Новости 26 задача егэ информатика

Шпаргалка по задачам по ЕГЭ по информатике 2023. Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике. ЕГЭ. Информатика. 26 задание. 3 апреля 2023. Некоторые из способов решения заданий данного задания. Готовься к ЕГЭ по Информатике с бесплатным Тренажёром заданий от Новой школы. Здесь ты найдешь задания №15 ЕГЭ с автоматической проверкой и объяснениями от нейросети.

Задание 26. Досрок 2023. ЕГЭ по информатике — Video

В варианте ЕГЭ-2024 две задачи по теории вероятностей — это №4 и №5. По заданию 5 в Интернете почти нет доступных материалов. Разбор заданий с прошедшего ЕГЭ 2023. Задание 26 → Умение обрабатывать целочисленную информацию с использованием сортировки. В статье описано решение задания 20 ЕГЭ по информатики с поэтапным выполнением. Представлен подробный разбор 21 задания егэ по информатики. 5сть полное совпадение задач 26 и 27.

Информатика ЕГЭ

Всё, что нужно знать о ЕГЭ по информатике Разбор задания 26 из ЕГЭ по информатике с помощью Python.
Перечень решенных задач по номеру КИМ 26. Обработка данных через сортировку. Источник: Поляков Инфоурок › Информатика ›Конспекты›Разбор задания №26 ЕГЭ (Информатика).

Search code, repositories, users, issues, pull requests...

Отвечая на вопросы зрителей эфира, педагоги уточнили, что единых требований к программному обеспечению на экзамене нет — этот вопрос регламентируют региональные центры обработки информации. Эксперты посоветовали сочетать различные виды подходов в подготовке к экзамену в течение ближайшего месяца. Так, например, на выходных можно ставить таймер и решать по одному полному варианту в день, а затем собирать статистику и отрабатывать задачи, вызывающие сложности. Если есть возможность решить задачу разными способами, воспользуйтесь ей, проверяйте себя», — подчеркнул Сергей Сосенушкин. Видеозапись эфира доступна на страницах Рособрнадзора в социальной сети «ВКонтакте» и на Rutube.

Например, полное дерево игры не является верным ответом на это задание. Запишем условие более понятным языком.

Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 63 камня или больше. Первым ходит Петя. Задание 1а. Укажите все такие значения числа S, при которых Петя может выиграть за один ход. Решение задания 1а. Ответ на задание 1а.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Решение задания 1б. Минимальное значение - 7. Ответ на задание 1б. Решение задания 2. Необходимо найти такое значение S количество камней во второй куче , при котором Петя не сможет выиграть своим первым ходом, но и Ваня также не может выиграть своим первым ходом.

Причем, любой ход Вани создает выигрышную ситуации для Пети, который выигрывает своим вторым ходом.

В каждом случае суммарное число камней не менее 100. Следовательно, Саша выигрывает своим первым ходом. Если начальная позиция 20; 39 , то после первого хода Коли может получиться одна из четырёх позиций: 22; 39 всего 61, 40; 39 всего 79, 20; 41 всего 61, 20; 78 всего 98. Для каждой из полученных позиций Саша, удвоив число камней во второй куче, получит соответственно позиции 22; 78 , 40; 78 , 20; 82 , 20; 156. Если начальными являются позиции 10; 42 , 8; 44 , 20; 37 , то выигрывает Коля своим вторым ходом. Если начальной является одна из позиций 10; 42 или 8; 44 , то, чтобы выиграть, Коля должен после своего хода получить позицию 10; 44.

Для этого он должен увеличить на 2 число камней либо во второй куче для позиции 10; 42 , либо в первой для позиции 8; 44. Считая позицию 10; 44 начальной, мы приходим к рассмотрению ситуации задания 1. Как уже было показано выше, в этом случае выигрывает тот, кто ходит вторым. Значит, выиграет Коля своим вторым ходом. Если начальная позиция 20; 37 , то, чтобы выиграть, Коля должен увеличить во второй куче число камней на 2. Тогда после его хода получится позиция 20; 39. Считая эту позицию начальной, мы приходим к рассмотрению ситуации задания 1.

Если начальной является позиция 8; 42 , то выигрывает Саша не более чем за два хода. После первого хода Коли из начальной позиции 8; 42 можно получить одну из следующих: 10; 42 , 16; 42 , 8; 44 , 8; 84.

При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33.

Дерево партий для начальной позиции 8, 32. Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно. При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход. Задание 2 Формальное решение Рассмотрим начальную позицию 6,32. Заметим, что она близка к 6,33 из Задания 1. В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход.

Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым. Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода. Докажем это. Таким образом, получается позиция 6,33. Как мы выяснили ранее, в позиции 6,33 тот, кто ходит, проигрывает.

В нашем случае будет ход Вани. Поэтому Ваня проиграет в один ход. Аналогично в позиции 7, 32. В этой позиции согласно тем же рассуждениям, тот, кто ходит, проигрывает. Будет ход Вани, поэтому Ваня проиграет. Аналогично в позиции 8, 31.

Задание 3 Обсуждение Заметим, что из ситуации 7, 31 очень легко попасть либо в ситуации 8, 31 и 7, 32 , в которых, согласно предыдущему Заданию, тот, кто ходит, выигрывает, либо в ситуации 14, 31 и 7, 62 , в которых тот, кто ходит, может выиграть в один ход, увеличив в два раза количество камней во второй кучке. Таким образом, получается, что у Вани должна быть выигрышная стратегия. При этом он может выиграть как в 2 хода первые два случая , так и в один ход вторые два случая. Формальное решение В начальной позиции 7, 31 выигрывает Ваня в один или два хода. Для этого построим дерево всех партий. Дерево всех партий для начальной позиции 7, 31.

Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках. Таким образом, в начальной позиции 7, 31 у Вани имеется выигрышная стратегия, при этом Ваня выиграет в один или два хода. Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков?

Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша один в два раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28.

Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев.

Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Побеждает тот игрок, который называет последнюю букву любого слова из набора. Петя ходит первым. Определить выигрышную стратегию.

В первом слове 99 букв, во втором 164.

Задание 26 егэ информатика перестановка букв.

На уроке рассмотрен разбор 26 задания ЕГЭ по информатике: дается подробное объяснение и решение задания 2017 года. #егэ по информатике. #решение задач на python. 26 задание ЕГЭ по информатике: изучай теорию и решай онлайн тесты с ответами. Задание номер 26 ЕГЭ по информатике. Сколько баллов? Как делать задание? Теория. Шпаргалка. Практика. Разбор. Решение. Критерии оценивания. Баллы. Задание 27. Во всех задачах этого типа необходимо выделить из всех данных те из них, которые лучше подходят для целей задачи и распределить их по остаткам. ЕГЭ. Информатика. 26 задание. 3 апреля 2023. Некоторые из способов решения заданий данного задания.

Задание №26 в Excel

Для каждой из полученных позиций Саша, удвоив число камней во второй куче, получит соответственно позиции 22; 78 , 40; 78 , 20; 82 , 20; 156. Если начальными являются позиции 10; 42 , 8; 44 , 20; 37 , то выигрывает Коля своим вторым ходом. Если начальной является одна из позиций 10; 42 или 8; 44 , то, чтобы выиграть, Коля должен после своего хода получить позицию 10; 44. Для этого он должен увеличить на 2 число камней либо во второй куче для позиции 10; 42 , либо в первой для позиции 8; 44. Считая позицию 10; 44 начальной, мы приходим к рассмотрению ситуации задания 1. Как уже было показано выше, в этом случае выигрывает тот, кто ходит вторым. Значит, выиграет Коля своим вторым ходом. Если начальная позиция 20; 37 , то, чтобы выиграть, Коля должен увеличить во второй куче число камней на 2. Тогда после его хода получится позиция 20; 39. Считая эту позицию начальной, мы приходим к рассмотрению ситуации задания 1. Если начальной является позиция 8; 42 , то выигрывает Саша не более чем за два хода.

После первого хода Коли из начальной позиции 8; 42 можно получить одну из следующих: 10; 42 , 16; 42 , 8; 44 , 8; 84. Если на начало хода Саши будет одна из позиций 10; 42 , 8; 44 , то он выиграет своим вторым ходом. Эти позиции были рассмотрены как начальные в задании 2. Если на начало хода Саши будет позиция 16; 42 , то Саша, удвоив число камней во второй куче, получит позицию 16; 84 здесь суммарное число камней 100 и выиграет.

Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя. По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные: В первой строке входного файла находятся два числа: S— размер свободного места на диске натуральное число, не превышающее 10 000 и N— количество пользователей натуральное число, не превышающее 4000.

Проверяемые элементы содержания: — Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию. Элементы содержания, проверяемые на ЕГЭ: — Цепочки конечные последовательности , деревья, списки, графы, матрицы массивы , псевдослучайные последовательности.

Задание 26 Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник.

С заданием 10 проблемы возникают редко, так как от вас требуется найти количество определенных слов в текстовом документе. Задания 3, 9 и 18 требуют работы с электронными таблицами, при решении вам помогут знания про ссылки, функции и фильтры. К этому же блоку добавляется задание 22. Информация и ее кодирование Задания этого блока достаточно разнообразны. Вы встретите условие Фано, формулы, единицы измерения информации и комбинаторику. Всё это встречается в заданиях 4, 7, 8, 11, а также в новом задании 13. Задание 14 на работу с системами счисления теперь же относится к блоку «Программирование», так как большинство его прототипов намного проще решить с помощью программы. Шкала оценивания На самом деле шкала перевода баллов составляется после проведения экзаменов, так как в формуле есть параметр «среднее значение». То есть то, что мы называем шкалой — это результат перевода баллов прошлого года. ФИПИ переводит баллы по формуле, а не по шкале. Поэтому шкала меняется, если меняется экзамен или массово меняются результаты его прохождения. Мы полагаем, что в 2024 году проходной балл будет 40 вторичных баллов, но это может измениться. Какие типы заданий встретятся на ЕГЭ по информатике — 2024 На ЕГЭ-2024 все задания будут с кратким ответом: больше не нужно писать подробные объяснения по теории игр и сдавать программный код на проверку на бумаге. Но это не значит, что все задания идентичны.

Разбор демоверсии 2024 по информатике ЕГЭ | Задание 26 | Новая Школа

2 способа решения задания 26 на ЕГЭ по информатике 2023 | insperia ЗАДАНИЕ. Системный администратор раз в неделю создаёт архив пользовательских файлов.
Задание 26. ЕГЭ Информатика 2024. Разбор всех типов. Все коды решений в описании. Заспамили меня по поводу оформления второй части, особенно по 26 заданию, поэтому ловите.
26 задание егэ информатика 2023 excel - Word и Excel - помощь в работе с программами ЗАДАНИЕ. Системный администратор раз в неделю создаёт архив пользовательских файлов.
Как решать 26 задание в егэ по информатике через эксель Разбор нового типа 6 задания из Демоверсии l ЕГЭ 2023 по информатике l Коля Касперский из Вебиума.
Демоверсия егэ информатика 26 задание разбор ЕГЭ. Информатика. 26 задание. 3 апреля 2023. Некоторые из способов решения заданий данного задания.

Задание 26 егэ информатика перестановка букв.

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. Например, запись 11100 преобразуется в запись 111001; б над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2. Полученная таким образом запись в ней на два разряда больше, чем в записи исходного числа N является двоичной записью искомого числа R. Укажите минимальное число R, которое превышает 43 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе. Решение: Для удобства объединим два условия. Например, в записи 11100 нечетное кол-во единиц, и после преобразования мы получим 111001, затем, повторив эти же действия, получаем уже 1110010 так как кол-во единиц уже четное.

Значит, если в двоичной записи нечетное кол-во единиц, то справа дописывается "10", а если четное, то дописывается "00". Итак, мы будем подбирать числа N с помощью цикла for, затем, построив двоичную запись, используем данное правило и в конце сравним с числом 43. Если результат подходит, то выведем его на экран и завершим программу, выйдя из цикла с помощью ключевого слова break так как нас просят найти наименьшее число. Первое найденное число и будет наименьшим. Так выглядел бы код, если бы мы не объединяли условия: Стоит отметить, что функция bin возвращает нам строку, поэтому мы можем использовать конкатенацию.

Обработка целочисленной информации с использованием сортировки" На складе хранятся кубические контейнеры двух цветов различного размера. Чтобы сократить занимаемое при хранении место, контейнеры вкладывают друг в друга. Чтобы вложенные контейнеры было лучше видно, их цвета при вложении обязательно должны чередоваться, то есть нельзя вкладывать контейнер в контейнер такого же цвета. Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц.

Так, например, на выходных можно ставить таймер и решать по одному полному варианту в день, а затем собирать статистику и отрабатывать задачи, вызывающие сложности. Если есть возможность решить задачу разными способами, воспользуйтесь ей, проверяйте себя», — подчеркнул Сергей Сосенушкин. Видеозапись эфира доступна на страницах Рособрнадзора в социальной сети «ВКонтакте» и на Rutube. Опубликовано: 27 апреля 2024 г.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч по своему выбору один камень или увеличить количество камней в куче в два раза. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 77. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 77 или больше камней.

Задание 20 ЕГЭ Информатика: решение. Тогда, даже добавив наибольшее возможное число камней удваивая кучку b , Петя не сможет выиграть вторым ходом, что также не удовлетворяет условию.

Досрочный период КЕГЭ по информатике 9 апреля 2024

Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши.

Опишите выигрышные стратегии для этих случаев. Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Побеждает тот игрок, который называет последнюю букву любого слова из набора. Петя ходит первым. Определить выигрышную стратегию.

В первом слове 99 букв, во втором 164. Задание 2 Необходимо поменять две буквы местами из набора пункта 1А в слове с наименьшей длинной так, чтобы выигрышная стратегия была у другого игрока. Объяснить выигрышную стратегию. У кого из игроков есть выигрышная стратегия? Обосновать ответ и написать дерево всех возможных партий для выигрышной стратегии. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза.

Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.

Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии.

Например, полное дерево игры не является верным ответом на это задание. Тогда после первого хода Пети в куче будет 15 или 28 камней. В обоих случаях Ваня удваивает кучу и выигрывает в один ход. Выигрывает Ваня 14 - проигрышная позиция Задание 2. Возможные значения S: 7, 13. В этих случаях Петя, очевидно, не может выиграть первым ходом. Однако он может получить кучу из 14 камней: в первом случае удвоением, во втором — добавлением одного камня.

Эта позиция разобрана в п. В ней игрок, который будет ходить теперь это Ваня , выиграть не может, а его противник то есть Петя следующим ходом выиграет. Выигрывает Петя 7, 13 - выигрышные позиции со второго хода Задание 3. Возможные значения S: 12. После первого хода Пети в куче будет 13 или 24 камня. Если в куче их станет 24, Ваня удвоит количество камней и выиграет первым ходом. Ситуация, когда в куче 13 камней, разобрана в п.

В этой ситуации игрок, который будет ходить теперь это Ваня , выигрывает своим вторым ходом. Выигрывает Ваня вторым ходом! В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня подчеркнуты. На рисунке это же дерево изображено в графическом виде. Задание 26: Два игрока, Паша и Вася, играют в следующую игру. Игроки ходят по очереди, первый ход делает Паша.

За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. Задание 1. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S. Опишите выигрышную стратегию Васи. Задание 2.

Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася.

Ответ на задание 2. В этом случае Петя, очевидно, не может выиграть первым ходом. Однако он может получить позицию 7,20. После хода Вани может возникнуть одна из 4-х позиций: 8,20 , 21,20 , 7,21 , 7,60. В каждой из этих позиций Петя может выиграть одним ходом, утроив количество камней во второй куче. В качестве ответа можно представить значение S и дерево всех возможных партий при выбранной стратегии Пети см. Решение задания 3. Необходимо найти S, причем обязательно учитывать условия: - у Вани есть выигрышная стратегия первым или вторым ходом при любой игре Пети; - первый ход не гарантированно выигрышный.

То есть, первая стратегия может быть выигрышная, может нет, но вторая — однозначно должна быть выигрышной. S, при котором гарантированно можно выиграть вторым ходом — 20, позиция 6,20 см. После первого хода Пети возможны позиции: 7,19 , 18,19 , 6,20 , 6,57. В позициях 18,19 и 6,57 Ваня может выиграть первым ходом, утроив количество камней во второй куче. Из позиций 7,19 и 6,20 Ваня может получить позицию 7,20. Эта позиция разобрана в п. Игрок, который её получил теперь это Ваня , выигрывает своим вторым ходом.

Выигрышная стратегия есть у Паши. Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней. Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает. Во всех случаях выигрыш достигается тем, что при своём ходе игрок, имеющий выигрышную стратегию, должен добавить в кучу один камень. Можно нарисовать деревья всех возможных партий для указанных значений S. Она состоит в том, чтобы удвоить количество камней в куче и получить кучу, в которой будет соответственно 18 или 16 камней. В обоих случаях игрок, который будет делать ход теперь это Валя , проигрывает смотрите пункт 1б. После первого хода Паши в куче может стать либо 8, либо 14 камней. В обеих этих позициях выигрывает игрок, который будет делать ход теперь это Валя. В таблице изображено дерево возможных партий при описанной стратегии Вали.

У кого из игроков есть выигрышная стратегия? Обосновать ответ и написать дерево всех возможных партий для выигрышной стратегии. Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Тогда после первого хода Пети в куче будет 15 или 28 камней. В обоих случаях Ваня удваивает кучу и выигрывает в один ход. Выигрывает Ваня 14 - проигрышная позиция Задание 2. Возможные значения S: 7, 13. В этих случаях Петя, очевидно, не может выиграть первым ходом. Однако он может получить кучу из 14 камней: в первом случае удвоением, во втором — добавлением одного камня. Эта позиция разобрана в п. В ней игрок, который будет ходить теперь это Ваня , выиграть не может, а его противник то есть Петя следующим ходом выиграет. Выигрывает Петя 7, 13 - выигрышные позиции со второго хода Задание 3. Возможные значения S: 12. После первого хода Пети в куче будет 13 или 24 камня. Если в куче их станет 24, Ваня удвоит количество камней и выиграет первым ходом. Ситуация, когда в куче 13 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Ваня , выигрывает своим вторым ходом. Выигрывает Ваня вторым ходом! В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня подчеркнуты. На рисунке это же дерево изображено в графическом виде. Задание 26: Два игрока, Паша и Вася, играют в следующую игру. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. Задание 1. Опишите выигрышную стратегию Васи. Задание 2. Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася. Для каждого указанного значения S опишите выигрышную стратегию Паши. Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи.

Разбор задания № 26 ЕГЭ по информатике

Рассмотрим ряд сложных задач типа 14 из ЕГЭ по информатике. Тип 14 это задачи на позиционные системы счисления. ЕГЭ по информатике. Разбор 24 задания ЕГЭ по информатике демо 2021 и с сайта Полякова К. (21), на Pascal и PythonСкачать. Главная» Новости» 13 задание егэ информатика 2024. 40 Информатика. ЕГЭ по информатике 2022: задание 26.

Задание 26 | ЕГЭ по информатике 2023

Преподаватель Московской школы программистов МШП Кирилл Ситнов рассказывает о самых сложных заданиях 2023 года — и дает подсказки, как с ними справиться. В первый год использования формата было найдено много лазеек, которые позволяли упростить решение некоторых задач. Тогда многие переписали эту программу в компилятор, увидели результат и получили за это 2 балла. Что из себя представляют эти задания сейчас Вот формулировка ФИПИ: Теперь в задании 6 согласно демоверсии экзамена нужно проанализировать работу исполнителя на примере «черепашки».

Кто сдавал ОГЭ, могут это вспомнить. А вот задание 22 требует анализировать информацию, представленную в электронных таблицах. Также стоит ожидать усложнения еще ряда заданий.

Ранее требовалось только знать, как производится перевод чисел в различные системы счисления либо как проводить операции сложения и вычитания. Теперь же от учащегося требуют найти недостающую цифру числа.

Входные данные Первая строка входного файла содержит целое число N — общее количество частиц, попавших на экран. Каждая из следующих N строк содержит 2 целых числа: номер ряда и номер позиции в ряду.

В ответе запишите два целых числа: сначала наибольшее количество светлых точек в чётных позициях одного ряда, затем — номер ряда, в котором это количество встречается.

И перенервничала, металась по трем последним и не решила. Да, обидно, но БВИ есть. В крайнем случае, если не наберет минимальные останется без аттестата на отличие и медали. Да, будет обидно, но не критично. Все кто писал в первый день, не знали эти номера. А вот вчера знали. Были разборы всех номеров на ютубе и глупо говорить, что дети, которые вчера писали не смотрели их. Да, кто писл во второй день очень повезло.

Но дети не виноваты, виноваты те, кто создал такую ситуацию, которая ущемила права первых. Но у нас, как всегда, мамы покричат на еве и на этом все закончится. А по хорошему, нужно составить петицию и письмо официальное. Кто может? Составляйте, подпишем.

Демо В файле файл возьмите из архива содержится последовательность натуральных чисел, каждое из которых не превышает 100 000.

Определите количество троек элементов последовательности, в которых ровно два из трёх элементов являются трёхзначными числами, а сумма элементов тройки не больше максимального элемента последовательности, оканчивающегося на 13. Гарантируется, что в последовательности есть хотя бы одно число, оканчивающееся на 13. В ответе запишите количество найденных троек чисел, затем максимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.

Похожие новости:

Оцените статью
Добавить комментарий