Чтобы переводить числа из десятичной системы в шестнадцатеричную и обратно, двоичное представление можно использовать как промежуточное. Перевод двоичных чисел в шестнадцатеричные, восьмеричные числа и наоборот «методом триад и тетрад». Перевод из восьмеричной в шестнадцатеричную систему и обратно осуществляется через двоичную систему с помощью триад и тетрад.
Системы счисления (c/c)
Вычеркнуть из числа незначащие нули. Пример 4: Перевести число 1203234 из четвертичной системы в двоичную. При копировании материалов с сайта ссылка на источник обязательна. Уважайте труд людей, которые вам помогают.
Затем тетраду заменить соответствующей шестнадцатеричной цифрой. Перевод из восьмеричной в двоичную Для перевода числа из восьмеричной системы в двоичную достаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом триадой , при этом отбрасывают незначащие нули в старших и младших после запятой разрядах. Перевести число 204,4 из восьмеричной системы в двоичную.
Поэтому в программировании иногда используют другие системы счисления — восьмеричную и шестнадцатеричную.
В восьмеричной системе счисления используется восемь знаков-цифр от 0 до 7. Каждой цифре соответствует число из трех цифр в двоичной системе счисления: 000 — 0 001 — 1 010 — 2 011 — 3 100 — 4 101 — 5 110 — 6 111 — 7 Для преобразования двоичного числа в восьмеричное надо разбить его на тройки цифр и заменить каждую тройку соответствующей ей одной цифрой из восьмеричной системы счисления.
Она нам понадобится для составления символов переведенного числа на основании остатков. В третьей строке мы проверяем основание переданной системы счисления на его длину. Если основание окажется больше, чем количество символов в нашей строке digits, то мы прекращаем выполнение функции через вызов оператора return и возвращаем None. Это такая своеобразная защита функции от неправильно переданных аргументов. Если мы попробуем перевести число в большую систему счисления по основанию, чем у нас есть символов для его записи, то мы его не сможем записать. Дальше заведем переменную result для хранения результата работы функции и зададим ей значение в виде пустой строки.
Теперь с помощью цикла с условием будем находить остаток от деления числа number на основание base, а также уменьшать number в base раз используя целочисленное деление. Остаток от деления числа на основание переводимой системы счисления мы будем использовать как индекс для получения символа в строке digits и добавлять его к результату result. Добавлять это значение следует слева, так как самый первый остаток является самым правым разрядом.
Как перевести из восьмеричной в шестнадцатеричную
После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа "Его система счисления". Если Вы не нашли своей системы, то выберите графу "другая" и появится поле ввода. В это поле необходимо вписать основание системы одним числом без пробелов. Далее необходимо выбрать в какую систему хотите перевести данное число.
Система команд МП кр580ик80а Практическое занятие по изучению способов адресации, форматов команд и команд пересылок Код операции, данные и адрес программы представляются в шестнадцатеричном коде, поэтому первый байт команды воспринимается как код операции. Команды могут быть трех форматов: однобайтные — в одном байте содержится всегда код команды; двухбайтные — в первом байте содержится код команды, во втором — непосредственный операнд; трехбайтные — в первом байте содержится код операции, во втором и третьем содержатся адрес или данные. Способы адресации Применяются пять способов адресации: 1.
Прямая адресация — адрес ячейки памяти, где расположен операнд, указывается во втором младший байт - МБ и в третьем старший байт - СБ байтах команды. Регистровая адресация— в команде задается регистр или пара регистров, где находится соответственно 8- или 16-битовый операнд. Регистровая косвенная адресация — адрес ячейки памяти, где расположен операнд, определяется содержимым парного регистра регистровой пары , явно или неявно указанного в команде; при этом старший байт адреса находится в первом регистре пары, а младший — во втором.
Незначащий ноль 0 добавляется слева от старшей шестнадцатеричной цифры, изображаемой буквой, чтобы различать числа и символические имена. Десятичные decimal числа — каждый байт слово, двойное слово представляется обычным числом, а признак десятичного представления букву «d» обычно опускают. Байт из предыдущих примеров имеет десятичное значение 165. В отличие от двоичной и шестнадцатеричной формы записи, по десятичной трудно в уме определить значение каждого бита, что иногда приходится делать. Восьмеричные octal числа — каждая тройка бит разделение начинается с младшего записывается в виде цифры 0—7, в конце ставится признак «о». То же самое число будет записано как 245о.
Восьмеричная система неудобна тем, что байт невозможно разделить поровну. Новое число записывается в виде остатков деления, начиная с последнего. Перевод правильной десятичной дроби в другую ПСС осуществляется умножением только дробной части числа на основание новой системы счисления до тех пор пока в дробной части не останутся все нули или пока не будет достигнута заданная точность перевода.
Старший байт слово-состояния представляет содержимое аккумулятора, а младший — содержит флаги условий регистра признаков, определяемые результатом выполнения арифметических и логических операций рисунок 8. Команды пересылок Команды пересылок производят обмен данными между регистрами общего назначения РОН и памятью микропроцессорной системы. Команды пересылок не влияют на флаги. Команда MOV R1, R2 может быть использована для создания копий некоторых переменных, которые многократно используются при вычислениях; - из памяти в регистр регистровая косвенная адресация : MOV M, R — передача содержимого регистра R в память по адресу, который хранится в регистровой паре H, L ; MOV R, M — передача содержимого ячейки памяти, адрес которой хранится в регистровой паре H, L , в регистр R. Эти команды находят широкое применение при обработке связанных структур данных массивов чисел и т.
Команды непосредственной адресации сами содержат операнд.
Дополнительный материал
Перевести. Перевод чисел в различные системы счисления. 3. Прямой перевод между двоичной, восьмеричной и шестнадцатеричной системами счисления Иногда возникают ситуации, когда число необходимо перевести из. Основание этой системы равно 8. Для перевода чисел из двоичной системы счисления в восьмеричную и обратно используются триады. двоичную, восьмеричную, шестнадцатеричную онлайн.
Восьмеричное число в шестнадцатеричное
Правило перевода из двоичной в шестнадцатеричную систему счисления. Необходимо разбить двоичное число на четвёрки тетрады , начиная с крайнего правого разряда. В таком случае алгоритм перевода состоит в простой замене чисел одной системы на равные им числа другой системы счисления в случае положительных чисел. На начальном этапе удобно и полезно воспользоваться таблицей соответствия, приведенной в Приложении. Пусть требуется перевести восьмеричное число 24738 в двоичное число. Следует помнить, что восьмеричное число кодируется тремя битами, и выписывать триады нужно полностью. Исключением из этого правила может служить только старшая триада, в которой старший бит СБ равен нулю. Важно заметить, что алгоритм перевода целых и дробных чисел будет отличаться. Алгоритм перевода шестнадцатеричных чисел в восьмеричную систему счисления Перевести шестнадцатеричное число число в восьмеричную систему счисления; Полученное шестнадцатеричное число перевести в восьмеричную систему.
Необходимо разбить двоичное число на четвёрки тетрады , начиная с крайнего правого разряда. В таком случае алгоритм перевода состоит в простой замене чисел одной системы на равные им числа другой системы счисления в случае положительных чисел. На начальном этапе удобно и полезно воспользоваться таблицей соответствия, приведенной в Приложении. Пусть требуется перевести восьмеричное число 24738 в двоичное число. Следует помнить, что восьмеричное число кодируется тремя битами, и выписывать триады нужно полностью. Исключением из этого правила может служить только старшая триада, в которой старший бит СБ равен нулю. Важно заметить, что алгоритм перевода целых и дробных чисел будет отличаться. Алгоритм перевода шестнадцатеричных чисел в восьмеричную систему счисления Перевести шестнадцатеричное число число в восьмеричную систему счисления; Полученное шестнадцатеричное число перевести в восьмеричную систему. Подробно о переводе из шестнадцатеричной в десятичную систему смотрите на этой странице, о переводе из десятичной в восьмеричную — здесь.
Ошибка создания миниатюры: Не удаётся сохранить эскиз по месту назначения Таблица 2-ичных тетрад Ошибка создания миниатюры: Не удаётся сохранить эскиз по месту назначения Алгоритм Цифры исходного числа восьмеричной системы счисления заменяются слева направо на соответствующие по таблице 2-ичных триад триады тройки цифр двоичной системы счисления. Полученное число двоичной системы счисления разбивается на тетрады четвёрки цифр двоичной системы счисления , начиная с цифры единиц самой правой цифры, она может быть 0 или 1.
Например, в английском языке до сих пор используют слово «дюжина», обозначающее двенадцать. Во многих англоязычных странах в дюжинах считают и продают яйца, мучные изделия, вино и цветы. А в кхмерском языке есть слова для счета фруктов, основанные на двадцатеричной системе. Произношение названий чисел Арабская система счисления применяется в Китае и Японии, но в отличие от английского, русского, и многих других языков, числа в китайском и японском языках сгруппированы по десять тысяч. То есть, когда в английском или в русском говорят: сто, потом идут кратные сотни, потом тысяча, кратные тысячи, миллион, и так далее, то в японском и китайском языках идут: сто, кратные ста до 9 999, десять тысяч, кратные десяти тысяч до 999 999, 1 000 000, и так далее. Несчастливые числа «Тайная вечеря» Леонардо да Винчи. На Западе, а также во многих странах, где исповедуют христианство, 13 считается несчастливым числом. Историки считают, что это связано с христианством и иудаизмом. Согласно Библии, на Тайной Вечере присутствовало именно тринадцать учеников Иисуса, и тринадцатый, Иуда, после предал Христа. У викингов также существовало поверье о том, что когда тринадцать человек собираются вместе, один из них обязательно умрет в следующем году. В странах, где говорят по-русски, неудачными считаются четные числа. Вероятно, это связано с верованиями древних славян, которые думали, что четные числа — статичны, неподвижны, закончены в одно целое, а значит — мертвые. Нечетные же, наоборот, подвижны, ищут дополнения, изменяются, а значит — живые. Поэтому четное количество цветов приносят только на похороны, но не дарят живым людям. В Китае, Корее и Японии не любят число 4, потому, что оно созвучно со словом «смерть».
Перевод из восьмиричной в шестнадцатиричную систему счисления
Перевод чисел в различные системы счисления с решением. Калькулятор позволяет переводить целые числа из одной системы счисления в другую. Для того чтобы перевести число из шестнадцатеричной в восьмеричную систему. Урок по теме Прямой перевод между двоичной, восьмеричной и шестнадцатеричной системами счисления.
Калькулятор
Для этого в строке, через символ : указываем буквы b - для двоичной, o - для восьмеричной и x - для шестнадцатеричной системы счисления. Наша функция будет ограничена только наличием символов в переводимой системе счисления. Данная функция принимает три аргумента, два из которых обязательные. Это десятичное целое число number и основание переводимой системы счисления base. Третий аргумент upper служит для указания регистра вывода строки переведенного числа. По умолчанию он установлен в значение False.
Она нам понадобится для составления символов переведенного числа на основании остатков. В третьей строке мы проверяем основание переданной системы счисления на его длину. Если основание окажется больше, чем количество символов в нашей строке digits, то мы прекращаем выполнение функции через вызов оператора return и возвращаем None.
Что называется системой счисления? На какие два типа можно разделить все системы счисления? Какие системы счисления называются непозиционными? Приведите пример такой системы счисления и записи чисел в ней? Какие системы счисления применяются в вычислительной технике: позиционные или непозиционные? Какие системы счисления называются позиционными?
Как изображается число в позиционной системе счисления? Что называется основанием системы счисления? Что называется разрядом в изображении числа? Как можно представить целое положительное число в позиционной системе счисления? Приведите пример позиционной системы счисления. Опишите правила записи чисел в десятичной системе счисления: а какие символы образуют алфавит десятичной системы счисления? Какие числа можно использовать в качестве основания системы счисления?
Все это позволило создать более удобные системы записи чисел.
Древнеегипетская десятичная система В Древнем Египте использовались специальные символы цифры для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Вот некоторые из них: Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени. Числа в древнеегипетской системе счисления записывались, как комбинация этих символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево.
Новый разряд начинается с появления прямого клина после лежачего. Поэтому вавилонская система счисления получила название шестидесятеричной. Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92: Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа: Теперь число 3632 следует записывать, как: Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд. Римская система Римская система не сильно отличается от египетской. Число в римской системе счисления — это набор стоящих подряд цифр.
Методы определения значения числа: Значение числа равно сумме значений его цифр. Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты. Помимо цифирных, существуют и буквенные алфавитные системы счисления, вот некоторые из них: 1 Славянская 2 Греческая ионийская Позиционные системы счисления Как упоминалось выше — первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. Десятичная система счисления Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде позиции может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.
Для примера возьмем число 503.
Записи о положении небесных тел помогли шумерам составить первый календарь, а календарь, в свою очередь, пригодился, чтобы заранее готовиться к посевным и сбору урожая. Строительные сметы, переписи населения, распределение наследства — числа оказались очень востребованными даже в самых древних государствах. Так что люди научились записывать числа в незапамятные времена. Небольшие числа легко записывались зарубками или насечками, но если в числе несколько знаков, требуется иная система записи. Эту проблему в разных странах решали по-разному. Сейчас разные способы записи чисел называются системами счисления. Систем счисления было придумано довольно много, и даже в наши дни мы используем две системы, возникшие в далёкой древности. Из Древнего Рима к нам пришла римская система счисления, где цифры обозначаются буквами латинского алфавита. За основу римляне взяли количество пальцев на одной руке — 5, и на двух руках — 10.
Числа 1, 5 и 10 в римской системе обозначаются буквами I, V и X, и с помощью них можно записать любое число от 1 до 49. От Древних Шумеров мы научились делить дроби на шестьдесят частей. Именно из-за них в нашем часе 60 минут, а в минуте 60 секунд. Шумерская система счисления так и называется — шестидесятеричная. Но, конечно, наиболее привычной выглядит численная запись в системе, которую придумали в Древней Индии. Сейчас ее называют арабской или десятичной системой счисления. От десятичных чисел к двоичным Разберемся, как устроена десятичная система, на примере произвольного большого числа. Это четырехзначное число, потому что оно состоит из четырёх цифр. И, поскольку речь идёт о десятичной системе, мы можем использовать десять различных цифр.
Правила перевода из одной системы счисления в любую другую
Введите восьмеричное число в форму и увидите как оно пишется других системах счисления. Перевод чисел в двоичную, троичную, восьмеричную, девятеричную, десятичную, шестнадцатеричную системы счисления. Примеры перевода из восьмеричной системы в шестнадцатеричную. Рассмотрим алгоритмы перевода из двоичной системы счисления в восьмеричную и шестнадцатеричную системы счисления и наоборот. Новости. Будет ли как-то улучшаться система проверки и организации итоговых сочинений? Число перевести в шестнадцатеричную систему счисления. 9. Для перевода восьмеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной триадой.
Калькулятор переводов из восьмеричной системы в шестнадцатеричную
Умножаем 3 на 8, получается 24. Выделяем шестёрку. Мы закончили деление так как 3 меньше 8. Обязательно выделяем последнее частное тоже у нас это цифра 3. Выделенные красным цифры — это и есть наше число в восьмеричной системе, НО они написаны наоборот. То есть, чтобы правильно прочитать число в восьмеричной системе, необходимо сделать это справа налево. Таким образом, десятичное число 15 45010 в восьмеричной системе будет выглядеть как 36 1328.
Итого, алгоритм перевода чисел из десятичной системы в восьмеричную следующий: Разделить исходное число на 8. Найти максимальное частное и убрать дробную часть от него. Значит в частное мы записываем число 2. Умножить полученное частное на 8. Записать его под исходным числом. Найти остаток между этими числами и выделить его — это кусочек переведённого в восьмеричную систему числа.
Затем разделить в столбик полученное частное на 8, записать ответ и проделать шаги 2 и 3. Производить деление до тех пор, пока делимое не станет меньше 8. Выделить это делимое тоже. Выписать все выделенные числа справа налево то есть последнее делимое будет на первом месте, затем идёт остаток, найденный на последнем шаге, затем остаток, найденный на предпоследнем шаге и т. Полученное при такой записи число и будет нашим искомым восьмеричным. Теперь перейдём к переводу восьмеричного числа в десятичную систему счисления.
Перевод из восьмеричной системы счисления в десятичную Перевести восьмеричное число в десятичное даже проще, чем наоборот. Давайте рассмотрим пример: переведём восьмеричное число 36078 в десятичное. Для начала мы делаем такую запись: с конца берём каждую цифру нашего исходного числа, каждое из них умножаем на 8, и все в целом складываем. Должно получиться примерно так: Однако, это ещё не всё! После того, как мы сделали подобную запись, ко всем числам 8, на которые умножаются цифры исходного числа, необходимо добавить степени в порядке возрастания: 0, 1, 2 и т. Обязательно необходимо начинать с нулевой степени!
Всё, что остаётся после этого — просто посчитать. В итоге у нас получилось число 1927 в десятичной системе.
Перевод чисел из десятичной системы счисления в другую систему счисления Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа. Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т. Пример 4.
Переведем число 159 из десятичной СС в двоичную СС: 159.
Как использовать инструмент Преобразование шестнадцатеричного числа в восьмеричное с помощью этого инструмента очень просто. Пожалуйста, следуйте этим шагам: Введите или вставьте ваше шестнадцатеричное число в поле ввода на интерфейсе инструмента. Нажмите кнопку "Преобразовать", чтобы начать процесс конвертации. Восьмеричный эквивалент шестнадцатеричного числа будет отображен в поле вывода. Используйте кнопку "Копировать" или щелкните на кнопку "Копировать", чтобы скопировать результат в буфер обмена. Основной алгоритм Преобразование шестнадцатеричного числа в восьмеричное можно выполнить с помощью следующего алгоритма: Преобразуйте шестнадцатеричное число в его десятичный эквивалент. Преобразуйте полученное десятичное число в восьмеричное. Этот инструмент доступен онлайн и бесплатно, что делает его удобным для использования из любого места.
С помощью основного алгоритма и примеров на различных языках программирования вы можете легко выполнить конвертацию с использованием предпочитаемого вами языка программирования. Связанные инструменты Часто задаваемые вопросы FAQ Что такое конвертер из шестнадцатеричной в восьмеричную систему? Конвертер из шестнадцатеричной в восьмеричную систему - это онлайн-инструмент, который преобразует шестнадцатеричные числа в восьмеричный формат. Он преобразует шестнадцатеричные цифры 0-9 и A-F в восьмеричные цифры 0-7. Что такое восьмеричная система счисления?
Таким образом необходимо: Перевести 357 в шестнадцатеричную систему; Перевести 0. Получаем: 0.