Правильный ответ здесь, всего на вопрос ответили 1 раз: где хранится информация о структуре белка?и где осуществляется его синтез. Следовательно, одна молекула ДНК хранит информацию о структуре многих белков. Также информацию о первичной структуре белка можно найти в научных статьях и публикациях.
Биосинтез белка. Генетический код и его свойства
Первичная структура фибриллярных белков также высоко регулярна, периодична, — потому-то из нее и образуется обширная регулярная вторичная структура. Информация о первичной структуре белка хранится в базах данных, доступных для исследователей и ученых. Банки данных о белках. UniProt – последовательности и аннотации RefSeq – последовательности и аннотации PDB – пространственные структуры PubMed – публикации – еще много чего.
Биосинтез белка. Генетический код и его свойства
Таким образом, ДНК-секвенирование является современным и мощным инструментом для получения информации о первичной структуре белка, молекуле ДНК и геномах. Вместе с развитием технологий секвенирования оно позволяет расширять наши знания о живых организмах и применять их в практике медицины и научных исследований. ПСХ-секвенирование Основным преимуществом ПСХ-секвенирования является его высокая скорость и высокая производительность. Он позволяет генерировать большое количество коротких прочтений ДНК за короткое время. Кроме того, этот метод позволяет секвенировать целые геномы, включая генетические вариации и мутации. Информация о первичной структуре белка может быть получена с помощью ПСХ-секвенирования путем секвенирования геномной ДНК.
После получения нуклеотидных последовательностей гена, они могут быть переведены в аминокислотные последовательности, используя кодонную таблицу. Это позволяет определить аминокислотную последовательность белка и его первичную структуру. Таким образом, ПСХ-секвенирование является мощным инструментом для исследования геномов и получения информации о первичной структуре белков на основе их генетического кода. Метагеномное секвенирование Главной особенностью метагеномного секвенирования является возможность исследования всех микроорганизмов, находящихся в образце, включая бактерии, вирусы, грибы и др. Это делает метод особенно полезным при изучении микробиомов, то есть сообщества микроорганизмов, обитающих в определенной экосистеме, например, в почве или в кишечнике животных.
Метагеномное секвенирование проводится с использованием специальных методов и технологий. Сначала из образцов извлекается метагеномная ДНК, то есть смесь генетического материала всех присутствующих в образце организмов. Затем происходит секвенирование этой смеси ДНК, что позволяет получить огромное количество генетической информации. Полученные данные анализируются с использованием специальных программного обеспечения и баз данных. С помощью биоинформатических методов и алгоритмов, исследователи могут определить, какие гены присутствуют в образце, и какие функции эти гены выполняют.
Метагеномное секвенирование является мощным инструментом для изучения биологического разнообразия, позволяет исследовать неизвестные организмы и выявлять новые гены. Этот метод широко применяется в различных областях, включая науку о пище, медицину, экологию и биотехнологию. Биоинформатика и анализ ДНК-последовательностей ДНК-последовательности представляют собой уникальные последовательности нуклеотидов, определяющие генетическую информацию организма. Биоинформатика предоставляет мощные инструменты для анализа этих последовательностей и извлечения полезной информации.
Zxcvbnm111192if 6 апр. Nastya547 3 июл. NastyaAmelkina98 20 июн. Kateagapova121 14 апр. Ктоша 15 авг. Как называется отрезок молекулы ДНКсодержаий информацию о первичной структуре одного белка?
На этой странице сайта размещен вопрос Где и в каком виде хранится информация о структуре белка? Уровень сложности вопроса соответствует знаниям учеников 10 - 11 классов.
При таком подходе выделяется очень большое количество белка, затем он очищается, и белок образовывает кристалл. Пропуская через этот кристалл рентгеновские лучи, можно увидеть трехмерную структуру белка. Это явление называется дифракция. Недостаток данного метода — в медлительности процесса и негарантированном результате: белка может выделиться слишком мало или он может не кристаллизоваться. Есть и другие способы, к примеру, метод ядерного магнитного резонанса или криоэлектронная микроскопия. Эти методы также требуют доступа к дорогостоящему оборудованию и больших затрат времени. Предсказание структуры белков Интересно то, что сами молекулы знают, в какую форму они свернутся.
То есть белки с одинаковой аминокислотной последовательностью сворачиваются всегда в одну и ту же трехмерную форму. Долгое время ученые могли определить структуру белка только после того, как он свернулся, используя при этом сложные и дорогостоящие методы. Однако около тридцати лет назад начались попытки предсказать трехмерную структуру белка: ученые пытались смоделировать ее, ориентируясь на то, из каких аминокислот состоит цепочка. На протяжении долгих лет никому не удавалось предсказать структуру белка, несмотря на то, что на эксперименты выделялось финансирование и организовывались специальные премии. Так продолжалось до тех пор, пока в 2021 году не произошел прорыв — две группы ученых создали пакет компьютерных программ, которые с применением методов искусственного интеллекта научились предсказывать структуру белков. Rosetta — проект добровольных вычислений, разработанный в лаборатории Бейкера при Вашингтонском университете и AlphaFold — программа на базе искусственного интеллекта, созданная в Google DeepMind. Это удивительно, ведь данные, которые раньше приходилось добывать годами работы в лаборатории, теперь можно получить за минуту с помощью расчета компьютера. Нейросеть предсказывает уже определенные структуры белков, имея в базе данных десятки тысяч структур. Это значит, что точность предсказания структуры белка на данный момент выше, чем точность прогноза погоды.
Как работает программа Программы по предсказанию структуры белков, такие как Rosseta и AlphaFold, работают по похожему принципу.
База данных белковых структур AlphaFold, которая находится в свободном доступе для научного сообщества, была расширена с почти одного миллиона белковых структур до более чем 200 миллионов структур, охватывающих почти каждый организм на Земле , чей геном был секвенирован. Расширение включает в себя предсказанные формы для самого широкого круга видов, включая растения, бактерии, животных и другие организмы, открывая новые направления исследований в области наук о жизни. Демис Хассабис, основатель и генеральный директор DeepMind, сказал: «Мы были поражены скоростью, с которой AlphaFold уже стал важным инструментом для сотен тысяч ученых в лабораториях и университетах по всему миру. В декабре 2020 года AlphaFold был признан организаторами Критической оценки прогнозирования структуры белка Casp решением 50-летней грандиозной задачи прогнозирования структуры белка. В то время он продемонстрировал, что может точно предсказать форму белка в масштабе и за минуты с точностью до атома. База данных работает как интернет-поиск белковых структур, предоставляя мгновенный доступ к предсказанным моделям.
Структура белка
Наконец, стоит отметить Protein Data Bank PDB , который является главным источником информации о трехмерной структуре белков. PDB содержит данные о миллионах белковых структур, полученных с помощью рентгеноструктурного анализа или ядерного магнитного резонанса. Благодаря генным банкам данных и свободному доступу к генетической информации, исследователи по всему миру могут изучать гены, их функцию и взаимодействие, что способствует развитию науки и медицины. Электронные репозитории Электронные репозитории представляют собой веб-платформы, разработанные для хранения и обмена информацией о первичной структуре белков. Они позволяют ученым обмениваться данными и получать доступ к хранилищу структур, созданных другими учеными. PDB является центральным репозиторием данных о трехмерной структуре белков, полученных с помощью различных экспериментальных методов, таких как рентгеноструктурный анализ и ядерное магнитное резонансное исследование.
PDB предоставляет ученым доступ к более чем 150 000 структур белков, а также инструменты для их анализа и визуализации. Другим примером электронного репозитория является UniProt. UniProt объединяет информацию о последовательности, аннотации и 3D-структурах белков, собранную из различных источников. В UniProt ученым доступны данные о миллионах белков и связанные с ними биологические аннотации. Электронные репозитории играют ключевую роль в исследованиях в области белкойной биоинформатики и структурной биологии.
Они позволяют ученым обмениваться исследовательскими данными, улучшить взаимодействие между научными группами и повысить эффективность научных исследований. В заключении, электронные репозитории являются ценным инструментом для хранения и обмена информацией о первичной структуре белков. Они позволяют ученым быстро получить доступ к большому количеству данных и использовать их в своих исследованиях. Благодаря таким платформам, исследования в области белковой структуры и функции могут продвигаться вперед, способствуя развитию науки и медицины. Биоинформационные ресурсы В настоящее время существует множество биоинформационных ресурсов, которые играют важную роль в хранении информации о первичной структуре белков.
Эти ресурсы предоставляют доступ к базам данных и инструментам, которые помогают в анализе и интерпретации биологических данных. Одним из наиболее популярных ресурсов является база данных UniProt, которая содержит информацию о белках, их последовательности и функциональных свойствах.
Такие методы называются биоинформатическими и позволяют предсказывать структуру белка на основе его генетической информации. Таким образом, информация о первичной структуре белка может быть получена из различных источников, включая базы данных белков, научные статьи и биоинформатические методы.
Эти данные играют важную роль в изучении и понимании свойств и функций белков, а также в разработке новых лекарственных препаратов и технологий. Основные источники данных Информация о первичной структуре белка может быть получена из различных источников.
Код ДНК вырожден потому, что: 1 один код он кодирует одну аминокислоту 2 один кодон кодирует несколько аминокислот 3 между кодонами есть знаки препинания 4 одна аминокислота кодируется несколькими кодонами 5.
Эволюционное значение генетического кода заключается в том, что он: 1 триплетен 2 индивидуален 3 универсален 4 вырожден БЛОК 4: 1. Транскрипция происходит: 1 в ядре 2 на рибосомах 3 в цитоплазме 4 на каналах гладкой ЭПС 5.
Не стоит думать о третичной структуре белка, как о чем-то статичном. Представьте ее как дом, который меняет свой цвет при повышении или понижении температуры, еще он может менять свой размер в зависимости от того идет дождь или нет. Какой странный дом…. В таком долго не проживешь.
Некоторые участки глобулы такие чсвшники, что собираются отдельно от всей остальной молекулы. Эти части называются доменами. Домен собирается в мини-третичную структуру самостоятельно, их даже может быть несколько. Чаще всего они имеют какую-то важную задачу, например, входят в состав активного центра.
Строение активного центра Стоп-стоп-стоп. Это тиво еще такое? Ты про это ничего не говорил. Точно, помните мы сказали, что с этого уровня белок начинает пахать?
А задача глобулы — это связать что-то, опять же грубо. Так вот, как она все это делает? Да-да, через активный центр, такие вы умные конечно… В чем прикол активного центра? Он должен соответствовать молекуле, с которой будет взаимодействовать.
Это называется комплементарностью. Не путать с комплиментами. Активный центр — это замок, а другая молекула — ключ, которые должны подходить друг другу. Такие вот соулмейты.
Хотя к некоторым активным центрам могут подходить много ключиков. Связи, которые образуются в активном центре — слабые: чаще всего ионные, водородные и Ван-дер-Вальсовы. Но иногда могут быть и ковалентными, но не будем забегать вперёд — об этом мы поговорим, когда будем разбирать ферменты. Ну а теперь, как все это работает.
В активном центре располагается уникальная последовательность аминокислот, допустим там будет две положительнозаряженных и две отрицательнозаряженных аминокислоты. А у молекулы, с которой происходит взаимодействие, будет: две отрицательных группы и две положительных. Форма молекулы совпадает с формой активного центра. Кстати, у молекулы, которая взаимодействует с активным центром тоже есть свое название — лиганд.
Надоели уже эти названия? Мне тоже… Строение активного центра и его взаимодействие с лигандом Ах, да — вся третичная структура определяется первичной…. Я знаю, что вы запомнили, но хочу немного понадоедать. Эти связи образуются между радикалами.
Четвертичная структура белка Последняя, но самая большая! Не пугайтесь, только по размеру. Она есть не у всех белков, некоторые прекрасно работают в виде третичной структуры и не парятся. Но представьте, что мы возьмем несколько третичных структур и как соединим их вместе.
Пусть их будет 4 штуки, берем 4 шарика и соединяем их. Получаем четвертичную, но не из-за того, что мы взяли 4 шарика…. Эти шарики комплементарны друг другу в участках связывания — не активный центр, но чем-то похоже. Таких участков связывания много, поэтому ошибиться и не узнать своего товарища очень трудно.
Каждая глобула, которую мы взяли — это отдельная полипептидная цепь. Прочитай это еще раз. До этого все касалось только одной полипептидной цепи, а теперь их несколько. Такая цепь называется мономером или субъединицей , а при соединении мономеров образуется олигомер.
Так что вся большая молекула — это олигомер. Четвертичная структура белка Какие связи все это стабилизируют? Чаще всего это водородные, ионные и Ван-дер-Вальсовы, так как каждый мономер прячет свои гидрофобные остатки вглубь молекулы, то они образуются редко. Получается, что четвертичную структуру стабилизируют силы слабого взаимодействия, ковалентных связей здесь почти никогда не бывает — очень редко могут быть дисульфидные.
Поэтому можем спокойно забить на них. В чем отличие четвертичной структуры от третичной? Ну кроме того, что тут объединено несколько полипептидных цепей. А вот какое — у олигомерных белков есть не только активный центр, но и другой — аллостерический центр.
К этому замку не подойдут лиганды от активного центра, у него есть свои собственные ключики. Это очень важно, нужно запомнить! Господи, я превращаюсь в препода…. Аллостерические центры в четвертичной структуре Проведем аналогию с нашим домиком, только теперь их будет несколько.
У каждого будет по главному и черному входу! Главный вход — активный центр, а черный ход — это аллостерический центр. Аллострические центры дают кое-что важное — регуляцию. Маленькая молекула, которая соединится с аллостерическим центром может остановить работу целого огромного белка.
Получается, что размер не важен — не удержался. Но каким образом одна молекула останавливает работу целого белка? Очень просто — хотел бы я так сказать. Присоединение молекулы к мономеру изменяет его конформацию.
А это ведет к тому, что мономер изменяет конформацию других мономеров — происходят конформационные изменения всей структуры белка. В результате этих изменений закрывается активный центр — лиганд не может к нему подойти. У всех этих изменений есть, как и всегда, свое название — кооперативный эффект. Кооперативный эффект И опять я про дом, если открыть черный ход, то нельзя открыть главный вход, ну и наоборот.
Биосинтез белка и генетический код: транскрипция и трансляция белка
Если оно разное, то он антипараллельный. Стабилизируется этот лист тоже с помощью водородных связей, прямо как альфа-спираль. Только вот есть один нюанс. Если в альфа-спирали есть четкая зависимость образования связей — через 4 аминокислотных остатка, то здесь такого нет. Например, водородными связями могут соединяться 5 остаток и 22. Параллельные и антипараллельные листы Когда мы разбирали альфа-спираль, то сказали что пролин и иногда глицин вызывают поворот на 180 градусов. У этого есть свое название: бета-поворот. Беспорядочный клубок Это последний вариант. Здесь нет никаких спиралей или бета-складчатости, просто получается вот такая белиберда. Беспорядочный клубок Что общего у всех вторичных структур?
В их образовании участвует только пептидный остов. Радикалы пока что отдыхают. Ну и второе: Водородные связи стабилизируют вторичную структуру Ой, а от чего зависит какую вторичную структуру примет молекула? А действительно, почему какая-то молекула принимает форму альфа-спирали, а другая бета-складчатости? Хороший вопрос, и у меня есть ответ на него: от торсионных углов. Я разбирал это в прошлой статье — кликай сюда , а потом возвращайся. Так, мы говорили о том, что углы бывают разными, но для каждой вторичной структуры характерны строго определенные углы. Есть специальные карты Рамачандрана, на которых указаны эти углы — все данные получены экспериментально. Можно посмотреть какие углы характерны для альфа-спирали и бета-листов Здесь можно посмотреть как будут выглядеть молекулы аминокислот с такими углами.
Но вот вам фоточка, если лень. Надеюсь, что теперь понятно почему и как формируется вторичная структура. Ах да, конечно же, все эти углы определяются первичной структурой! Супервторичная структура белка До этого мы разбирали вторичные структуры изолированно, но представьте себе очень длинную полипептидную цепь. Не может же она вся закручиваться в альфа-спираль или становиться бета-складчатой. Хотя иногда и может, но об этом позднее. Чаще всего белок — это комбинация из альфа-спиралей, бета-тяжей и беспорядочных клубков. То есть может это выглядеть примерно вот-так. Супервторичная структура белка Поймите, что супервторичная структура белка не стоит выше, чем вторичная.
Это просто название, которое неправильно отражает суть, поэтому оно мне не нравится. На западе используют другое название — структурные мотивы, оно намного лучше. Вот в чем его суть: хоть у нас огромное количество самых разных белков, но в них есть определенные повторяющиеся паттерны — это и есть мотивы. Структурные мотивы Мотивов очень много, но думаю смысл понятен. Простые мотивы могут объединяться и образовывать мотивы посложнее. Я использовал в иллюстрациях прошлые картинки, но помните, что эти альфа-спирали и бета-тяжи отличаются друг от друга аминокислотными остатками — они очень разные! Просто перерисовывать все это не хочется. Третичная структура белка Вот этот уровень уже повыше, на нем белок начинает выполнять свою функцию — впахивать, как проклятый. Но сначала нужно остановиться ненадолго и поговорить.
Спокойно, я же сказал — ненадолго. Согласитесь, что у белков очень много функций. Какой-то переносит кислород, а другой входит в состав кости и обеспечивает ее прочность. Белки мышечной ткани вообще обеспечивают движение. Давайте попробуем выделить две глобальные, но не совсем верные, функции: структурная и связывания. Одни белки входят в структуру мышц, костей, волос и так далее. А другие что-то связывают: ферменты связываются с субстратом, а гемоглобин с кислородом. А где-то бравое антитело падает на амбразуру для того, чтобы не пропустить бактерию в организм. Это конечно все очень грубо, но пусть будет так.
И все это я к чему. Существует два больших класса белков: фибриллярные — коллаген, эластин, кератин. Эти ребята занимаются поддержкой, такие вот суппорты. Фибрилла — это нить. Так что они очень длинные, а когда огромное количество нитей связывается в одну, то они становятся очень прочными. Фибриллярные белки — это атланты, которые держат наш организм на своих плечах. А мы не особо благодарные ребята, потому что забьем на них. Но только в этой статье. В основном биохимия занимается другим классом — глобулярными белками.
Эти ребята не только связывают — у них огромное количество функций. С этими функциями и пытается разобраться биохимия. Глобула — шар. Вроде это все, теперь можем приступать. Классы белков На прошлом этапе мы собрали разные вторичные структуры в мотивы, ну а дальше то что? Теперь нам нужно скрутить все это в компактный шарик — глобулу. Здесь, наконец-то, пригодятся наши лентяи — радикалы. Вспоминаем, что радикалы бывают полярные и неполярные. Когда глобула скручивается, то она прячет гидрофобные остатки аминокислот внутрь этого шарика, а гидрофильные выставляет наружу.
Оно и понятно, все-таки глобулы находятся в организме, а у нас почти везде вода. Строение глобулы Скручивание — удивительный процесс. Здесь начинают взаимодействовать очень очень-очень! Представьте, что тридцатый остаток взаимодействует с триста семидесятым.
В завершение следует отметить, что выбор метода хранения информации о первичной структуре белка зависит от конкретных задач и требований и может варьироваться в различных научных и прикладных областях. Преимущества электронного хранения информации о первичной структуре белка Электронное хранение информации о первичной структуре белка предоставляет ряд преимуществ перед традиционными методами хранения на бумаге или в других формах.
Во-первых, электронное хранение позволяет обеспечить более удобный и быстрый доступ к информации. Белки являются сложными молекулами, и их первичная структура часто состоит из большого количества аминокислотных остатков. С использованием электронного хранения, ученые могут легко найти и анализировать информацию о конкретном белке или конкретном аминокислотном остатке, используя поисковые запросы и фильтры. Во-вторых, электронное хранение позволяет эффективно организовывать и структурировать информацию. Белки могут иметь сложные взаимодействия и функции, и информация о их первичной структуре должна быть систематизирована и связана с другими данными. С использованием электронного хранения, ученые могут создавать базы данных, связывать информацию и строить отношения между различными структурами белков, что облегчает анализ и исследования.
В-третьих, электронное хранение позволяет улучшить сохранность и долговечность информации. Бумажные записи могут быть подвержены физическому повреждению или утрате со временем. В электронном хранении, информация о первичной структуре белков может быть сохранена на надежных серверах и регулярно резервирована, что обеспечивает ее сохранность и доступность в течение длительного времени. В целом, электронное хранение информации о первичной структуре белка предоставляет множество преимуществ, включая удобный доступ, организацию и связывание данных, а также сохранность и долговечность информации. Это делает его незаменимым инструментом для исследования белков и понимания их структуры и функций. Безопасность и конфиденциальность информации о первичной структуре белка Обеспечение безопасности данных о первичной структуре белка имеет несколько аспектов, которые нужно учитывать.
Одним из них является защита доступа к информации. Ограничение доступа к базам данных и другим источникам информации о белковых структурах позволяет предотвратить несанкционированный доступ к конфиденциальным данным.
Кроме того, алгоритм, моделирующий подвижность, может навсегда «зациклить» молекулу в локальном энергетическом минимуме, чего никогда не случается в реальном процессе сворачивания. Однако определённые успехи в моделировании фолдинга с помощью молекулярной динамики всё же есть: небольшие белки — вроде 36-аминокислотного фрагмента виллина — удаётся свернуть в МД длительностью около микросекунды, запуская расчёты на суперкомпьютере или в распределённой вычислительной сети [12]. Итак, использование метода молекулярной динамики как средства моделирования процесса фолдинга пока что нецелесообразно и практически не достижимо. Однако существует возможность предсказать результат фолдинга — то есть, трёхмерную структуру белка. Теоретические подходы, служащие этой цели, делятся на две большие группы: ab initio или de novo фолдинг — методики, не использующие в явном виде данных о структуре других белков, — и сопоставительное моделирование или моделирование на основании гомологии. Квантовая химия в расчётах свойств белковых молекул Как известно, уравнение Шрёдингера — «плоть и кровь» квантовых физики и химии — наиболее точный на сегодняшний день способ описать строение и динамику молекул.
Однако точное аналитическое решение возможно получить лишь для крайне простых систем — например, атома гелия. Во всех более сложных случаях прибегают к численному решению приближений этого уравнения — так называемым полуэмпирическим методам квантовой химии. Методы эмпирических силовых полей такие как молекулярная динамика [11] не имеют никакого отношения к квантовой химии и «обращаются» с атомами моделируемых молекул в частности, белков как с классическими упругими частицами, связанными системой парных взаимодействий. Параметры этих взаимодействий очень простых, надо отметить как раз и называются силовым полем и определяют поведение системы при моделировании. Электронные эффекты, такие как поляризуемость атомов, перенос электрона, образование и разрыв химических связей, а также кооперативные гидрофобные взаимодействия смоделированы в этом подходе быть не могут. Фолдинг «из первых принципов» Необходимо сразу отметить, что термин «ab initio фолдинг», часто применяемый для обозначения методов компьютерного предсказания структуры белка без использования структурных данных о других белках, не имеет отношения к тому ab initio, которое бытует в квантовой химии. Квантово-химический термин ab initio лат. Однако все вычисления, как правило, производятся в эмпирических силовых полях, описывающих парные взаимодействия в классической системе частиц, представляющей молекулу белка.
Сами же эти силовые поля в неявном виде включают данные о структуре молекул не обязательно белковых — такие как парциальные заряды и массу атомов, а также длины и углы валентных связей, — и к квантово-механическим методам отношения не имеют. Поэтому целесообразно будет в дальнейшем использовать термин «de novo фолдинг» лат. Наиболее «физически корректные» подходы из этой группы заключаются в основном в расчётах МД для моделирования процесса и результата фолдинга см. В остальных же случаях — тоже, впрочем, относящихся к маленьким белкам не более 150 аминокислотных остатков , — прибегают к дополнительным приближениям с целью уменьшить вычислительную сложность расчёта. Для увеличения вычислительной эффективности, в de novo подходах часто используются упрощённые модели представления белка — отдельные аминокислотные остатки, присутствующие в модели, представлены не так подробно, как в «полноатомных» подходах: вся боковая цепь моделируется лишь одним-двумя центрами «псевдоатомами». Так, например, боковая цепь триптофана содержит 16 атомов, а в упрощённом виде их может быть всего два-три и только один — для менее объемных остатков. De novo фолдинг проводится в специальном силовом поле также упрощённом по сравнению, например, с используемыми в МД , оценивая огромное количество вариантов укладки сворачиваемой молекулы по значению потенциальной энергии. Идентификация конформации, значительно с «зазором» более «низкой» по потенциальной энергии, чем остальные, может служить признаком конца поиска — аналогично тому, как нативная конформация с некоторым отрывом отстоит от несвёрнутых промежуточных состояний.
Конечно, кроме корректной функции потенциальной энергии, требуется преодолеть «комбинаторный взрыв», создаваемый парадоксом Левинталя. Очевидно, что перебрать все конформации, чтобы выбрать самую низкую по энергии, невозможно, а из-за слабого понимания механизмов сворачивания белка повторить тот «кратчайший путь», который ведёт к нативной структуре, на компьютере пока не удаётся. Чтобы как-то приблизиться к природному механизму сворачивания, исследователи пытаются выделить в последовательности моделируемого белка структурно консервативные фрагменты аналогичные тем, что в природе сворачиваются первыми и в дальнейшем уже остаются неизменными и как бы «собирают мозаику» из этих фрагментов. Эта процедура, тоже чрезвычайно ресурсоёмкая всё равно требуется перебрать астрономическое число вариантов! Рисунок 1. De novo фолдинг: предсказание пространственной структуры небольших белков. Программа Rosetta генерирует ансамбль моделей, получающихся после «сборки» структурно-консервативных фрагментов молекулы в специализированном силовом поле. Короткие 4—10 аминокислотных остатков фрагменты последовательности моделируемого белка выступают «зародышами» структуры будущей модели причём в разных моделях они различаются и «перекрываются» , а конформацию этим фрагментам «назначают», используя конформации гомологичных фрагментов из белков с уже известной структурой.
В этом смысле, de novo не является моделированием «заново» в полном смысле слова, но «заимствование» локальных структурных фрагментов такой небольшой длины в данном случае не считается использованием структуры белков-гомологов целиком. Сверху на рисунке показаны наложенные экспериментальная структура белка Hox-B1 красным и соответствующая низкоэнергетическая структура, предсказанная программой Rosetta синим. Видно практически идеальное совпадение конформаций ароматических остатков в центральной области белка. Внизу показана зависимость энергий моделей из полученного в расчёте ансамбля от среднеквадратичного отклонения СКО моделей от нативной структуры. Синим цветом показаны модели, сгенерированные из нативной структуры в качестве «контроля» и естественно получившиеся очень близкими к ней по значению СКО , чёрным — модели, созданные в процессе предсказания. Красной стрелкой отмечена модель, структура которой дана сверху. Этот факт иллюстрирует не очень высокую надёжность предсказаний в практических применениях — потому что в реальных задачах, когда предсказываемая структура действительно неизвестна, сравнивать СКО модели будет уже не с чем — руководствоваться придётся только значениями энергии. Разрабатываемая ими программа Rosetta уже неоднократно показывала себя с хорошей стороны в предсказании структуры белков небольшой длины рис.
Похожий подход используется в программе TASSER [15] , где короткие структурные фрагменты «собираются» в специализированном силовом поле, а результат модель, предположительно близкая к нативной выбирается из ансамбля предсказаний с помощью идентификации наиболее плотного структурного кластера — являющегося, по мнению исследователей, «гнездом» физически реалистичных моделей. Конечно, все эти мощности пошли не только на предсказание одной структуры — в исследование был включен не один белок. Эта ресурсоёмкость лишний раз подчёркивает, что понимание механизмов фолдинга находится не на высоте: способ направленно двигаться в сторону нативной структуры, не перебирая множества нереалистичных вариантов, пока не найден.
Разработчики также подробно описали , как работает модель. Его работу описали в статье в Science. Архитектура RoseTTaFold «Открытый исходный код инструментов означает, что научное сообщество имеет возможность использовать достижения для создания еще более мощного и полезного программного обеспечения», — говорит Дзинбо Сюй, вычислительный биолог из Чикагского университета в Иллинойсе. Белки состоят из цепочек аминокислот, которые, будучи сложены в трехмерные формы, определяют функцию этих белков в клетках. На протяжении десятилетий исследователи использовали экспериментальные методы, такие как рентгеновская кристаллография и криоэлектронная микроскопия. Но такие методы могут быть трудоемкими и дорогостоящими, а некоторые белки не поддаются подобному анализу.
Структура белка
Где находится информация о первичной структуре белка и как она хранится | Правильный ответ здесь, всего на вопрос ответили 1 раз: где хранится информация о структуре белка?и где осуществляется его синтез. |
Остались вопросы? | Где и в каком виде хранится информация о структуре белка. |
Структура белка | Информация о структуре белка закодирована в ДНК. Дезоксирибонуклеиновая кислота имеет очень сложную структуру, которую не до конца удалось раcшифровать ученым в наши дни. Именно это вещество отвечает за синтез белка, наследственность и прочее. |
Где находится информация о первичной структуре белка и как она хранится
Структура человеческого белка интерлейкина-12, связанного с его рецептором / UW Medicine Institute for Protein Design. Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка). Поскольку структура белка определяет его функцию, база данных из 200 миллионов идентифицированных белков способна совершить революцию в биологии и медицине. Прежде ИИ умел распутывать структуру лишь небольшой доли таких белков. Информация о первичной структуре белка хранится в. Наследственная информация о первичной структуре белка. Как она зашифрована в этой молекуле? Как информация из ядра передаются в цитоплазму?
Биоинформатика: Определение и предсказание структуры белков – важные методы и применение
Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген. Лучший ответ: Васян Коваль. Хранится в ядре, синтез РНК. Эта функция белков Обратите внимание,есть ли вблизи стаи птиц,Чем птицы заняты?Как изменилась их жизнь с. Эту структуру белка создал алгоритм на основе нейросети. Правильный ответ здесь, всего на вопрос ответили 1 раз: где хранится информация о структуре белка?и где осуществляется его синтез.
Основные источники информации
- Где хранится генетическая информация в клетке?
- Программа нашла все 200 млн белков, известных науке: как это возможно
- Важнейшее открытие за 50 лет: алгоритм DeepMind научили определять структуру белка
- Цель хранения информации о первичной структуре белка
- Чему соответствует «основа белка»?
Где хранится информация о структуре белка?и где осуществляется его синтез
Если Вы не против, я резюмирую изложенное Вами, а Вы оцените степень адекватности моего изложения. Таким образом: 1 Вторичная, третичная, четвертичная структура белков однозначно определяется их первичной структурой. Двух белков с разной пространственной при одинаковой первичной структуре быть не может хотя суть природы прионов мне при этом тезисе неясна. Если все так и есть, то у меня появились еще дополнительные вопросы по биосинтезу белка, которые, наверное, стоит вынести в отдельные ветки форума.
В этих технологиях широкое применение нашли методы семантических правил или шаблонов. В веб-программировании семантический шаблон представляет собой регулярное выражение формальное описание задачи поиска в тексте данных, отвечающих определенным условиям , где порядок встречаемости различных концептов отражает последовательность слов в предложении, на основании которого можно сделать вывод о наличии факта взаимодействия двух или более объектов, описанных в этом предложении. Вершинами таких сетей являются молекулярно-генетические объекты, заболевания и процессы, а связями между ними — типы взаимодействий и ассоциаций. Было создано более 2 тыс. Система обладает дружественным интерфейсом пользователя со многими функциями, включая отсылку на сайты молекулярно-генетических баз данных, а также рефераты статей, из которых была экстрагирована информация. Применение текст-майнинга к анализу публикаций из базы данных PubMed позволило получить информацию относительно более чем 5 млн фактов, касающихся молекулярно-генетических событий в клетках различных тканей и организмов. Эти знания имеют чрезвычайно большое значение для автоматизации процесса реконструкции генных сетей. Система ANDSystem также активно используется для интерпретации экспериментальных данных.
Например, была проведена реконструкция и анализ сетей молекулярно-генетических взаимодействий ряда белков у различных штаммов бактерии Helicobacter pylori, выделенных у пациентов с хроническими гастритами и опухолями желудка. Показано, что различия в экспрессии этих белков могут быть связаны с адаптацией бактерий к различным условиям среды, т. С помощью ANDSystem были обнаружены кластеры белков, которые могут участвовать в процессах адаптации организма человека к экстремальным условиям, в том числе к условиям невесомости Ларина и др. В настоящее время с использованием ANDSystem ведутся работы по реконструкции и анализу молекулярно-генетических сетей, вовлеченных в жизненный цикл вируса гепатита С в рамках европейского международного проекта FP7. Биоинформатику, возникшую на стыке информационных технологий и биологии, поначалу рассматривали как средство поддержки научных исследований. Однако со временем становилось все более очевидным, что эта наука — важная и неотъемлемая часть биологии, без которой ее дальнейшее развитие просто невозможно себе представить. Тесный союз биологии и информационных технологий обеспечивает одновременный бурный рост обеим этим научным дисциплинам. Необходимость решать новые широкомасштабные биологические задачи требует создания все более производительных алгоритмов для анализа данных и увеличения вычислительных мощностей компьютеров.
Это, в свою очередь, дает возможность ставить новые эксперименты и получать новые знания, углубляющие наши представления о структуре и функционировании биологических объектов. Литература Деменков П. Ларина И. Подколодная О. Колчанова Н. Momynaliev K. Proteome Res. Gunbin K.
Материал подготовлен при поддержке проекта «Научные школы» НШ-5278. Поделись с друзьями!
Однако откуда именно появляется этот белок, ученые до сих пор точно не знают. Понимание трехмерной структуры белка поможет ответить на этот вопрос.
То же самое касается болезни Альцгеймера , путь распространения которой пролегает через нарушение связи между нейронами, особенными клетками, которые обрабатывают и передают электрические и химические связи между областями мозга. Это приводит к смерти клеток мозга и накоплению двух типов белка, амилоида и тау. Точное взаимодействие между этими двумя белками в значительной степени неизвестно. Одна из трудностей диагностики болезни Альцгеймера заключается в том, что у нас нет надежного и точного способа измерения этих белковых накоплений на ранних стадиях заболевания.
AlphaFold 2 поможет диагностировать болезнь Альцгеймера на более ранних стадиях и даст возможность для создания нужного лекарства. Это важнейшее открытие за последние 50 лет, — говорит Джон Моулт, биолог из Университета Мэриленда, который стал соучредителем CASP в 1994 году с целью разработки вычислительных методов для точного предсказания структур белков. Возможность точно предсказать структуру белков по их аминокислотной последовательности станет огромным благом для медицины. Это значительно ускорит исследования по пониманию строительных блоков клеток и позволит быстрее и эффективнее открывать новые лекарства.
Подпишитесь на нас в Яндекс. Дзен , чтобы получить доступ к закрытым материалам, которые не публикуются даже на сайте. Как еще может использоваться AlphaFold 2 AlphaFold 2 вряд ли сделает ненужными лаборатории, которые используют экспериментальные методы для определения структуры белков.
По поводу первого пункта: Может быть кого-то огорчу, но первичная структура вовсе не однозначно определяет структурную организацию на более высоких уровнях. Иначе при денатурации белков и последующем устранении фактором венатурации ВСЕГДА происходила правильная ренатурация , чего не происходит. Отсюда вывод - фолдинг белка все-таки сильно зависит от энергозависимого функционирования шаперонов. По поводу второго пункта: Здесь может быть 2 пути включения кофактора в белок: либо простое связывание, и тогда оно определяется третичной или четвертичной структурой самого белка как правило такое связывание поддерживается слабыми типами взаимодействий и обратимо , либо ферментативным путем.
Где находится информация о первичной структуре белка и как она хранится
Эту структуру белка создал алгоритм на основе нейросети. 2. Как называется участок хромосомы, хранящий информацию об одном белке? Найди верный ответ на вопрос«1. В какой молекуле хранится информация о первичной структуре белка? Понимание механизма фолдинга белка — процесса, благодаря которому каждая белковая молекула приобретает уникальную структуру и свойства — является необходимым условием для создания надёжного и точного алгоритма теоретического предсказания пространственной. Первичная структура белка. Каждая белковая молекула в живом организме характеризуется определенной последовательностью аминокислот, которая задается последовательностью нуклеотидов в структуре гена, кодирующего данный белок. 3. Где хранится информация о структуре белка.
Где хранится информация о структуре белка
Как и где происходит биосинтез белка в рамках трансляции и какова схема синтеза белка? Первый этап трансляции белка — присоединение иРНК к рибосоме. Далее трансляция в биологии — это нанизывание первой рибосомы, синтезирующей белок, на иРНК. Далее трансляция синтеза белка основывается на нанизывании новой рибосомы — по мере того, как предыдущая рибосома продвигается на конец иРНК, который освобождается. Одна иРНК может одновременно вмещать свыше 80 рибосом, синтезирующих один и тот же белок. Определение 6 Полирибосома или полисома — группа рибосом, соединенных с одной иРНК, Информация, записанная на иРНК а не рибосома , определяет вид синтезируемого белка. Разные белки могут синтезироваться одной и той же рибосомой. Рибосома отделяется от иРНК после того, как синтез белка завершается. Заключительный этап трансляции — это синтез белка или его поступление в эндоплазматическую сеть. Рибосома включает две субъединицы: малую и большую. Присоединение молекулы иРНК происходит к малой субъединице.
Место, в котором рибосома и иРНК контактируют, содержит 6 нуклеотидов 2 триплета. Из цитоплазмы к одному из триплетов постоянно подходят тРНК с различными аминокислотами. Своим антикодоном они касаются кодона иРНК. В случае комплементарности кодона и антикодона, возникает пептидная связь: она образуется между аминокислотой уже синтезированной части белка и аминокислотой, доставляемой тРНК. Фермент синтетазы участвует в соединении аминокислот в молекулу белка. После отдачи аминокислоты молекула тРНК переходит в цитоплазму, в результате чего рибосома перемещается на один триплет нуклеотидов. Таким образом, происходит последовательный синтез полипептидной цепи. Как только это происходит, синтез белка останавливается. Последовательность того, как аминокислоты включаются в цепь белка, определяется последовательностью кодонов иРНК. В каналы эндоплазматического ретикулюма поступают синтезированные белки.
Хромосомы эукариот — это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра. Как хромосомы помещаются в клетке человека? ДНК помещается в ядро за счет того, что она многократно свернута и уложена в компактные тельца — хромосомы.
У человека в ядре каждой клетки хранятся 23 пары хромосом — один набор приходит от отца, второй — от матери. Где находятся гены как они расположены? Они находятся в наших хромосомах, которые содержат десятки тысяч известных генов. Хромосомы расположены глубоко в клетке в структуре, которая называется «ядро»; ядро служит «командным центром» клеток из которых состоит человеческое тело.
В клетках человека в норме содержится 23 пары хромосом. Где хранится наследственная информация о первичной структуре белка? Информацию о первичной структуре всех белков организма содержат молекулы ДНК.
Четвертичная структура белка. Биология четвертичная структура. Четвертичная структура белка примеры.
Хлорофилл четвертичная структура белка. Пространственная укладка белков третичная структура. Под третичной структурой белка подразумевают:. Третичная структура белка это способ укладки. Способ укладки полипептидной цепи. Белок с структура 4 строение.
Вторичная структура молекулы белка. Биополимеры белки схема. Типы структуры первичного белка. Первичная структура белка структура. Первичная структура белка характеризуется. Первинча яструктруа белка.
ДНК структура белковых молекул. В ДНК записана информация о. Через поцелуй передается ДНК. Информация о структуре белка хранится в. Информация о структуре белка хранится в а его Синтез осуществляется в. Закончите предложение информация о структуре белка хранится в.
Информация о структуре белке хранится. Четвертичная структура белка таблица. Четвертичная структура белка формула химическая. Белки третичная структура и четвертичная. Строение и структура белков. Синтез первичной структуры белка осуществляется.
Перенос информации о первичной структуре белка. Классификация белков по месту их синтеза. Структурные основы белкового синтеза.. Первичная структура белка при денатурации. Денатурация белка структуры. Процесс денатурации белка формула.
Денатурация белка биология 10 класс. Белки первичная вторичная третичная четвертичная структуры. Первичная вторичная и третичная структура белков. Структура белков первичная вторичная третичная четвертичная. Белки первичная вторичная третичная структуры белков. Ген содержит информацию о первичной структуре белка.
Участок ДНК С первичной структуре белка. Наследственная информация содержится в. Р РНК функция. Рибосомная РНК функции. РНК строение структура функции. Строение простых белков.
Строение белковых молекул кратко. Строение белковых молекул. Структуры белка. Вторичная и третичная структура белка.
Как называется триплет на и-РНК кодирующий одну аминокислоту? Сколько видов аминокислот участвует в биосинтезе белка в живых организмах? На каких органоидах происходит синтез белка?
Урок: «Биосинтез белка»
А возможность синтезировать белки с желаемой структурой позволит ускорить разработку ферментов (ускорителей), с помощью которых можно, например, производить биотопливо и полностью разлагать пластмассовые отходы. Где хранится информация о структуре белка? (ДНК). Правильный ответ на вопрос«Где хранится информация о структуре белка? и где осуществляется его синтез » по предмету Биология. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как информация из ядра передаются в цитоплазму?, ответ13491279: 1.в зашифрована в последовательности четырёх азотистых попадать посредством отшнуровываний выпячиваний. Узнав их последовательность, можно попытаться теоретически предсказать структуру белка и то, как он ведет себя в организме.