Новости авария на аэс три майл айленд

Авария на Три-Майл-Айленде обрушилась на атомную электростанцию в Мидлтауне, штат Пенсильвания. Крупнейшая авария в истории атомной энергетики США произошла 28 марта 1979 года на втором энергоблоке АЭС Три-Майл-Айленд по причине своевременно не обнаруженной утечки теплоносителя первого.

Ядерная авария на Три-Майл-Айленде

Вечером, в 19. Вплоть до 2 апреля операторы работали над удалением из-под крышки реактора водорода — эта операция увенчалась успехом, и опасность неуправляемого развития аварии была полностью устранена. Интересно, что в 6. Как выяснилось позже, это спасло людей от неминуемой гибели — к тому времени радиационный фон в помещениях гермооболочки превышал норму в сотни раз! А уже 1 апреля на станцию Три-Майл-Айленд с визитом прибыл сам президент США Джимми Картер, который успокоил людей и рассказал, что никакой опасности нет. И если верить официальным данным, то опасности действительно не было, но волнение людей, возникшее из-за аварии, понять можно. АЭС Три-Майл-Айленд Поcледствия аварии Удивительно, но авария на АЭС Три-Майл-Айленд не имела серьезных последствий для здоровья людей и экологии, однако она оказала самое серьезное влияние на умы людей и американскую ядерную энергетику.

Но, несмотря на это, все работы по устранению последствий аварии были завершены лишь к 1993 году! Разрушения активной зоны. Температура в реакторе во время аварии достигала 2200 градусов, в результате расплавилось около половины всех компонентов активной зоны. В абсолютных цифрах это составляет почти 62 тонны. Радиоактивное загрязнение. Из атомного реактора вытекло большое количество радиоактивной воды, в результате чего уровень радиоактивности в помещениях гермооболочки более чем в 600 раз превысил норму.

Некоторое количество радиоактивных газов и пара попало в атмосферу, и в результате каждый житель 16-километровой зоны вокруг АЭС получил облучение не больше, чем во время сеанса флюорографии. Самого опасного — выбросов в атмосферу и воду высокоактивных нуклидов — удалось избежать, поэтому местность осталась «чистой». Крах атомной энергетики США. Психология людей и «китайский синдром».

Самое значительное исследование было проведено в 2002 году Школой общественного здравоохранения Университета Питтсбурга. Были обследованы более 32 тыс. Исследователи пришли к выводу: радиоактивность, образовавшаяся в результате аварии, не вызвала увеличения смертности от рака среди жителей этого района. Даже если забыть о внедрении новых технологических решений, авария стала поворотным моментом в истории отрасли. После аварии был создан Институт эксплуатации ядерной энергии, задачей которого стало обучение персонала управлению атомными станциями.

Укреплена комиссия по ядерному регулированию США — теперь специальные инспекторы Комиссии присутствуют на каждом объекте ядерной энергии. Помимо этого, был установлен постоянный контроль всех систем безопасности, налажены взаимодействие и обмен опытом между станциями, осуществлены многие другие нововведения. Все это потребовало значительных затрат, но безопасность того стоила. Для подтверждения своих слов Д. Ядерная энергия, оказывается, самая безопасная. Несчастные случаи на ветряных и солнечных станциях такие как падение с лестницы, крыши или турбины унесли больше жизней в расчете на мегаватт-час произведенной электроэнергии, чем все аварии на атомных станциях, включая самые крупные. Вследствие инцидентов на гидростанциях погибло больше людей, чем на всех остальных энергостанциях с неископаемым топливом. Аварии и несчастные случаи на станциях с ископаемым топливом становятся причинами большего количества смертей, чем инциденты на всех остальных станциях, вместе взятых. По данным Всемирной организации здравоохранения, центров по борьбе с болезнями, Национальной академии наук, только источники энергии на перерабатываемом топливе и биотопливе негативно влияют на здоровье человека.

Это подтверждают и многочисленные исследования в области здравоохранения, проведенные в последнее десятилетие. Всемирная организация здравоохранения назвала сжигание биомассы одной из основных проблем здравоохранения во всем мире. Смертность работников угольной, атомной и гидроэнергетики в США гораздо ниже, чем в среднем по миру. Это обусловлено высокой культурой безопасности на рабочих местах. Деятельность Федеральной комиссии по регулированию энергетики FERC обеспечила высокий уровень безопасности при эксплуатации американских гидроэлектростанций. Контроль за атомными станциями со стороны Комиссии по ядерному регулированию NRC позволил добиться наименьших показателей смертности на ядерных объектах Соединенных Штатов Америки. Некоторые считают, что главной причиной глобальных перемен стала именно авария на ТМА. Безопасность и четкое соблюдение правил имеют наивысший приоритет, и это делает NRC самым сильным регулирующим органом в мире. Первый энергоблок ТМА до сих пор нормально работает.

С тех пор АЭС произвела энергию, которая компенсировала сжигание более 95 млн метрических тонн углерода, что эквивалентно изъятию из эксплуатации 20 млн автомобилей. Материал подготовил Антон СМИРНОВ Андрей Гагаринский доктор физико-математических наук, советник директора НИЦ «Курчатовский институт» — В нашей стране, если не считать очень незначительного числа статей в научной периодике, чернобыльская тема в средствах массовой информации практически сошла на нет. Вялый интерес к теме поддерживается, по существу, лишь периодическими попытками правительства ускорить естественный процесс сокращения затрат на «чернобыльские льготы». Исключения можно пересчитать по пальцам. Несколько по-другому обстоят дела в мире. Наметившаяся тенденция к тому, чтобы включить развитие ядерной энергетики в набор кардинальных мер по сокращению выбросов парниковых газов, закономерно вызывает активизацию оппонентов мирного атома, главный если не единственный весомый аргумент которых — тяжелые аварии на атомных электростанциях.

Второй энергоблок и сейчас находится под постоянным контролем. Официально не было зафиксировано ни одной жертвы в результате аварии.

Радиоактивные частицы, попавшие в окружающую среду были крайне незначительны в своем количестве. Однако, авария на Три-Майл-Айленд вызвала, в первую очередь, широкий информационный резонанс и, получив пятый уровень опасности по шкале ИНЕС, ускорила развитие антиядерной кампании в США, которая привела к застою в атомной энергетике страны на десятилетия, лишь подогреваясь последующими авариями в Чернобыле и на Фукусиме. Это автоматически привело к выключению турбогенератора и включению аварийной системы подачи воды тремя аварийными насосами. Однако вода так и не поступила в генератор. Из-за человеческой ошибки во время планового ремонта, произошедшего за несколько дней до аварии, были закрыты задвижки подачи воды с аварийных насосов. Первые 12 секунд после аварии В результате прекратился отвод тепла с первого контура реактора. Растущее давление уже через несколько секунд превысило допустимый предел. Как правило, это приводит к открытию дополнительного клапана системы компенсации давления, которая позволяет сбросить пар в барботёр — специальную ёмкость.

Так случилось и на этот раз, поэтому рост давления на реакторе замедлился. Тем не менее, спустя 9 секунд включилась аварийная защита реактора, так как давление достигло 17 МПа. Температура упала, а объем воды стал уменьшаться. Давление наоборот, стало резко падать.

Огонь выпустил приблизительно 20 000 кюри йода-131, а также 594 кюри цезия-137 и 24 000 кюри ксенона-133 среди других радионуклидов. Серия взрывов водородного газа швырнула четырехтонный купол газохранилища на четыре фута по воздуху, где он застрял в надстройке. Тысячи курий продуктов деления были выброшены в атмосферу, и миллион галлонов радиоактивно загрязненной воды пришлось откачивать из подвала и «удалять» в мелкие окопы недалеко от реки Оттава.

Ядро реактора NRX нельзя обеззараживать; его нужно было похоронить как радиоактивные отходы. Микронезийские острова в Тихом океане, были местом проведения более 20 испытаний ядерного оружия между 1946 и 1958 годами. Замок Браво был кодовым названием, данным первому тесту на термоядерную водородную бомбу сухого топлива. Тест был проведен 1 марта 1954 года на атолле Бикини на Маршалловых островах. Когда Оружие было взорвано, произошел взрыв, в результате чего был образован кратер диаметром 6500 футов 2000 м и глубиной 250 футов 75 м. Замок Браво был очень мощным ядерным устройством, с размером в 15 мегатонн, который намного превышал ожидания 4-6 мегатонн. Этот просчет привел к серьезному радиологическому загрязнению, когда-либо вызванному Соединенными Штатами.

Что касается эквивалентности тоннажа ТНТ, то замок Браво был примерно в 1200 раз более мощным, чем атомные бомбы, которые были сброшены на Хиросиму и Нагасаки во время Второй мировой войны. Кроме того, радиационное облако загрязнило более семи тысяч квадратных миль окружающего Тихого океана, включая небольшие острова, такие как Ронджерик, Ронгелап и Утирик. Эти острова были эвакуированы, но все же местные жители были подвержены воздействию радиации. Уроженцы с тех пор страдали от врожденных дефектов. Японское рыболовное судно Daigo Fukuryu Maru также вступало в контакт с ядерными осадками, вызывая болезни для всех членов экипажа с одной фатальностью. Рыба, вода и земля были серьезно загрязнены, что сделало замок Браво одним из худших ядерных аварий. Взрыв произвел радиоактивное облако газа в воздух.

Десять матросов были убиты в результате инцидента, и 49 человек, как было обнаружено, получили радиационные повреждения с 10 развивающимися лучевыми заболеваниями. Более того, из 2000 человек, участвующих в операциях по очистке, 290 подвергались воздействию высокого уровня радиации по сравнению с нормальными стандартами.

Авария на Три-Майл-Айленд, хроника событий

Пожар начался из-за короткого замыкания в вентиляционной системе урановой шахты, и быстро распространился на большой площади. В результате сильного задымления и выброса радиоактивных веществ в воздух, радиация поразила около 200 работников, и была засекречена на долгое время. Официально о количестве жертв не сообщалось, но сейчас известно, что несколько человек погибли, а тысячи получили различные заболевания, связанные с длительным воздействием радиации. Три-майл-айленд, США. Рейтинг: 5 авария Три-майл-айленд - это одна из самых известных аварий в ядерной энергетике, произошедшая 28 марта 1979 года на одной из ядерных электростанций США. В результате сбоя в охлаждающей системе реактора произошло частичное расплавление топлива, что привело к выбросу в атмосферу небольшого количества радиоактивных веществ. По официальным данным, несколько человек получили лучевую болезнь. ТриМайл Айленд. Однако, хотя Три-майл-айленд не является самой тяжелой аварией в истории ядерной энергетики, она имела серьёзные последствия для общества и вызвала большую общественную тревогу.

После происшествия были введены более строгие меры безопасности на ядерных объектах в США. Кроме того, Три-майл-айленд стал предметом многочисленных исследований и дискуссий о безопасности ядерных электростанций.

Это следует классифицировать как серьезнейшее нарушение технических инструкций, принятых на современных АЭС. Операторы отключили аварийную систему охлаждения реактора в то время, когда ей полагалось нормально функционировать. Были отключены циркуляционные насосы первого контура, в результате чего первый контур остался без циркуляции почти на 12 часов. Все перечисленные ошибки операторы допустили в течение первых двух часов после начала аварии. Это свидетельствует о том, что операторы ТМА не смогли сразу осмыслить характер и размер аварии, рассматривая её как обычную аварийную остановку.

Вторая причина аварии связана с неполадками, вызвавшими отказ в работе некоторых приборов контрольно-измерительной аппаратуры и конструктивных узлов АЭС. Здесь, в первую очередь, следует указать на неправильные действия показания уровнемера компенсатора объёма, отказ предохранительного клапана компенсатора объёма. Авария такого типа была ранее детально проанализирована в США. Но в расчетах рассматривались АЭС с реакторами PWR, в которых парогенераторы способны работать до 30 минут без подачи питательной воды, то есть в аварийных условиях. Именно эта характеристика и обеспечила в расчетах пренебрежимо малую вероятность такой аварийной последовательности событий. Принятые меры: После аварии были внесены изменения в систему подготовки операторов. Если до этого главное внимание уделялось умению оператора анализировать возникшую ситуацию и определять, чем вызвана проблема, то после аварии подготовка была сконцентрирована на выполнении оператором заранее определённых технологических процедур.

Были также улучшены пульты управления и другое оборудование станции.

Операторы выключили насосы, чтобы предотвратить их разрушение или повреждение трубопроводов первого контура. Принудительная циркуляция теплоносителя прекратилась. Можно отметить, что отключение циркуляционных насосов в первом контуре реакторов с водой под давлением не должно приводить к прекращению циркуляции теплоносителя, должна продолжаться естественная циркуляция. Однако под крышкой реактора на этот момент накопился парогазовый пузырь, наличие которого вкупе с геометрическим расположением активной зоны и парогенераторов в конструкции данной ядерной установки воспрепятствовало возникновению естественной циркуляции в первом контуре. Операторы закрыли отсечной клапан на линии импульсного клапана, заклинившего в открытом положении. Истечение теплоносителя из первого контура прекратилось. К счастью, разрешение не было получено, вошедшие туда люди могли погибнуть.

К управляющему энергоблоком персоналу пришло первое понимание масштаба аварии. Однако она успела накрыть активную зону, предотвращая её дальнейшее разрушение, но это была лишь временная мера. Блочный щит управления вторым энергоблоком станции спустя несколько дней после аварии, идёт работа по её ликвидации. Весь последующий день они пытались это сделать, но фактически эти действия не имели успеха и лишь незначительное количество воды из гидроёмкостей попало в активную зону. Зато теперь из-за сброшенного давления невозможно было запустить циркуляционные насосы. Также в течение дня имели место локальные загорания водорода в гермооболочке. Были вновь включены аварийные насосы высокого давления. В дальнейшем персонал не допускал ошибок, опасное количество водорода, накопившегося под крышкой реактора, было постепенно удалено.

В состояние холодный останов реактор был переведён лишь через месяц [1] [2] [3] [4]. Последствия Дезактивация помещений гермообъёма. Хотя ядерное топливо частично расплавилось, оно не прожгло корпус реактора, так что радиоактивные вещества, в основном, остались внутри.

В окружающую среду попали в основном летучие радиоактивные элементы, такие как изотопы йода и цезия. В декабре 2013 года АЭС была официально закрыта. На территории станции продолжаются работы по ликвидации последствий аварии. В Международном агентстве по атомной энергии признают, что атаки на ЗАЭС могут привести к катастрофическим последствиям. Однако агентство так и не потребовало от Киева прекратить эти нападения. Госкорпорация «Росатом» сразу же категорически осудила беспрецедентную атаку на объекты атомной станции и ее инфраструктуры и призвала руководство МАГАТЭ, а также правительства стран ЕС незамедлительно отреагировать на прямую угрозу безопасности Запорожской АЭС. Радионуклиды накроют территории в Польше, Словакии и Германии. По его словам, выброс даже четверти содержимого одного из реакторов накроет Скандинавию. Чрезвычайная ситуация вызовет массовую миграцию населения и будет иметь катастрофические последствия. В августе 2022 года в Государственном агентстве Украины по управлению зоной отчуждения заявили, что последствия аварии на Запорожской АЭС могут быть в десять раз мощнее, чем при Чернобыле.

Топ-5 крупнейших радиационных катастроф и аварий, которые потрясли мир

Советское правительство, после некоторых политических распрей, признало, что источником радиационного заражения была Чернобыльская атомная электростанция, на которой произошла авария. Причины катастрофы были тщательно исследованы и сейчас у нас есть достаточно хорошее понимание того, что тогда случилось. Возможно, самый важный урок, который человечество вынесло из Чернобыльской катастрофы, заключается в том, что её причиной нельзя назвать недочёты конкретного реактора, или неправильные действия персонала в зале управления АЭС, или особенности отдельно взятого тоталитарного режима. Причиной происшествия такого масштаба стала целая цепь событий. В пользу этой идеи говорит тот факт, что оставшиеся реакторы серии РБМК, включая три установки на Чернобыльской АЭС, функционировали без заметных проблем с 1986 года, а девять из них работают до сих пор. В ходе международного расследования причин возникновения Чернобыльской катастрофы в соответствующих отчётах МКГЯБ постоянно говорится о недостаточном уровне «культуры безопасности». Анализ обстоятельств, которые привели к созданию четвёртого энергоблока Чернобыльской АЭС и к последующему его использованию, потенциально опасному, может дать человечеству множество знаний о предотвращении катастроф. Это — история о том, какую важную роль культура безопасности играет в отраслях промышленности, где цена аварий измеряется человеческими жизнями. Тогда на близлежащем химическом заводе компании Union Carbide India Ltd случился выброс смертельно опасного вещества — метилизоцианата. В последующие годы умерло ещё более тысячи человек, а общее число пострадавших составило около полумиллиона. Резервуар E610 — источник смертоносного газа Заражённые почва и грунтовые воды вокруг завода, теперь заброшенного, до сих пор представляют опасность, но люди продолжают жить в тех местах.

К катастрофе в Бхопале привели низкий уровень технического обслуживания оборудования, неисправные средства защиты, а также — отсутствие культуры безопасности. Всё это вместе позволило воде проникнуть через неисправные вентили в резервуар с метилизоцианатом, что привело, в результате экзотермической реакции, к образованию смертоносного газа. Американская компания-владелец завода теперь она называется The Dow Chemical Company не очистила место аварии после закрытия завода в 1986 году. Теперь эта задача возложена на местные власти. Катастрофа 1986 года в Чернобыле во многом похожа на аварию в Бхопале. В частности — недостаточным уровнем культуры безопасности. Всё началось ещё на этапе проектирования реактора РБМК реактор большой мощности канального типа , когда, ради экономии, было решено использовать природный уран, а не обогащённый уран-235. Это означало увеличение размеров реактора, что привело к принятию решения о том, что в конструкции реактора не нужен корпус, который имеется у реакторов других типов например — у корпусных водо-водяных энергетических реакторов, ВВЭР. Корпус РБМК оказался бы слишком большим и слишком дорогим. Но там не было чего-то такого, что не дало бы операторам реактора по собственному усмотрению отключить все эти системы безопасности.

В результате то, что должно было стать простым испытанием турбогенератора в режиме выбега что предусматривало использование кинетической энергии, запасённой во вращающемся роторе турбогенератора, для выработки электроэнергии, необходимой для питания циркуляционных насосов в аварийной ситуации , превратилось в катастрофу. Они имеют отношение к реактивности реактора — к количеству нейтронов с определённой скоростью температурой нейтронов , присутствующих в некий момент времени в нейтронном эффективном сечении используемого в реакторе топлива. В случае с ураном-235 необходимы так называемые тепловые нейтроны, но в ходе цепной ядерной реакции производится множество более быстрых нейтронов их называют «быстрыми нейтронами». Быстрые нейтроны могут быть замедлены до состояния тепловых нейтронов с использованием замедлителей нейтронов.

Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления. Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60]. К 11:00 была предложена новая стратегия: снизить давление в реакторной установке до минимально возможного. Ожидалось, что, во-первых, при давлении ниже 4,2 МПа вода из специальных гидроёмкостей поступит в реактор и зальёт активную зону, во-вторых, возможно будет включить в работу систему планового расхолаживания реактора, которая работает при давлениях около 2 МПа [61] , и обеспечить этим стабильный теплоотвод от первого контура через её теплообменники [62]. Тем не менее персонал принял это за свидетельство того, что реактор полностью заполнен водой. Хотя фактически из гидроёмкостей был вытеснен лишь объём воды, достаточный для того, чтобы давление в гидроёмкостях сравнялось с давлением в реакторе. Для вытеснения значительного объёма воды из гидроёмкости потребовалось бы снизить давление в первом контуре примерно до 1 МПа [65]. Пытаясь достигнуть своей второй цели включения системы планового расхолаживания , персонал продолжил попытки снижать давление [66] , однако снизить его ниже 3 МПа не удалось. По видимому, это было вызвано тем, что в это время в активной зоне шло кипение теплоносителя, образование пара и, возможно, водорода [67]. За счёт этих процессов давление в первом контуре держалось около 3 МПа даже при непрерывном сбросе среды. В любом случае поставленная цель была принципиально ошибочной, так как система планового расхолаживания не предназначена для работы с первым контуром, лишь частично заполненным жидкостью [62]. Положительным следствием принятой стратегии явилось то, что большой объём неконденсирующихся газов, прежде всего водорода, был удалён из первого контура в атмосферу защитной оболочки [68]. Таким образом содержание газов в пределах реакторной установки было существенно уменьшено, хотя для этого и не требовалось поддерживать низкое давление так долго [62]. С другой стороны, возможно, в это время имело место повторное осушение части активной зоны [69] , подача охлаждающей воды в реактор была снижена [70] и в целом реакторная установка была близка к состоянию, которое существовало перед закрытием отсечного клапана в 06:22 [71]. Учитывая безуспешность попыток снизить давление в первом контуре до 2 МПа и риск осушения активной зоны, было принято решение вернуться к стратегии восстановления принудительной циркуляции в первом контуре, как к хорошо известному для персонала способу охлаждения реактора [72]. Успех в возобновлении принудительной циркуляции теплоносителя был обусловлен тем, что контур уже был достаточно заполнен водой, а газовые пробки были существенно уменьшены при предыдущей попытке снизить давление. Стабильное охлаждение активной зоны было наконец-то восстановлено [75]. Остаточное энерговыделение в топливе постепенно снижалось, и 27 апреля единственный работающий главный циркуляционный насос был остановлен, после чего в первом контуре установилась естественная циркуляция. К этому времени тепло, производимое работой насоса, в два раза превышало энерговыделение в активной зоне [76]. Уже к вечеру 27 апреля теплоноситель остыл настолько, что было достигнуто состояние «холодного останова» [примечание 5] реактора. Только к ноябрю 1980 года тепловыделение в активной зоне упало до столь незначительных величин порядка 95 кВт , что позволило отказаться от использования парогенераторов. В январе 1981 года реакторная установка была изолирована от второго контура и охлаждалась исключительно за счёт передачи тепла от поверхности оборудования к атмосфере герметичной оболочки [77]. Удаление водорода из первого контура [ править править код ] К концу 29 марта стало очевидным, что в теплоносителе первого контура всё ещё имеется большое содержание газов, в первую очередь водорода, образовавшегося ранее при пароциркониевой реакции [78] [79]. Эта информация вызвала в СМИ совершенно беспочвенную панику о возможности взрыва внутри корпуса реактора, тогда как фактически в объёме первого контура отсутствовал кислород, что делало такой взрыв невозможным [81]. Тем не менее из-за риска нарушить циркуляцию в первом контуре от водорода решено было избавиться [76]. Растворимость водорода в воде падает при снижении давления. Теплоноситель из первого контура отводился через линию продувки в бак подпитки, давление в котором значительно ниже, чем в реакторе, в баке происходила дегазация теплоносителя: газ удалялся в систему газоочистки и по временным трубопроводам под гермооболочку [82] [83]. Использовался также и другой способ: теплоноситель распылялся в компенсаторе объёма в котором электронагревателями поддерживалась высокая температура при открытом отсечном клапане, при этом газы удалялись в объём герметичной оболочки. Уже к 1 апреля измерения показали отсутствие газообразного водорода под крышкой реактора [84]. Добровольная эвакуация [ править править код ] Тридцатого марта проблема наличия растворённого и газообразного водорода в первом контуре начала давать о себе знать, но согласованной стратегии по решению этой проблемы ещё не существовало. Опасность заключалась в неконтролируемом повышении давления в баке подпитки, где водород выделялся из теплоносителя и скапливался над уровнем жидкости. По решению начальника смены второго энергоблока был проведён сброс давления из бака в систему газоочистки, хотя в последней уже были выявлены серьёзные протечки. Это решение не было заранее согласовано с другими официальными лицами станции. Это стало вторым по величине измеренным значением на всём протяжении аварии [86]. В это время в управлении комиссии по ядерному регулированию существовало серьёзное опасение о вероятности больших выбросов радиоактивности от АЭС. Источником этих выбросов могли стать газгольдеры , накапливавшие в себе радиоактивные газы из системы газоочистки. По информации, располагаемой комиссией, эти газгольдеры были практически заполнены, и в любой момент могли сработать их предохранительные устройства. По случайности эта цифра совпала со значением, полученным с вертолёта. Комиссия, узнав эту цифру, не сделала никаких попыток связаться со станцией и уточнить конкретную точку замеров либо причину сброса. Информация о переполнении газгольдеров также являлась недостоверной. Тем не менее руководство комиссии по ядерному регулированию сочло нужным выдать губернатору штата Пенсильвания рекомендацию эвакуировать население из района АЭС. По мере прохождения этого указания через различные заинтересованные службы мнения сильно разделились, и в условиях крайне противоречивой информации губернатор Торнберг 30 марта около 12:30 объявил о добровольной эвакуации для беременных женщин и детей дошкольного возраста из района в радиусе 8 км вокруг АЭС [87]. К двум часам дня, по требованию властей штата и самого президента Картера, руководство комиссии по ядерному регулированию прибыло на станцию, чтобы разобраться со всем на месте. В результате к вечеру 30 марта состоялась совместная конференция губернатора Пенсильвании и представителей комиссии. На этой встрече было официально объявлено, что никакой необходимости в обязательной эвакуации населения нет. Тем не менее губернатор не стал отменять своих ранее выданных рекомендаций [88]. В связи с противоречивой информацией от СМИ и из-за самого факта появления рекомендации от губернатора, в течение нескольких дней после аварии около 195 000 человек добровольно покинули 32-километровую зону АЭС. Большинство из них расположилось у своих родственников и друзей, лишь малая часть отправилась в специальные эвакуационные центры. Практически все люди вернулись в свои дома через три недели после аварии [89] [90]. Расследование аварии [ править править код ] Авария на АЭС имела широкий общественный резонанс, и для определения её причин и последствий было проведено сразу несколько независимых расследований [91]. Наиболее масштабными из них можно назвать расследование комиссии президента США и специальное расследование комиссии по ядерному регулированию. Другие отчёты по аварии, выполненные комитетом сената США по вопросам окружающей среды , комиссией губернатора штата Пенсильвания и институтом электроэнергетических исследований EPRI были ограничены определённой тематикой.

И, прежде всего немедленно организовал измерения радиоактивности вокруг АЭС, а также с помощью вертолета над АЭС, которые показали ее нормальный уровень без какого-либо увеличения из-за аварии. Благодаря этому эвакуация проживающего вблизи АЭС населения не требовалась. Однако из-за опасности радиоактивности была дана рекомендация жителям вблизи АЭС оставаться в квартирах и не открывать окон; также были закрыты ближайшие школы. Однако благополучие в отношении радиоактивной безопасности жителей вблизи АЭС было недолгим. Вскоре обнаружилось, что в верхней части корпуса реактора образовался паровой объем около 10 м3. Это выяснилось в связи с тем, что не удавалось восстановить циркуляцию воды в первом контуре реактора. Включение циркуляционных насосов приводило к опасной сильной вибрации их, что свидетельствовало о наличии в потоке газовой фазы. Естественной циркуляции воды в первом контуре с ее охлаждением в парогенераторе вовсе не было, очевидно, из-за того, что уровень воды в реакторе был ниже входов в отводящие трубопроводы. Повысить же этот уровень с помощью аварийных насосов высокого давления тоже не удавалось, так как из-за роста давления в первом контуре они были отключены через 18 мин после упомянутого включения. В связи с этими фактами и возникло понимание, что в верхней части корпуса реактора образовался огромный газовый объем. Было несомненно также, что в этом объеме имелись водород, образовавшийся при пережоге твэлов в результате химической реакции их циркониевых оболочек с молекулами воды, а также выделившийся из воды радиолитический кислород, и что поэтому имеется опасность взрыва гремучей смеси. К обсуждению возможности такого взрыва были привлечены крупнейшие специалисты США, неизменно дававшие заключения, что в тех конкретных условиях взрыва гремучей смеси в корпусе реактора не должно быть. По мнению этих специалистов в дальнейшем не должно быть такого взрыва также в контейнменте. Но этот факт тогда не был признан, а слышимый хлопок объяснялся звуковыми эффектами от работающих вентиляторов. Тем не менее губернатор Пенсильвании 30 марта, в пятницу, из-за осторожности издал распоряжение с рекомендацией вывода из зоны радиусом 5 миль от АЭС беременных женщин и детей дошкольного возраста. К счастью, все обошлось благополучно и 2 апреля, в понедельник, на шестой день после начала аварии газовый объем из корпуса реактора был полностью удален. Каким образом это было достигнуто, в докладе Комиссии, к сожалению, не комментируется. Со своей стороны, отметим, что это могло произойти вследствие постепенного растворения водорода и других газов в воде, подаваемой аварийными насосами высокого давления с одновременным дренажем воды из первого контура. Конечно, образовавшийся газовый объем можно было бы выпустить за несколько минут через вентиль-воздушник на крышке реактора, если бы он имелся. В контейнменте содержался корпус реактора с оплавленной активной зоной, а также радиоактивные газы. Радиоактивными элементами были загрязнены стены и полы рабочих помещений, а также оборудование. По сделанной в то время оценке только дезактивация последних стоила около 200 млн. Общий же ущерб от аварии оценивался в 1,86 млрд. Вместе с тем представляется достойным особого упоминания тот факт, что эта весьма тяжелая авария прошла без вреда для проживающего вблизи АЭС населения благодаря тому, что в соответствии с проектом выделившаяся при пережоге активной зоны огромная радиоактивность была задержана внутри колпака-контейнмента, установленного над реактором и парогенератором. Остановимся теперь на основных причинах этой аварии. Как видно из описанного хода аварии, главной причиной была недостаточная компетенция всех четырех специалистов, находящихся в начале аварии в помещении щита управления реактором, которые длительное время не могли понять происходящего, и по существу были растеряны. Причем, в самом начале аварии, когда автоматически включились аварийные насосы высокого давления для подачи воды в первый контур, они их остановили, грубо нарушив инструкцию. Если бы они этой ошибки не сделали, повреждения активной зоны реактора не было бы. Тем не менее, первопричиной аварии были дефекты оборудования. В докладе Комиссии сообщается, что прекращение подачи питательной воды и самопроизвольная остановка питательных насосов, вызвавшие начало аварии, по всей вероятности, произошли вследствие того, что при ремонтных работах в трубки пневматической воздушной системы автоматики, управляющей задвижками на питательных трубопроводах к парогенераторам, попала влага, что в свою очередь привело к самопроизвольному закрытию этих задвижек, и таким образом, к началу аварии. Сообщается также, что случаи попадания влаги в эту систему регулирования ранее были дважды, и что, если бы этот дефект был своевременно устранен, аварии не было бы. Ненадежным в работе оказался также предохранительный клапан, который в начале аварии заклинило в отрытом положении, вследствие чего возникла непрерывная утечка воды из первого контура. Ситуация здесь аналогична предыдущей, поскольку фирме Баб-кок-Вилькокс, изготовляющей эти клапаны, уже были известны девять случаев заклинивания этих клапанов на других установках. Но фирма не только не приняла мер для устранения этого дефекта, но и не проинформировала использующие их АЭС о его наличии. Кроме того, было известно, что такая же авария с заклиниванием открытого предохранительного клапана произошла в сентябре 1977 г. Однако и в этом случае оператор ошибочно остановили аварийные насосы высокого давления, автоматически включившихся для подачи воды в первый контур. Эта авария была специально рассмотрена фирмой Бабкок-Вилькокс и NRC - Комиссией ядерного регулирования аналогичной атомному надзору в России , причем было признано, что при такой аварии и полной мощности реактора перед аварией могут произойти оголение активной зоны и повреждение твэлов. В частности, не был никаких требований к уровню образования операторов и начальников смен.

Комиссия по ядерному регулированию США сообщила, что около 2 миллионов человек немедленно подверглись воздействию радиации в результате этого инцидента, но средняя доза облучения была ниже, чем доза, полученная при рентгеновском обследовании грудной клетки. Однако статистика эвакуации была похожа на чернобыльскую. Оба инцидента имели зоны эвакуации порядка 30 километров, и в каждом из них более 100 000 человек покинули свои дома. Чернобыльская авария была худшей из ядерных в мире Стоит принять во внимание, что жители Три-Майл-Айленд вернулись домой, в конечном итоге, но жители Припяти — нет. Сегодня в Чернобыле все еще есть зона отчуждения площадью более 1500 квадратных километров, которая ограничивает доступ туристов. Но там живет несколько семей, и людям старше 18 разрешено ее посещать, однако большая часть территории все еще загрязнена. Зона отчуждения Фукусимы намного меньше: около 200 квадратных километров. Большая часть из 200 000 эвакуированных вернулась обратно, но 43 000 человек все еще остаются за ее пределами, не желая возвращаться. Чернобыльская авария — безусловно, худшая из всех. Комбинация взрыва, который выпустил радиацию в воздух, и огня, который распространил эти радиоактивные частицы на многие километры, просто ужасна.

2.2 Авария на аэс «Три-майл-Айленд»

В 1979 году произошла крупнейшая авария в истории атомной энергетики США – авария на АЭС Три-Майл-Айленд. В рамках цикла передач "Аварии на АЭС" речь пойдет конечно же об атомной энергетике. После аварии на Три-Майл-Айленд в США не было построенони одной новой АЭС. Авария на Три-Майл-Айленде обрушилась на атомную электростанцию в Мидлтауне, штат Пенсильвания. Авария на АЭС Три Майл Айленд оказала беспрецедентное влияние на развитие атомной энергетики, от которого Запад до сих пор не оправился. 28 марта 1979 года на АЭС Три-Майл-Айленд произошла одна из самых серьезных аварий в истории ядерной энергетики США.

Публикации

  • Ядерная авария на АЭС «Три-Майл-Айленд», 1979
  • Курсы валюты:
  • Авария на АЭС Три-Майл-Айленд в США. 28 марта 1979. Хронология событий
  • На американской АЭС произошла авария // Новости НТВ
  • Авария на Чернобыле унесла больше жизней, чем авария на Фукусиме

СМИ вспомнили аварию на американской АЭС

«Атомный эксперт» сделал обзор трех публикаций, вышедших в ведущих мировых СМИ и посвященных авариям на «Три-Майл-Айленд», Чернобыльской АЭС и «Фукусиме‑1». Авария на АЭС Три Майл Айленд к несчастью подтвердила правильность технических решений в области безопасности. Хотя многочисленные исследования подтвердили отсутствие радиационных последствий аварии на Три-Майл-Айленд, отношение общественности к этой аварии и к самой атомной энергетике, сформированное СМИ, практически не изменилось. АЭС Три-Майл-Айленд, которой суждено было стать местом самой серьёзной аварии в американской атомной отрасли, была заложена в 1968 году, а спустя шесть лет первый её энергоблок был пущен в эксплуатацию. Авария на АЭС Три-Майл-Айленд — Президент Джимми Картер покидает АЭС Три-Майл-Айленд после личного визита 1 апреля 1979 года. Авария на АЭС Три-Майл-Айленд (англ. Three Mile Island accident) — одна из крупнейших аварий в истории ядерной энергетики. Авария на АЭС три-майл-айленд. 12+. 83 просмотра.

2.2 Авария на аэс «Три-майл-Айленд»

Часть радиоактивных веществ были подняты взрывом на высоту 1-2 км и образовали облако, состоящее из жидких и твёрдых аэрозолей. В течение 10-11 часов радиоактивные вещества выпали на протяжении 300—350 км в северо-восточном направлении от места взрыва по направлению ветра. Более 23 тыс. На этой территории находилось 217 населенных пунктов с более 280 тысячами жителей, ближе всех к эпицентру катастрофы было несколько заводов комбината «Маяк», военный городок и колония заключенных.

Однако эта неисправность мгновенно изменила термодинамические условия в парогенераторе , уменьшив его способность охлаждать первый контур , давление в котором сразу же увеличилось из-за повышения температуры. Этот клапан должен был закрываться, как только давление упало, но, несмотря на команду автоматического закрытия, этого не произошло. Усугубляющим фактором является то, что сигнальные лампы в диспетчерской показали, что клапан находится в закрытом положении сигнальная лампа фактически указала на то, что был отдан приказ на закрытие, но не на то, что маневр был выполнен. Следовательно, давление в первичном контуре продолжало снижаться, который опорожнялся через этот клапан, который оставался открытым потеря второго защитного барьера. Однако по мере падения давления в емкости и в первом контуре образовывались «пустоты» фактически водяной пар. Эти пустоты генерировали сложные движения воды, которые парадоксальным образом заполнили компенсатор давления водой, причем компенсатор давления в это время был холоднее, чем бак из-за: выпуск пара из первичных клапанов, который охладил компенсатор давления за счет испарения содержащейся воды; остаточного тепла сердца, которое повысило температуру воды в резервуаре. Из-за этой разницы температур высокое расположение компенсатора давления не препятствовало его заполнению водой проходя под вакуумом, как в «поилке для птиц». В то же время в другом месте появилась другая проблема: система аварийного водяного охлаждения парогенераторов прошла испытания за 42 часа до аварии.

Эта ядерная авария выпустила 13 миллионов кюри радиоактивных газов в атмосферу и вызвала потерю 2400 долларов США. Десять судебных дел были также поданы в различные органы власти в отношении этой аварии, и им потребовалось 15 долгих лет для восстановления. К счастью жертв и пострадавших не оказалось. Более 240 человек подверглись воздействию радиации. Владелец дилер-свалки в Гоянии нашёл на ней деталь из установки для радиотерапии, ранее похищенную и выкинутую мародерами. Он принес находку домой, чтобы показать всем эту интересную штуковину - светящийся голубым светом порошок. Мелкие фрагменты источника брали в руки, натирали ими кожу, передавали другим людям в качестве подарков, и в результате началось распространение радиоактивного загрязнения.

В течение более чем двух недель с порошкообразным хлоридом цезия контактировали всё новые люди, и никто из них не знал о связанной с ним опасности. Окружающая среда была серьезно загрязнены. Многие здания пришлось снести. В результате заражения погибло четверо человек. Авария произошла 10 октября 1957 года, когда пожар в виндсерфинге зажег плутониевые сваи. Радиоактивное загрязнение вызвало 33 смерти вследствие рака. Авария соответствует 5-му уровню по международной шкале ядерных событий INES и является крупнейшей в истории ядерной индустрии Великобритании.

Огонь выпустил приблизительно 20 000 кюри йода-131, а также 594 кюри цезия-137 и 24 000 кюри ксенона-133 среди других радионуклидов. Серия взрывов водородного газа швырнула четырехтонный купол газохранилища на четыре фута по воздуху, где он застрял в надстройке. Тысячи курий продуктов деления были выброшены в атмосферу, и миллион галлонов радиоактивно загрязненной воды пришлось откачивать из подвала и «удалять» в мелкие окопы недалеко от реки Оттава. Ядро реактора NRX нельзя обеззараживать; его нужно было похоронить как радиоактивные отходы. Микронезийские острова в Тихом океане, были местом проведения более 20 испытаний ядерного оружия между 1946 и 1958 годами.

Всё ещё обеспокоенные необходимостью не допустить переполнения компенсатора, операторы начали сливать воду из него ещё и через дренажную линию первого контура. Персонал понял, что аварийная питательная вода не поступает в парогенераторы, задвижки открыли и началось её поступление. То обстоятельство, что подача питательной воды в парогенераторы была прервана на 8 минут, само по себе не могло привести к серьёзным последствиям, но прибавило замешательства в действия персонала и отвлекло их внимание от опасных последствий заедания в открытом положении импульсного клапана в системе компенсации давления. Также в это время было замечено срабатывание предохранительных мембран на барботёре из-за превышения в нём давления, в результате чего пар с высокими параметрами стал поступать в помещения гермооболочки. Операторы на щите управления выключили их, всё ещё не понимая, что в помещениях гермообъёма большое количество воды. Также в это время было замечена ещё одна странность — концентрация жидкого поглотителя, борной кислоты, в контуре сильно снизилась и, несмотря на полностью погружённые регулирующие стержни, начали расти показания приборов контроля нейтронного потока. Снижение концентрации борной кислоты также было последствием сильной течи. Операторы приступили к экстренному вводу бора, чтобы не допустить повторной критичности реактора, что было частично правильным решением, но не решающим главную проблему, которая до сих пор не была определена. Операторы выключили насосы, чтобы предотвратить их разрушение или повреждение трубопроводов первого контура. Принудительная циркуляция теплоносителя прекратилась. Можно отметить, что отключение циркуляционных насосов в первом контуре реакторов с водой под давлением не должно приводить к прекращению циркуляции теплоносителя, должна продолжаться естественная циркуляция. Однако под крышкой реактора на этот момент накопился парогазовый пузырь, наличие которого вкупе с геометрическим расположением активной зоны и парогенераторов в конструкции данной ядерной установки воспрепятствовало возникновению естественной циркуляции в первом контуре. Операторы закрыли отсечной клапан на линии импульсного клапана, заклинившего в открытом положении. Истечение теплоносителя из первого контура прекратилось. К счастью, разрешение не было получено, вошедшие туда люди могли погибнуть. К управляющему энергоблоком персоналу пришло первое понимание масштаба аварии. Однако она успела накрыть активную зону, предотвращая её дальнейшее разрушение, но это была лишь временная мера. Весь последующий день они пытались это сделать, но фактически эти действия не имели успеха и лишь незначительное количество воды из гидроёмкостей попало в активную зону. Зато теперь из-за сброшенного давления невозможно было запустить циркуляционные насосы.

2.2 Авария на аэс «Три-майл-Айленд»

На ликвидацию последствий ЧП на АЭС «Три-Майл-Айленд» было потрачено около миллиарда долларов. Авария на АЭС Три-Майл-Айленд – крупнейшая авария в истории коммерческой атомной энергетики США, произошедшая 28 марта 1979 года на втором энергоблоке станции. Причина ав. По словам академика РАН Леонида Большова, если не отвести остаточное тепловыделение может произойти авария, сравнимая с Три-Майл-Айленд в США или Фукусимой в Японии. В 1979 году произошла крупнейшая авария в истории атомной энергетики США – авария на АЭС Три-Майл-Айленд. Энергоблок №2 АЭС Три-Майл-Айленд представлял из себя двухконтурный водно-водяной энергетический реактор (нет, не кипящий, как на Фукусиме-1, и, тем более не канальный, как на ЧАЭС). это одна из самых известных аварий в ядерной энергетике, произошедшая 28 марта 1979 года на одной из ядерных электростанций США.

28 марта 32 года назад произошла авария на АЭС Три-Майл-Айленд

Three Mile Island nuclear facility, c. 1979. Date. Авария на Три-Майл-Айленд произошла на АЭС 5-го уровня. По словам академика РАН Леонида Большова, если не отвести остаточное тепловыделение может произойти авария, сравнимая с Три-Майл-Айленд в США или Фукусимой в Японии.

Похожие новости:

Оцените статью
Добавить комментарий