Новости фрактал в природе

Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует. Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической».

9 Удивительных фракталов, найденных в природе

Когда вы думаете о фракталах, вам могут прийти на ум плакаты и футболки Grateful Dead, пульсирующие всеми цветами радуги и вызывающие завихрение сходства. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Что такое фрактал?

Ну и добавлю еще одно соображение. Для сравнительно простых форм жизни, например, грибов или растений, фрактальная структура удобна еще одним своим свойством - самоподобием. Оно означает, что если в результате какого-либо события от, например, мицелия гриба будет оторвана большая часть, оставшаяся часть в целом будет подобна всему большому организму и будет функционировать. Конечно, это верно лишь для достаточно простых форм жизни. Все природные объекты строго математичны, так как созданы не людьми, а Богом. А Пространство Творца описывается математическими законами и есть полное совершенство форм...

Ананасы растут по фрактальным законам, а кристаллы льда формируются фрактальными формами, такими же, как в дельтах рек и венах вашего тела. Часто говорят, что Мать-Природа - чертовски хороший дизайнер, и фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи. Фракталы сверхэффективны и позволяют растениям максимально эффективно использовать солнечный свет и сердечно-сосудистую систему. Фракталы прекрасны везде, где они появляются, поэтому есть множество примеров, которыми можно поделиться.

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и т. Именно с их помощью современная кинемотография стала столь красочной и приблизилась к естественно-природному изображению. Фракталы нашли свое применение в медицине, поскольку после многократных исследований было замечено, что у здорового человека линии электрокардиограммы сердца и головного мозга представляют собой правильную фрактальную фигуру, а у больного - неправильную, заметную лишь при многократном увеличении. В ходе работы было: - проанализировано построение фрактальных фигур различных типов; - исследовано, что данные способы отличаются простотой практического применения в любой программной среде; - выявлено огромное практическое применение фракталов в современном мире. Данная работа может быть использована учащимися начальных курсов для самостоятельного изучения фракталов, компьютерной графики. Современные исследователи должны не только овладевать материалом даваемых им программ, но и расширять свой кругозор, а главное - находить практическое применение своим навыкам и умениям. Вы всегда можете отключить рекламу.

В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность в смысле Минковского или Хаусдорфа , либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами. Слайд 3 Описание слайда: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: 1.

Открытие первой фрактальной молекулы в природе — математическое чудо

Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Фракталы в природе Подготовила Андреева Алина Р-12/9. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует.

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

неупо-рядоченные системы, для которых самоподобие выполняется только в среднем. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. А разнообразие видов фракталов в природе значительно больше того, что могут дать результаты компьютерных вычислений. Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует.

Фракталы в природе: красота бесконечности вокруг нас

Важно только то, что эти преобразования являются повторяющимися происходят, как говорят в математике, итерациями. Вот в результате этого повторения и возникают фракталы те, которые вы видели выше. Фрактал является самоподобной точно или приблизительно структурой. Это значит следующее. Если вы поднесете к любой из представленных картинок микроскоп, увеличивающий изображение, например, в 100 раз, и посмотрите на фрагмент попавшего в окуляр кусочка фрактала, то вы обнаружите, что он идентичен исходному изображению.

Если вы возьмете более сильный микроскоп, увеличивающий изображение в 1000 раз, то вы обнаружите, что кусочек попавшего в окуляр фрагмента предыдущего изображения имеет ту же самую или очень похожую структуру. Из этого следует крайне важный для последующего вывод. Фрактал имеет крайне сложную структуру, которая повторяется на разных масштабах. Но чем больше мы забираемся вглубь его устройства, тем сложнее он становится в целом.

И количественные оценки свойств первоначальной картинки могут начинать меняться. Вот теперь мы оставим абстрактную математику и перейдем к окружающим нас вещам — таким, казалось бы, простым и понятным. Фрактальные объекты в природе Береговая линия Представьте себе, что вы с околоземной орбиты фотографируете некий остров, например Британию. Вы получите такое же изображение, как на географической карте.

Плавное очертание берегов, со всех сторон — море. Узнать протяженность береговой линии очень просто. Возьмите обычную нитку и аккуратно выложите ее по границам острова. Потом, измеряйте ее длину в сантиметрах и, полученное число, умножайте на масштаб карты — в одном сантиметре сколько-то там километров.

Вот и результат. А теперь следующий эксперимент. Вы летите на самолете на высоте птичьего полета и фотографируете береговую линию. Получается картина, похожая на фотографии со спутника.

Но эта береговая линия оказывается изрезанной. На ваших снимках появляются небольшие бухты, заливы, выступающие в море фрагменты суши. Все это соответствует действительности, но не могло быть увиденным со спутника. Структура береговой линии усложняется.

Допустим, прилетев домой, вы на основании своих снимков сделали подробную карту береговой линии. И решили измерить ее длину с помощью той самой нитки, выложив ее строго по полученным вами новым данным. Новое значение длины береговой линии превысит старое. И существенно.

Интуитивно это понятно. Ведь теперь ваша нитка должна огибать берега всех заливов и бухт, а не просто проходить по побережью. Мы уменьшили масштаб, и все стало намного сложнее и запутаннее. Как у фракталов.

А теперь еще одна итерация. Вы идете по тому же побережью пешком. И фиксируете рельеф береговой линии. Выясняется, что берега заливов и бухт, которые вы снимали с самолета, вовсе не такие гладкие и простые, как вам казалось на ваших снимках.

Они имеют сложную структуру. И, таким образом, если вы нанесете на карту вот эту «пешеходную» береговую линию, длина ее вырастет еще больше. Да, бесконечностей в природе не бывает. Но совершенно понятно, что береговая линия — это типичный фрактал.

Она остается себе подобной, но ее структура становится все более и более сложной при ближайшем рассмотрении вспомните про пример с микроскопом. Это воистину удивительное явление. Мы привыкли к тому, что любой ограниченный по размерам геометрический объект на плоскости квадрат, треугольник, окружность имеет фиксированную и конечную длину своих границ.

Женская психология и саморазвитие 5 подписчиков Подписаться Фильм посвящен забавным математическим объектам - фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике.

Подробнее об этом позже.

В природе Множество Мандельброта Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Законы, управляющие созданием фракталов, похоже, встречаются во всем мире природы. Ананасы растут по фрактальным законам, а кристаллы льда формируются фрактальными формами, такими же, как в дельтах рек и венах вашего тела.

До 1975 года, фракталы встречались в истории время от времени, но после работы Бенуа Мандельброта, изучение фракталов начало приобретать массовый характер, все больше интегрируясь в мир. Изучение фракталов вызвало новый виток в изучении разных сфер жизни: в компьютерной графике, в передаче данных, в радиотехнике, в производстве, в работе мозга, в движениях человека, в росте живых существ и многом другом.

Представьте, насколько упрощается построение графических моделей, зная, что они самоподобны и вычисляются по одной простой формуле. Насколько становиться проще кодирование и передача информации, когда есть понимание, что их можно «сжать» по определённой фрактальный закономерности. И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития. Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже?

Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности. Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба.

Прекрасные фракталы в природе

Активный поход в торговле по фракталам Определите тренд в каком направлении перемещается объём и торгуйте в течение дня только в направлении тренда. Этот индикатор может быть хорошим фильтром для ваших сделок. Если на рынке присутствует восходящий тренд, и внутри дня цена пробила нижний фрактал, выйдя из области Value area, а потом в неё вернулась — то, скорее всего, это был ложный пробой, и движение вверх вероятно продолжится. Пример на графике: Если на рынке присутствует восходящий тренд, и внутри дня цена пробила верхний фрактал, выйдя из области Value area — то, скорее всего, движение вверх продолжится. Пример на графике: Контролируйте риски, правильно выбирая размер позиции. Такой тип трейдинга позволит вам совершать сделки более точно, но будет требовать больше времени в день для работы. Выводы Окружающий нас мир нелинеен и фрактален. Рынки, как часть живой природы, как отражение особенностей работы человеческого мозга — тоже нелинейны и фрактальны.

Рынки — это «живой» эволюционирующий организм, который описать с помощью простых формул или геометрических фигур крайне сложно. Ввиду этого, на «живых рынках» дают погрешности: Индикаторный анализ, Что хорошо работает на «живых рынках»: анализ объемов,.

Я солидарен, далее, с лауреатом Нобелевской премии по физике за 1977 год Филипом Андерсоном, утверждающим, что «на каждом уровне сложности появляются совершенно новые свойства». При этом на разных уровнях организации материи, возникающих один за другим в ходе ее материи самоорганизации, начинают действовать все новые законы — физические, химические, биологические, социальные.

Эволюция под давлением взаимодействий протекает тем успешнее, чем то позволяют обстоятельства. Это касается и феномена жизни. Как писал Роберт Чемберс в своей «Естественной истории мироздания» 1844 , жизнь «появлялась всюду и постоянно, когда только возникали благоприятные для того условия». Скажем, из всех планет Солнечной системы жизнь в ее развитых формах возникла только на Земле. На других планетах давление взаимодействий оказалось не столь результативным.

Отбор отбору рознь Главным конкурентом автогенетической теории эволюции сегодня продолжает оставаться теория естественного отбора. Отбор в ней — только один из трех компонентов естественного отбора, включающего в себя: 1 возникновение множества наследуемых малых случайных направленных «во все стороны» мутаций; 2 выживание наиболее адаптивных из этих мутаций в результате конкуренции особей и их взаимодействия со средой собственно отбор ; 3 накопление малых мутаций, выживающих на протяжении ряда поколений, в адаптивные признаки. Второй компонент, который часто некорректно отождествляют со всем естественным отбором, вполне реален, тогда как первый и третий реальности не отражают. Если бы Господь здесь это метафора положился только на естественный отбор, то никакой эволюции не происходило бы. Первый аргумент.

Темпы органической эволюции превосходят темпы эволюции неорганической среды, так что сама по себе адаптация к среде не могла бы двигать эволюцию органического мира. Второй аргумент. Появляющиеся в ходе эволюции все более сложные формы зачастую не превосходят по адаптированности старые, скажем, бактерии или лишайники, проявляющие чудеса выживаемости в самых невероятных условиях. Третий аргумент. В ходе эволюционных изменений данный органический вид становится другим видом, репродуктивно обособленным от старого, который после того зачастую гибнет.

Объяснить это адаптацией к среде старого вида невозможно. Четвертый аргумент. Позиции теории естественного отбора подрывает и возникшая в последние десятилетия эволюционная биология развития evo-devo. Получаемые здесь результаты позволяют все увереннее утверждать, что органическая эволюция осуществляется посредством макромутаций, для появления которых оказывается достаточно изменений в нескольких и даже одном-двух генах. В научной литературе обсуждаются и другие аргументы против теории естественного отбора.

Я знаю, что ничего не знаю Эти слова, обычно приписываемые Сократу, в полной мере могут быть отнесены к нашим представлениям о Вселенной. После открытия космического расширения стало понятно, что наблюдаемый мир ограничен для нас горизонтом видимости радиусом около 13,8 млрд световых лет. Так как никакой сигнал не может распространяться быстрее света, а расширение началось около 13,8 млрд лет назад, то события, происходящие вне этой сферы, в принципе не могут нами наблюдаться. Весь не ограниченный горизонтом видимости материальный мир называют Вселенной, сферический же ее участок, находящийся в пределах горизонта видимости, то есть наблюдаемый нами мир, — Метагалактикой. Более строго нашей Метагалактикой было бы называть относительно компактную космическую макроструктуру, включающую в себя наблюдаемый нами мир и отделенную от других метагалактик во Вселенной расстояниями, многократно превышающими ее собственные размеры.

Ниоткуда не следует, что размеры нашей Метагалактики совпадают с размерами наблюдаемого мира. Радиус горизонта видимости определяется не законами формирования компактных космических макроструктур, а временем, прошедшим после начала наблюдаемого Большого взрыва. Размеры нашей Метагалактики могут существенно превышать размеры наблюдаемого мира. Из сказанного следует, что у космологии, изучающей Вселенную в целом, начисто отсутствует эмпирическая база. Редчайший или даже единственный случай в естественных науках.

Все наши утверждения о Вселенной носят гипотетический характер.

Он создается путем итеративного применения простой математической формулы к каждой точке на комплексной плоскости. Результатом является изображение, которое состоит из бесконечного количества деталей и самоподобных структур. Фрактал Жюлиа — это еще один пример алгебраического фрактала, который создается с помощью итеративного применения формулы к каждой точке на комплексной плоскости. Он имеет разнообразные формы и структуры, которые зависят от выбранной формулы и параметров. Бассейны Ньютона также являются примерами алгебраических фракталов. Области с фрактальными границами появляются при приближенном нахождении корней нелинейного уравнения алгоритмом Ньютона на комплексной плоскости для функции действительной переменной метод Ньютона называют методом касательных, который обобщается для комплексной плоскости. Алгебраические фракталы обладают приближенной самоподобностью. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга.

Два изображения будут очень похожи в деталях, но они не будут полностью идентичными. Фракталы, при построении которых в итеративной системе случайным образом изменяются какие-либо параметры, называются стохастическими. Типичный представитель данного класса фракталов — «плазма». Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более «рваным» будет рисунок. Стохастическим природным процессом является броуновское движение. С помощью компьютера такие процессы строить достаточно просто: надо просто задать последовательности случайных чисел и настроить соответствующий алгоритм. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря, процесса электролиза.

При этом получаются объекты, очень похожие на природные — несимметричные деревья, изрезанные береговые линии и так далее. С помощью алгоритма, похожего на плазму строится карта высот. Плазма Практическая часть исследовательской работы Как программировать фракталы? Изучив фракталы в теории, мне стало интересно, как это работает на практике? Я решил начать построение простых геометрических фракталов с помощью языка программирования Лого. Черепашья графика позволяет наглядно представить геометрические фракталы. Мне удалось сделать такие общеизвестные фракталы, как треугольник Серпинского, ковёр Серпинского, снежинка Коха, а также придумать свой собственный фрактал, работающий по аналогичному алгоритму - "Плюсы". Результаты моей работы в виде графических изображений серии картинок с усложнением после каждой итерации и алгоритмов представлены ниже.

Наша природа удивительна и у нее есть свои закономерности, которые ученые постоянно изучают. Одним из таких исследований является изучение фракталов в природе. Благодаря спутниковым снимкам мы также можем полюбоваться красотой нашей планеты и необычными рисунками, сделанными природой в разных странах.

ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.

Иногда листья образуют спирали — поэтому это необычное растение привлекает взгляд. Главное — не дать бегонии себя загипнотизировать! Природный фрактал может даже жить у вас на подоконнике: например, комнатная королевская бегония — отличный вариант nashzelenyimir. Да, здесь нет ничего самоподобного. Но если разрезать кочан напополам, вы увидите удивительный узор-спираль. Не один вид капусты стремится к такой математической форме — может, эти растения сговорились и планируют фрактальный захват мира? Красная капуста в разрезе тоже напоминает фрактальное подобие floweryvale.

Все мы знаем, как выглядит часть этого растения — треугольник, состоящий из листьев они называются вайи , которые в свою очередь тоже образуют треугольник, подобный самому большому. Существуют даже математические фракталы в виде папоротника. Например, британский математик Майкл Барнсли в своем труде «Фракталы повсюду» описал «фрактал-папоротник», который при приближении даёт воспроизведение начальной формы. Лист папоротника — типичный фрактал в природе mirzhvetov. А ведь этот «мягкий настил» — тоже фрактал! Особенно хорошо это видно на длинном мхе: его структура самоподобна.

Попробуйте заняться макро-съёмкой: вы увидите, что фракталы не только рядом, но и у нас под ногами. Посмотрите, как мох разветвляется: этот природный фрактал, пожалуй, один из самых красивых krasivoe-foto. Однако на листьях фрактальность теряется — хотя, если не брать в счёт «мякоть» листа и оставить только прожилки, это можно считать продолжением «древесного» фрактала. Кстати, а корневая система — это уже другое самоподобное множество. Но у всех них в основе строения лежит фрактальное подобие lensscaper. Его не сразу можно обнаружить.

Существует такое явление, как парадокс береговой линии. Измерить её! Так ли это просто? Вовсе нет, ведь береговая линия длинна, и измерить её простой рулеткой не получится. Поэтому берётся мера измерения — например, в 100 км.

А если все измерять? Опять в пределе бесконечность получается. Наша Вселенная Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно.

Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики звездные скопления , где-то — пустота. Почему распределение материи подчиняется иррегулярным иерархическим законам. А что происходит внутри галактик еще одно уменьшение масштаба. Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то — нет. Не проявляется ли здесь фрактальная сущность мира?

Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами. К практическим делам Подобных примеров можно приводить много. Но давайте вернемся к более прозаическим вещам. Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем.

Пример тому — фондовые рынки. Практика показывает, что экономические процессы носят зачастую хаотичный, непредсказуемый характер. Существовавшие до сегодняшнего дня математические модели, которые пытались эти процессы описывать, не учитывали одного очень важного фактора — способность рынка к самоорганизации. Вот тут на помощь и приходит теория фракталов, которые имеют свойства «самоорганизации», воспроизводя себя на уровне разных масштабов. Конечно, фрактал является чисто математическим объектом. И в природе, да и в экономике, их не существует. Но есть понятие фрактальных явлений. Они являются фракталами только в статистическом смысле.

Тем не менее симбиоз фрактальной математики и статистики позволяет получить достаточно точные и адекватные прогнозы. Особенно эффективным этот подход оказывается при анализе фондовых рынков. И это не «придумки» математиков. Экспертные данные показывают, что многие участники фондовых рынков тратят немалые деньги на оплату специалистов в области фрактальной математики. Что же дает теория фракталов? Она постулирует общую, глобальную зависимость ценообразования от того, что было в прошлом. Конечно, локально процесс ценообразования случаен. Но случайные скачки и падения цен, которые могут происходить сиюминутно, имеют особенность собираться в кластеры.

Которые воспроизводятся на больших масштабах времени. Поэтому, анализируя то, что было когда-то, мы можем прогнозировать, как долго продлиться та или иная тенденция развития рынка рост или падение. Таким образом, в глобальном масштабе тот или иной рынок «воспроизводит» сам себя. Допуская случайные флуктуации, вызванные массой внешних факторов, в каждый конкретный момент времени. Но глобальные тенденции сохраняются. Вот вам и фракталы! Чем мы дальше уменьшаем масштаб, тем структура фрактала становится все более сложной. Но они воспроизводят себя, так же как это делает фондовый рынок.

Заключение Почему мир устроен по фрактальному принципу?

Однако правде нужно смотреть в глаза: после открытия гигантских космических структур гипотеза о фрактальности Вселенной стала более правдоподобной, чем гипотеза о ее макрооднородности. Сделаем терминологическое уточнение. Природные фракталы, расположенные в нашем трехмерном мире, будем называть идеальными, если их плотность равна нулю. Единственным таким фракталом может оказаться Вселенная, если она бесконечна: устремляя в законе Карпентера радиус к бесконечности, получаем нулевую плотность. Мы включаем в гипотезу о фрактальности Вселенной предположение о ее бесконечности. Делаем это по двум соображениям. Во-первых, это предположение — простейшее из возможных для фрактальной Вселенной. Во-вторых, Альберт Эйнштейн ввел в оборот модель замкнутой Вселенной 1917 , чтобы избавиться от ее нестационарности, возникающей в предположении однородности Вселенной. Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует.

Как оно все устроено «на самом деле» Фрактальная Вселенная устроена не просто, а очень просто. Никаких художественных излишеств вроде дополнительных пространственных измерений, параллельных вселенных, вложенных в элементарные частицы макромиров, «кротовых нор» в пространстве и проч. Имеем одно бесконечное трехмерное глобально плоское пространство, описываемое специальной теорией относительности. В нем рассеяно бесконечное иерархически организованное множество звезд, галактик, метагалактик и т. Расстояния между этими объектами многократно превосходят размеры самих космических систем и неограниченно растут с ростом их ранга, что и обеспечивает такой Вселенной нулевую среднюю плотность. Фрактальная Вселенная стационарна глобально, но не локально. Составляющие ее макросистемы конечных размеров могут расширяться и сжиматься, как им вздумается, однако эти локальные процессы сжатия и расширения не могут возобладать друг над другом. Отсюда следует, что если Вселенная фрактальна, то она не переживала Большого взрыва, а наблюдаемое нами космическое расширение является результатом Большого взрыва только нашей Метагалактики. Обсуждая прошлое нашей Метагалактики, можно опираться на идею «отскока», высказанную в научной литературе в отношении Вселенной. Судя по всему, Большому взрыву предшествовало сжатие нашей Метагалактики «до упора», остановившего гравитационный коллапс и обратившего его вспять.

С будущим нашей Метагалактики сложнее. Из всех форм физических взаимодействий гравитационное — самое дальнодействующее. Поэтому именно оно глобально доминирует во Вселенной, а также в метагалактиках и других достаточно больших космических системах. Доминирование же гравитационного взаимодействия в достаточно больших космических системах с ненулевой плотностью, как известно, приводит к их неустойчивости. В устойчивых состояниях могут находиться только не очень большие — по сравнению с метагалактиками — космические системы, в которых существенными наряду с гравитационным оказываются и другие физические взаимодействия. Приходим к выводу, что все рассеянные во Вселенной метагалактики и еще большие системы из-за доминирования в них гравитационного взаимодействия нестационарны. Поскольку же метагалактики могут только расширяться и сжиматься, не достигая устойчивого состояния, то они это циклически и делают. Впрочем, расширение и сжатие метагалактик из-за необратимости этих процессов характеризуются, надо полагать, своего рода остаточной деформацией, которая от цикла к циклу накапливается, пока однажды метагалактики не прерывают свою пульсацию, переходя к бесконечному расширению. Таким образом, при всей своей глобальной стационарности фрактальная Вселенная локально на всем ее протяжении живет бурной жизнью. Составляющие ее метагалактики переживают квазициклические пульсации.

Все они имеют свой срок жизни, по истечении которого тают в бесконечном расширении, а их содержимое либо подбирается другими метагалактиками, либо служит материалом для самоорганизации новых. Эволюция и охлаждение В ходе расширения нашей Метагалактики после ее персонального Большого взрыва она эволюционирует в сторону усложнения. На стадии сжатия все структуры, возникшие в ходе расширения, будут разрушены. Согласно концепции Большого взрыва, в ходе расширения наша Метагалактика вот уже около 13,8 млрд лет охлаждается.

Благодаря спутниковым снимкам мы также можем полюбоваться красотой нашей планеты и необычными рисунками, сделанными природой в разных странах.

Для ученых это, конечно, больше, чем просто красивая картинка, но сейчас не об этом. Фрактал — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.

Фрактал. 5 вопросов

Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фракталы в природе (53 фото). Самым известным примером фракталов в природе является снежинка.

Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать

В своей книге “Фрактальная геометрия природы” (1982) Бенуа Мандельброт ввел термин фракталы, и создал математику для их описания. чудо природы, с которым я предлагаю вам познакомиться. нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только.

Фракталы: бесконечность внутри нас

Такая симметрия приводит к тому, что в крупном масштабе форма выглядит однородной. Фрактальный белок нарушает правило симметрии. Разные цепочки белков вступают в различных точках фрактала в не полностью идентичные взаимодействия. Пока исследователям не ясно, несет ли такая фрактальная структура фермента цианобактерии какую-то пользу. Возможно, это всего лишь безобидная случайность эволюции. Недавно ученые из США открыли «нейтронные молекулы». Они смогли сделать так, чтобы нейтроны слиплись при помощи сильного взаимодействия в квантовую точку, состоящую из десятков тысяч атомных ядер.

Хотя иногда ручьи могут быть расположены по прямой линии, они быстро становятся извилистыми, поскольку приспосабливаются к помехам, таким как норы диких животных. Всего одна помеха может изменить течение реки и заставить ее изгибаться на всем протяжении. Ширина этих ручьев также чрезвычайно шаблонна. Кривые, как установили эксперты, всегда в шесть раз больше ширины русла. Такое самоподобие характерно для фракталов и является причиной того, что реки во всем мире выглядят одинаково. Если вы внимательно посмотрите на прожилки листьев, то заметите, насколько они самоподобны. Самые мелкие из них похожи на главную срединную жилку, а срединная жилка похожа на ствол дерева с его ветвями. Это справедливо только для сетчатого жилкования паутинистые, а не параллельные жилки. В природе пузырьки, которые образуются при разбивании океанских волн или падении капель дождя, образуют самоподобный узор с тонкими пленками жидкости, разделяющими газовые карманы разных размеров. Большие пузырьки перемежаются с маленькими, маленькие — с еще более маленькими, и так далее.

Поэтому история открытия фракталов — в значительной степени биография Бенуа Мандельброта, хотя частные случаи фракталов множества Жюлиа, снежинка Коха и функция Вейерштрасса были известны и раньше. Но только Мандельброт увидел что-то общее в этих примерах и дал им описание. Бенуа Мандельброт. Фото: Yale University, www. В начале 60-х годов Мандельброт занимался экономикой, изучал динамику цен на хлопок. В то время почти все экономисты считали, что в долгосрочной перспективе цены зависят от внешних факторов, а в краткосрочной колеблются случайным образом. Однако Мандельброт сумел разглядеть в динамике цен закономерность — она практически не зависела от масштаба! Говоря другими словами, изменения цен за год и за месяц на графиках выглядели как две практически одинаковые кривые, несмотря на прошедшие за рассматриваемый период две мировые войны. Множество Жюлиа, www. В то же время научным сообществом его исследования воспринимались как нечто недостойное внимания. Отчасти это происходило из-за недостаточной на тот момент формальности теории, отчасти — из-за ее разрозненности. Большинство ученых просто не понимали, как и для чего можно применять эту теорию. Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса. Иллюстрация: Eeyore22, www. Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач. Например, одно из свойств фракталов основано на их способности иметь дробную размерность. Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной. Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие. Способность поглощать кислород напрямую зависит от площади дыхательной поверхности легких, но при этом они должны занимать относительно небольшой объем. Именно поэтому небольшие человеческие легкие имеют дыхательную поверхность большую, чем стандартный теннисный корт. Теорию фракталов используют в материаловедении. Шероховатости и неровности, остающиеся на поверхности любого металла после его полировки или изготовления, имеют фрактальную природу. И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла.

Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Можно до бесконечности приводить примеры фрактальных объектов в природе, — это и облака, и хлопья снега, и горы, и вспышка молнии, и наконец, цветная капуста. Фрактал как природный объект — это вечное непрерывное движение, новое становление и развитие. Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде.

Похожие новости:

Оцените статью
Добавить комментарий