводниковых заводах из 80-х годов прошлого века. Но такие кубиты ограничены по дальности взаимодействия и управления. Как взять одни свойства перспективных кубитов и отбросить другие?

Эту задачу попытались решить учёные из QuTech — исследовательской организации, созданной Делфтским технологическим университетом и Нидерландской организацией прикладных научных исследований TNO. В свежей работе, опубликованной в Nature Physics, учёные рассказали о создании и успешных испытаниях гибридной спиново-сверхпровдящей платформы. Можно сказать, что учёные улучшили так называемый «спиновый кубит Андреева», который строится на основе ряда квантовых эффектов, названных именем советского физика Александра Фёдоровича Андреева. В джозефсоновских контактах, где сверхпроводящий ток течёт без напряжения, существуют микроскопические электронные состояния — андреевские уровни, каждый из которых может рассматриваться как микроскопический источник эффекта Джозефсона. Они же являются родительскими состояниями майорановских мод.

Джозефсоновские переходы или контакты способны также захватывать сверхпроводящие квазичастицы со своими спинами. Тем самым появляется связь между сверхтоками и спинами. Сверхпроводящим током можно изменять направление спина, а детектирование спина может регистрировать сверхпроводящие токи. Это говорит о том, что "спиновый кубит Андреева" может стать ключевым элементом для соединения квантовых процессоров, основанных на радикально различных технологиях кубитов: полупроводниковых спиновых кубитах и сверхпроводящих кубитах». Учёные всего мира ищут возможность продлить квантовые состояния кубитов до возможности запуска на них сложных алгоритмов.

Речь идёт хотя бы о секундах, не говоря о более длительном времени. Возможно, с этим смогут помочь немецкие учёные, которые предложили новый тип кубитов. Источник изображения: Dennis Rieger, KIT Исследователи из Технологического института Карлсруэ разработали сверхпроводящие кубиты, которые они назвали «гральмониевыми» gralmonium по аналогии с уже разработанными флюксониевыми кубитами. Традиционно сверхпроводящие кубиты используют так называемый эффект Джозефсона и структуру переход , называемый джозефсоновским контактом. Квантовые состояния на таких контактах остаются неизменными тем дольше, чем меньше дефектов в материале.

Но определить чистоту материала можно до определённой степени. Разработка немецких учёных обещает помочь с этим и вывести сверхпроводящие квантовые кубиты на новый уровень стабильности. Сообщается, что вместо двух алюминиевых пластин, разделённых слоем диэлектрика, на чём обычно строится джозефсоновский контакт, исследователи взяли гранулированный алюминий с размерами гранул в несколько нанометров и поместили его в оксидный каркас. После процесса самоорганизации в структуре материала возникло множество микроскопических джозефсоновских контактов, что позволило детектировать мельчайшие дефекты в материале. Джозефсоновский контакт размерами 20 нм как увеличительное стекло выявил все неразличимые до этого дефекты, отметили учёные.

Столь небольшой по размерам джозефсоновский контакт открывает путь к значительному улучшению свойств кубитов, включая повышение их стабильности. Разработка запатентована и ждёт своего развития, которое, очевидно, вскоре последует.

Для этого нам нужно в туннельный микроскоп, прямо под иглу, вводить источник высокочастотного излучения, который бы переводил кубит из основного состояния в возбужденное.

И это следующий этап. Во многом его успех зависит от выбора материала и примеси. Духова , Института физики металлов им.

Михеева Екатеринбург , Института физики ионных пучков и исследования материалов Германия и Университета Аалто Финляндия. Российские ученые повысили производительность квантовых процессоров с помощью кудитов Ученые НИТУ МИСиС и Российского квантового центра предложили подход к реализации квантовых алгоритмов с использованием дополнительных уровней квантовой системы, который позволил на порядок повысить итоговое качество выполнения квантовых алгоритмов. Российские ученые знают, как сделать квантовый процессор мощнее По словам ученых, основной способ повышения производительности квантовых процессоров — увеличение числа их кубитов — наименьшей единицы информации в квантовом компьютере.

Однако ионы или атомы, которые часто выступают в роли кубитов, имеют больше двух уровней и могут работать не только как кубиты, но и как кудиты, которые являются расширенной версией кубита и могут находиться в трех кутриты , четырех кукварты , пяти куквинты и более состояниях. Дополнительные состояния позволяют плотнее кодировать данные в физических носителях, что, в свою очередь, дает возможность реализовывать все более сложные и комплексные квантовые алгоритмы. Таким образом возрастает мощность квантового процессора , и операции могут производиться значительно быстрее, пояснили исследователи.

По состоянию на апрель 2023 года, большая часть исследований, посвященных квантовым операциям, сосредоточена на кубитах — все операции, которые применяются к квантовой системе, представляются в виде одно- и двухкубитных квантовых вентилей, преобразующих входные состояния кубитов в выходные по определенному закону. Для работы с кудитами важно найти новые подходы с математической точки зрения. Ученые Университета МИСиС и Российского квантового центра рассмотрели один из способов использования куквинтов — 5-уровневых кудитов — и представили модель декомпозиции обобщенного вентиля Тоффоли.

В качестве примера рассмотрен квантовый алгоритм Гровера для поиска по неупорядоченной базе данных. Известно, что, используя только этот вентиль, можно построить любую обратимую классическую логическую схему, например, арифметическое устройство или классический процессор. Такое рассмотрение помогает одновременно и сократить число физических носителей информации, и использовать дополнительный уровень в качестве вспомогательного состояния для упрощения декомпозиции многокубитных вентилей, или как их еще называют — гейтов — сложных логических операций с кубитами.

Благодаря этому подходу при реализации квантовых алгоритмов на куквинтах становится возможным сократить число двухчастичных гейтов, то есть задействующих две физические системы», — рассказал заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров. Заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров В качестве раскладываемого многокубитного гейта ученые выбрали часто встречающийся в квантовых алгоритмах многокубитный гейт Тоффоли — обобщенную на n кубитов версию универсального контролируемого обратимого вентиля. Его применение инвертирует состояние n-го кубита, если все остальные n-1 кубитов находятся в состоянии 1.

Как отметили исследователи, располагая в каждом куквинте по два кубита и используя пятый уровень в качестве вспомогательного, можно значительно сократить число двухчастичных гейтов в его разложении по сравнению с расположениями на кубитах и таким образом повысить качество выполнения квантовых алгоритмов. Для демонстрации процессов был выбран именно этот алгоритм, так как для его выполнения необходимо неоднократно реализовать многокубитные гейты. Мы сравнили три способа декомпозиции многокубитных вентилей в рамках выполнения данного алгоритма на 2-10 кубитах, когда в качестве носителей информации используются кубиты, кутриты и куквинты, и продемонстрировали, как сокращается число двухчастичных гейтов», — пояснила эксперт научного проекта НИТУ МИСиС, научный сотрудник РКЦ Анастасия Николаева.

Например, для 8-кубитного алгоритма Гровера на кубитах требуется выполнить больше 1000 двухчастичных гейтов, в то время как для его реализации на куквинтах их потребуется всего 88. Полученные учеными результаты применимы к квантовым процессорам , основанным на различных физических платформах, таких как ионы, нейтральные атомы, сверхпроводящие цепи и другие. Статья опубликована в научном журнале Entropy.

Баумана одни из первых в мире смогли реализовать двухкубитную операцию, используя сверхпроводящие флаксониевые кубиты — альтернативу популярным трансмонам. Особенность флаксониумов состоит в более продолжительном жизненном цикле и большей точности операций, что дает возможность выполнять более длинные алгоритмы. Как известно, одна из основных проблем разработки универсального квантового вычислителя заключается в кубитах, а именно — из каких квантовых объектов лучше всего делать процессоры для квантовых компьютеров : электронов, фотонов, ионов, сверхпроводников или других кандидатов в «квантовые транзисторы».

За последние десять лет сверхпроводниковые кубиты получили огромный толчок в развитии. При этом самыми коммерчески успешными сверхпроводящими кубитами по состоянию на 2022 год являются трансмоны, которые активно исследуются и используются в квантовых разработках Google , IBM и других мировых лабораторий, рассказали в НИТУ МИСИС. По словам ученых, главная задача кубита — целостно хранить и обрабатывать информацию.

Случайный шум и даже просто наблюдение способны привести к потере или изменению данных.

Например, КК на ионах обладает очень высокой точностью и когерентностью, но скорость операций и число кубитов пока невелики. КК на сверхпроводниках имеет самое большое число кубитов на сегодня, но из-за особенностей технологии их точность, как правило, невысокая. Соответственно, некорректно называть их самыми мощными.

Для сравнения разных типов КК между собой был предложен квантовый объем. Если говорить упрощенно, он отражает реальную вычислительную «мощность» квантового компьютера. Где сейчас и как ускориться В России сейчас активно разрабатываются все основные типы квантовых компьютеров: на ионах, атомах, оптических интегральных схемах и на сверхпроводниках. Самый мощный КК в стране построен на ионах и насчитывает 16 кубитов.

Заместитель руководителя группы «Прецизионные квантовые измерения» РКЦ Илья Семериков, который разрабатывает этот КК, рассказывает: «Нам еще только предстоит измерить экспериментально квантовый объем нашего ионного компьютера, но, судя по достоверностям двухкубитных операций и связности, я бы ожидал увидеть 25 или, может быть, 26. Увеличение квантового объема — наша основная задача на сегодня». Такие результаты соответствуют уровню лидеров квантовой гонки начала-середины 2020 г. Текущий рекорд по квантовому объему по состоянию на июль 2023 г.

Он составляет 219, или 524 288. Это означает, что компьютер может выполнять сложные квантовые алгоритмы с высокой точностью. РКЦ в конце 2021 г. К недостаткам модели относилось меньшее время когерентности, но на сегодня эта проблема решена, сказал Семериков.

Текущая точность квантового компьютера РКЦ находится на уровне ведущих компаний 2018-2019 гг. По словам Семерикова, сейчас команда активно работает над ее повышением. МФТИ создал рабочий квантовый чип, выполненный на сверхпроводниках, на 8 кубитах. Сейчас тестируется на 12 кубитах.

Оборудование для этого было закуплено еще в 2016 г. Но сохраняются сложности с масштабированием и улучшением этого типа КК.

Сам по себе он не впечатляет, но дело в том, что даже убежденному скептику можно продемонстрировать случайность битов, обеспеченную квантовой интерференцией. Надежная случайность битов необходима для шифрования, например, в случае с криптовалютами с доказательством доли владения Proof-of-stake, или PoS — экологичными альтернативами биткоина. Google, кстати недавно купил права на этот протокол. Симуляция квантовых процессов природы. Еще одно практическое применение потребует больше кубитов и более высокое качество работы — как раз сейчас техногиганты спешат обогнать друг друга в конструировании такого устройства. Это небольшие квантовые компьютеры, которые смогут симулировать квантовые процессы химических веществ и материалов, помогая ученым в их исследованиях. Симуляция квантовой механики, превосходящая количество амплитуд в реальности за счет компьютера, равного по мощности самой природе, — о таком применении говорил Ричард Фейнман в начале 1980-х годов, когда создал концепцию квантового компьютера. Это всё еще самое важное применение этой технологии, которое поможет в разработке чего угодно: от аккумуляторов и солнечных батарей до удобрений и лекарств.

Достижение невероятных мощностей. Еще одна веха будущего — квантовое исправление ошибок. В теории эта технология позволит удерживать кубиты в правильном состоянии без помех в течение длительного периода времени. Исследователи полагают, что квантовое исправление ошибок в итоге позволит квантовым компьютерам вырасти от пары сотен кубитов до машин с миллионами или миллиардами кубитов, что сделает мечту Фейнмана реальностью. Но этого пока что никто не сделал — и неизвестно, когда это станет возможным. Google доказал, что квантовая механика работает В то же время эксперимент Google — это решающее доказательство жизнеспособности самой идеи. Построить квантовый компьютер так трудно, что с тех пор как ученые серьезно взялись за это дело в середине 1990-х, некоторые скептики утверждали, что это попросту невыполнимая задача. Кубиты, говорили они, всегда будут слишком хрупкими, чтобы их контролировать. И если законы квантовой механики предсказывают, что количество амплитуд вычислений растет по экспоненте — что ж, тем хуже для нашего понимания квантовой механики! Эксперимент Google должен дать всем скептикам паузу для размышления.

Очевидно, что устройство на 53 кубита действительно смогло просчитать 9 квадриллионов амплитуд, оставив позади все суперкомпьютеры на планете — пусть пока что и в совершенно бессмысленном вычислении. Квантовая механика работает! Это вывод одновременно ожидаемый и поразительный, консервативный и радикальный. Компьютерная революция началась с одного-единственного изобретения — транзистора. В дотранзисторную эпоху мы застряли на ненадежных электронных лампах. Но они свое дело делали — переводили абстрактную алгебру логики в электрический сигнал достаточно надежно, чтобы это было полезно практически.

Миллион задач в секунду: как работают квантовые компьютеры

Тогда мы воздействуем на кубиты другим лазером, и каждый кубит приобретает значение 0 либо 1. Это значение мы считываем, записываем, после чего проводим точно такое же вычисление еще раз и снова считываем результат. Проделав вычисления много раз, мы можем говорить об ответе с достаточной степенью вероятности. Физически на экране 0 или 1 выглядят так: светится точка-ион или не светится. К нашему квантовому компьютеру можно подключиться через интернет, загрузить свою программу на платформу облачного доступа и выполнить ее у нас. Программист нажимает кнопку запуска, а мы в лаборатории следим, чтобы все работало. Алгоритмы в рамках дорожной карты по квантовому процессору создает в Российском квантовом центре научная группа Алексея Федорова, он же руководит лабораторией Московского института сталей и сплавов в рамках проекта «Квантовый интернет». Алгоритм, который запускал на нашем компьютере президент, уже не совсем простой. Он позволяет промоделировать зависимость потенциальной энергии двух атомов от расстояния между ними, то есть посчитать потенциальную энергию молекулы. Бывают простые химические реакции, которые можно посчитать, а для этого надо знать кривую потенциальной энергии. Расчет можно выполнить и на обычном компьютере, но чем больше молекула, тем сложнее задача для расчета ее потенциальной энергии.

Например, для формальдегида такую задачу на обычном компьютере решить невозможно. Мы же точно квантово-механически рассчитываем все волновые функции, то есть положения всех электронов, и вычисляем кривую. Такой компьютер в России сейчас один. По-видимому, алгоритмы квантовой химии будут одними из первых, на которых будет показано полезное квантовое превосходство, то есть квантовый компьютер будет работать быстрее классического. Но я не очень глубоко погружен в тему алгоритмов. С помощью облачной платформы на нем был запущен алгоритм расчета простой молекулы Следующий уровень — Вы сказали, что сегодня ваша оптическая система находится в глубокой модернизации. Во всех компаниях в мире существует довольно большой зазор между началом управления регистром и запуском реальной программы. Это связано и с настройками, и с созданием такой программы. Именно достоверность лимитирует сложность алгоритма. Точнее сказать пока не могу: не проверяли.

Модернизировав адресацию и считывание, мы повысили число кубитов, с которыми можно работать.

Мы банально будем меньше тратить времени на какие-то вещи, быстрее добираться до работы». Что же предлагают создатели компьютеров будущего?

В привычном для нас процессоре информация представлена в виде последовательности нулей и единиц, так называемых битов. Физически это контакты транзисторов. Так называемом кубите.

Это значит, что он может быть немножечко 0, но в основном единицей. В основном 1 и немножечко 0. Это дает нам большие возможности, мы можем закодировать больше информации в меньшем объеме».

В качестве примера можно привести человека. В случае обычного компьютера он может находиться только в одной из двух точек, допустим, это Северный или Южный полюс. В квантовом же мире с некоторой вероятностью человек может находиться в Москве, Владивостоке, на Шри-Ланке или в Дубае.

Его продемонстрировали на Форуме будущих технологий. На этом компьютере с помощью облачной платформы запущен алгоритм моделирования молекулы. Компьютер смоделировал молекулу гидрида лития за минуту, на что обычному компьютеру понадобилось бы гораздо больше времени.

На сегодня это самый мощный квантовый компьютер в стране. Подпишитесь , чтобы быть в курсе. Компьютер разработала команда ученых из Российского квантового центра и физического института им.

В транзисторе вода — это электричество, и включение-выключение крана тоже зависит от электричества. Представьте, что краны соединены между собой так, что вода из одного крана включает или выключает другой кран, — и так каскадом по цепочке. Транзисторы соединены таким хитрым образом, что когда они включаются и выключаются, на них можно производить математические вычисления. Из-за того, что транзисторов очень много миллиарды , а работают они очень быстро близко к скорости света , транзисторные компьютеры могут очень быстро совершать математические вычисления. Всё, что вы видите в компьютере, — это производные от вычислений. Вы видите окно, буквы, картинки, а где-то в самой-самой глубине это просто сложение и вычитание, а ещё глубже — включение-выключение кранов с электричеством на скорости света. Транзистор в компьютере может принимать значение 1 или 0, то есть «включён» или «выключен». С точки зрения компьютерной логики, этот транзистор называется битом.

Это минимальная единица информации в компьютере. Физически бит может быть в процессоре, на чипе памяти, на магнитном диске, но суть одна: это какое-то физическое пространство, которое определённо либо включено, либо выключено. Ключевое слово здесь — «определённо». Программист и инженер может точно узнать, в каком состоянии находится тот или иной бит. Заряд в нём либо есть, либо нет, никаких промежуточных состояний там не существует. В квантовом компьютере вместо битов — кубиты. Кубиты — это квантовые частицы, у которых есть интересная особенность: кроме стандартных 0 и 1 кубит может находиться между нулём и единицей — это называют суперпозицией.

Похожие новости:

Оцените статью
Добавить комментарий