Прокариоты, организмы, клетки которых, в отличие от эукариот, не имеют ограниченного мембраной ядра; к их числу относятся бактерии и археи. доядерные организмы, не обладающие типичным клеточным ядром и хромосомным аппаратом. Биологи из Карлова университета в Праге (Чехия), под руководством постодока Анны Карнковской (Anna Karnkowska), судя по всему, обнаружили первый эукариотический (то есть имеющей в своих клетках ядра) организм, лишенный митохондрий — органелл, служащих.
Царства в биологии: неклеточные и клеточные организмы, особенности отдельных царств
Постепенное признание за клеточной теорией всеобщего значения привело к мысли о всеобщности клеточно-ядерного строения также и среди простейших. Однако, систематическое их изучение показало, что встречаются также простейшие, у которых ядра обнаружить не удается. Все такие формы были объединены в группу монер Haeckel, 1868 г. По мере усовершенствования цитологической техники круг монер постепенно сужался, и в наст, время понятие Б.
Самая мысль о существовании Б. Полученные при этом результаты и возникшие теории сильно различаются между собой, что зависит от самого определения понятия ядра. Помимо окрашиваемости так назыв.
Но решающим моментом здесь является участие ядра в процессах деления и, в частности, образование хромосом. Таким требованиям не удовлетворяет ни один из Б. Единичные описания этого рода Schussnig, 1920 г.
Если её хорошо кормить, Thiomargarita magnifica вырастает до двух сантиметров в длину. То есть, в абсолютно исчислении это не много, но в относительном… Тиомаргариту не то чтобы трудно было найти. Но и найдя, исследователи долго не могли поверить, что это — бактерия, и потратили 10 лет, пытаясь обнаружить у неё признаки принадлежности к домену эукариотов и даже многоклеточности.
Но главная новость в том, что признаки более зрелого, чем положено безъядерным прокариотам, строения у гигантской бактерии, именно, обнаружились. Геном тиомаргариты не рассеян по всему объёму, а сосредоточен в ограждённом внутренней мембраной мешке.
Расшифровав полный геном эукариота, авторы статьи не нашли в нем никаких митохондриальных генов которые, теоретически, должны были быть, поскольку митохондрии обладают собственным ДНК. Более того, углубленный анализ показал также, что у этого представителя рода Monocercomonoides нет даже ни одного из ключевых белков, которые позволяют митохондриям функционировать.
Иначе говоря, у него попросту нет митохондрий. Как же этот жгутиконосец живет без «энергетических станций» в своей клетке? Очень просто: в кишечнике грызуна, в котором он обитает, в достатке питательных веществ, которые эукариот расщепляет с помощью ферментов, содержащихся в его цитоплазме внутриклеточной жидкой среде. Зато в кишечнике шиншиллы нет кислорода, без которого митохондрии все равно работать не могут.
Надо сказать, что митохондрии играют в клетках и еще одну важную роль: они накапливают железо и серу, которые нужны для синтеза многих важных белков.
В то же время прокариоты воспринимают гиперзвук поток фононов , длина волны которого равна среднему пробегу молекулы до ее столкновенияч с другой - а это значит, что в бактериях возможен обмен неискаженными сигналами с помощью броуновского движения. Классификация прокариот и их общий предок Лука Считается, что в очень далёком прошлом все три домена жизни — бактерии, археи и эукариоты [а микоплазмы и риккетсии разве не домены? Лука жил на Земле примерно 3,5—3,8 млрд лет назад, и в нём уже были запечатлены все основные черты земной жизни: его наследственная информация в виде генетического кода хранилась в ДНК, белки состояли из; 20 аминокислот, энергия запасалась в виде АТФ и т. Классификацию прокариот традиционно проводят по последовательностям гена 16S рРНК. Из проб, взятых в разных местах например, из почвы, горячих источников или донных морских отложений выделяют все имеющиеся там версии гена 16S рРНК и строят по ним эволюционные деревья. На деревьях часто обнаруживаются ветви, не соответствующие ни одной из известных групп прокариот. Что интересно, клеточная мембрана у археобактерий и эубактерий возникла независимо. А археобактерии вообще могли прийти из космоса. Микоплазмы микроорганизмы без клеточной стенки Микоплазмы являются отдельным классом микроорганизмов, отличающимся как от вирусов , так и от бактерий.
Они не имеют клеточной стенки [может быть, потеряли? Неподвижны [как грибы]. Сапрофиты или паразиты. Это самые мелкие из существующих в природе организмов [за исключением нанобактерий? Точно так же, как вирусы, микоплазмы не могут существовать иначе, чем паразитируя [противоречие - значит они не могут самостоятельно жить] на клетках хозяина. Микоплазмы способны расти на искусственных питательных средах, размножаются делением и почкованием. В группу микоплазм входят два рода микроорганизмов - собственно микоплазма Mycoplasma hominis, Mycoplasma genitalium и уреаплазма Ureaplasma urealiticum. Патогенные микоплазмы вызывают болезни человека например, пневмонию, половые , животных например, поражают легкие и растений. Риккетсии бактерии с кольцевой хромосомой Риккетсии Rickettsiaceae — семейство бактерий. Названы по имени X.
Риккетса 1871—1910 , в 1909 впервые описавшего возбудителя пятнистой лихорадки Скалистых гор. В том же году сходные наблюдения были сделаны Ш. Николем и его коллегами при исследовании сыпного тифа. В 1910 Риккетс погиб от сыпного тифа, изучением которого занимался в Мексике. В честь заслуг ученого возбудители этих инфекций были названы «риккетсиями» и выделены в род Rickettsia. Типичный род Rickettsia представлен полиморфными, чаще кокковидными или палочковидными [как грибобактерии], неводвижными клетками. Грамотрицательны [? В оптимальных условиях клетки риккетсий имеют форму коротких палочек размером в среднем 0,2—0,6? Сами риккетсии оказываются чуть крупнее нанобактерий. Их форма и размеры могут несколько меняться в зависимости от фазы роста логарифмическая или стационарная фазы.
При изменении условий роста они легко образуют клетки неправильной формы или нитевидные. Нуклеоид клетки риккетсий содержит кольцевую хромосому. Размножаются путем бинарного деления, обладают независимым от клетки-хозяина метаболизмом. Источником энергии у внеклеточных риккетсий служит глутамат. Возможно, что при размножении получают макроэргические соединения из клетки-хозяина. Способны индуцировать [как? На поверхности мембраны клеточной стенки располагается капсулоподобный слизистый покров и микрокапсула, содержащие группоспецифичный «растворимый» антиген. В клеточной стенке локализуются основные белки, большинство из которых являются видоспецифичными антигенами, а также липополисахарид и пептидогликан. В цитоплазматической мембране преобладают ненасыщенные жирные кислоты, она осмотически активна, имеет специфическую транспортную систему АТФ-АДФ. Грибобактерии актиномицеты, стрептомицеты, микобактерии Актиномицеты Actinomicetes или лучистые грибки, стрептомицеты, микобактерии Mycobacterium - от греч.
Распространены в почве, водоемах, в воздухе и на растительных остатках; некоторые - паразиты животных, человека туберкулез, дифтерия и др. Некоторые виды образуют антибиотики, пигменты, витамины [т.
Подцарство Простейшие
Уровень сложности вопроса рассчитан на учащихся 5 - 9 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы. Последние ответы Niki175 27 апр. Артёмка19052004 27 апр. Илья1372 27 апр. Василёчек555 27 апр.
Постараемся найти среди 775 682 формулировок по 141 989 словам. Оцени полезность материала: 5 голосов, оценка 4. Организм без клеточного ядра вирусы, бактерии.
Организм, клетки которого не имеют оформленного ядра.
Прокариоты, включая бактерии и археи, встречаются повсеместно и обладают огромным разнообразием. Они могут быть полезными для человека, например, в качестве микроорганизмов, разлагающих органическое вещество, или же могут вызывать заболевания. Простейшие организмы без ядра Простейшие организмы без ядра относятся к единостворчатым простейшим, или как их еще называют, прокариотам. К прокариотам относятся два больших домена: бактерии и археи. Бактерии являются самыми простыми формами жизни на Земле. Они обладают простой структурой клетки, которая не имеет органеллов, включая ядро. У бактерий генетическая информация хранится в циркулярной молекуле ДНК, расположенной внутри цитоплазмы. Археи, или архебактерии, также относятся к прокариотам и не имеют ядра.
Однако они отличаются от бактерий по ряду характеристик и считаются более примитивными организмами.
Однако им не хватает «истинного» ядра, связанного с мембраной. Отсутствие настоящего ядра имеет свои преимущества. Прокариоты могут извлекать генетический материал плазмиды и т. Из своего окружения и превращаться в фабрики по производству белков из любого генетического кода, добавляемого в них, при условии наличия сырья аминокислот. Это можно рассматривать как способность «позаимствовать информацию» у других успешных организмов, чтобы выжить в конкретной среде. Это, однако, также делает прокариот более восприимчивым к вирусным инфекциям, потому что транскрипционные и трансляционные механизмы полностью обнажены и легко доступны для вируса. Так почему же вообще произошла эволюция «настоящего» ядра?
В чем преимущество? Одна из гипотез заключается в том, что наличие основного генетического материала, заключенного и отделенного от остальной части цитоплазмы, позволяет клетке лучше бороться с вирусной инфекцией. Также вирусная ДНК должна была бы преодолеть дополнительный барьер ядерную оболочку , чтобы достичь места репликации, транскрипции и трансляции ДНК, что затруднит для них «заражение» клетки.
Прокариоты (доядерные одноклеточные)
Могут ли в клетке без ядра быть ядрышки? Недавно было выяснено, что такое возможно у прокариот: несмотря на отсутствие оформленного ядра, места сборки рибосом у них сходны с ядрышками эукариот. Ядро (клеточное ядро), в биологии — обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Ответ на вопрос в сканворде организм, не обладающий клеточным ядром состоит из 9 букв.
Подцарство Простейшие
Ведь все длинные нити ДНК, общая длина которых составляет, например, у человека около 164 см, необходимо уложить в клеточное ядро, диаметр которого всего несколько микрометров. Эта задача решается последовательной упаковкой ДНК в хроматине с помощью специальных белков. Основная масса белков хроматина — это белки гистоны, входящие в состав глобулярных субъединиц хроматина, называемых нуклеосомами. Всего существует 5 видов белков гистонов. Нуклеосома представляет собой цилиндрическую частицу, состоящую из 8 молекул гистонов, диаметром около 10 нм, на которую «намотано» чуть менее двух витков нити молекулы ДНК. В электронном микроскопе такой искусственно деконденсированный хроматин выглядит как «бусины на нитке». В живом ядре клетки нуклеосомы плотно объединены между собой с помощью еще одного линкерного гистонового белка, образуя так называемую элементарную хроматиновую фибриллу, диаметром 30 нм. Другие белки, негистоновой природы, входящие в состав хроматина обеспечивают дальнейшую компактизацию, т. В ядре клетки хроматин присутствует как в виде плотного конденсированного хроматина, в котором 30 нм элементарные фибриллы упакованы плотно, так и в виде гомогенного диффузного хроматина. Количественное соотношение этих двух видов хроматина зависит от характера метаболической активности клетки, степени ее дифференцированности.
Так, например, ядра эритроцитов птиц, в которых не происходит активных процессов репликации и транскрипции, содержат практически только плотный конденсированный хроматин. Некоторая часть хроматина сохраняет свое компактное, конденсированное состояние в течение всего клеточного цикла — такой хроматин называется гетерохроматином и отличается от эухроматина рядом свойств. Редактировать Репликация и транскрипция Клетки эукариот содержат обычно несколько хромосом от двух до нескольких сотен , которые теряют в ядре в интерфазе, т. Несмотря на деконденсированное состояние, каждая хромосома занимает в ядре строго определенное положение и связана с ядерной оболочкой посредством ламины. Строго закреплены на внутренней поверхности оболочки ядра такие структуры хромосом, как центромеры и теломеры. На определенной стадии жизненного цикла клетки, в синтетическом периоде, происходит репликация, т.
С какой стороны печень. С какой стороны печень?
А из цитоплазмы все ферменты, необходимые для синтеза РНК, транспортируются в ядро. Наружная ядерная мембрана со стороны, обращенной к цитоплазме, покрыта рибосомами, которые придают ей шероховатую поверхность, в то время как внутренняя мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: расширения внешней ядерной мембраны соединены с каналами эндоплазматической мембраны, образуя единую систему. Ядерные мембраны являются частью мембранной системы клетки: выступы наружной ядерной мембраны соединены каналами эндоплазматического ретикулума, образуя единую систему коммуникационных каналов. Ядро также содержит ядрышки, число которых может варьироваться от одного до семи. Ядро — это внутриядерная органелла без мембран. Он представляет собой комплекс белков и предшественников рибосомных субъединиц. Форма определяется конфигурацией мембраны.
Наблюдаются следующие типы ядер: В зависимости от выполняемых функций клетка может иметь одно или несколько ядер или не иметь их вовсе. Можно выделить следующие типы клеток:еМногие заболевания вызваны аномалиями в составе хромосом. Наиболее известны следующие группы симптомов: Заболевания, вызванные нарушениями в работе компонентов клеточного ядра, не всегда обусловлены хромосомными аномалиями. Мутации, затрагивающие отдельные ядерные белки, вызывают следующие заболевания: Важно: Хромосомные аномалии приводят к тяжелым заболеваниям. Внешний вид Круглая. Наиболее часто встречаемая. Например, большую часть лимфоцита занимает нуклеус. Подковообразное nucleus находят у несозревшего нейтрофила.
В оболочке формируются перегородки. Образуются привязанные друг к другу сегменты, такие как у зрелого нейтрофила. Обнаруживается в ядрах клеток членистоногих.
История понятия[ Монеры[ ] Монеры — этим именем Геккель назвал простейшие одноклеточные организмы без ядра. Так как присутствие ядра во многих случаях трудно констатируется, то первоначально, пока методы микроскопического исследования были сравнительно несовершенны, безъядерными считались очень многие формы.
Роль лейкоцитов в иммунитете.
Органоиды растительной и животной клетки таблица. Таблица по биологии органоиды строение функции. Биология таблица органоиды строение функции. Строение растительной клетки и функции органелл таблица. Схема регуляции нервной системы. Гомеостаз регуляция в организме.
Нервная эндокринная и иммунная системы. Взаимосвязь нервной и эндокринной систем. Характеристика царства бактерий 5 класс биология. Особенности царства бактерий. Каковы характерные особенности представителей царства бактерии. Общая характеристика бактерий 5 класс кратко.
Функции органоидов клетки ядрышко. Органоиды клетки ядро. Ядро органоид. Органоиды клетки клеточное ядро. Структура вакуоли растительной клетки. Вакуоль, клеточная мембрана строение и функции 6 класс.
Биология 5 класс строение клетки вакуоли функции. Функции вакуолей в растительной клетке. Экзоцитоз эндоцитоз пиноцитоз. Схема фагоцитоза клетки. Фагоцитоз и пиноцитоз в мембране. Фагоцитоз и эндоцитоз.
Мембрана клетки 5 класс биология. Клеточная мембрана в клетке. Строение клетки 5 класс мембрана. Оболочка клетки биология 5. Биология 5 класс микроорганизмы бактерии. Биология 5клаас одноклеточные организмы.
Одноклеточные бактерии 5 класс биология. В царстве бактерии одноклеточные организмы. Особенности строения и функции клеток крови. Строение эритроцитов лейкоцитов и тромбоцитов. Форма клетки двояковогнутая клетки крови. Перечислите функции клеток крови.
Локализация ферментов в клетке. Локализация ферментов в клетке биохимия. Где содержатся ферменты в клетках. Субклеточная локализация ферментов. Клеточная стенка растительной клетки строение и функции. Строение клетки растительной клеточная стенка функция и строение.
Плазматическая мембрана и клеточная стенка. Клеточная стенка клетки строение и функции. Строениемклетки ткани. Строение клетки т ткани. Понятие клетка. Ядро строение и функции.
Понятие об открытых системах биология. Понятие открытой системы. Понятие биологической системы. Открытость биологических систем. Структура цитоплазмы клетки. Структура цитоплазмы эукариотической клетки.
Структура цитоплазматической мембраны эукариотической клетки. Строение цитоплазмы клетки. Значение ядра в клетке. Роль ядерных структур в жизнедеятельности клетки. Ядро функции управления жизнедеятельностью клетки. Строение ядра и его роль в жизнедеятельности клетки..
Ядро животной клетки строение и функции. Ядро эукариотической клетки строение и функции. Структура и функции клеточного ядра. Морфология термины. Понятие о морфологии. Внешнее строение организма наука.
Морфология это в биологии. Биология как наука. Фенология это наука изучающая. Что изучает биология как наука. Определение биологии как науки. Кровь термины.
Термины по крови. Термины на тему кровь. Движение крови по кровеносным сосудам. Внутренняя среда организма кровь ее функции и состав. Внутренняя среда кровь лимфа форменные элементы.
У архей обнаружены ядрышки
Царства в биологии: неклеточные и клеточные организмы, особенности отдельных царств. Вы находитесь на странице вопроса Организмы в клетках которых нет ядра называют? из категории Биология. и гетеротроф используют в отношении других элементов, которые входят в состав биологических молекул в восстановленной форме (например азота, серы). Организмы в биологии: понятие, виды и особенности. точнее Доядерные или Прокариоты (Prokariota), организмы, не обладающие типичным клеточным ядром и хромосомным аппаратом.
Прокариоты — это...
- CodyCross Одноклеточный организм без ядра ответ
- Смотрите также
- Открытие, перевернувшее представление о жизни: как ученые нашли эукариоты без митохондрий
- Публикации
- Прокариотические организмы
- Биологический термин клетка без ядра кроссворд
БЕЗЪЯДЕРНЫЕ ОРГАНИЗМЫ
Эукариоты, или ядерные (эу — хорошо, карио — ядро) — одноклеточные и многоклеточные организмы, имеющее оформленное ядро. Организм без клеточного ядра (вирусы, бактерии). Кроссворд на тему клетка по биологии 5 класс 10 вопросов с ответами. Вы находитесь на странице вопроса Организмы в клетках которых нет ядра называют? из категории Биология.
Открытие, перевернувшее представление о жизни: как ученые нашли эукариоты без митохондрий
И стало ясно, что такой процесс не может продолжаться бесконечно. В противном случае старики достигали бы размеров слона. Естественно, что для сохранения постоянства массы, формы да и функции тела какая-то часть клеток должна непрерывно отмирать. До недавнего времени считалось, что процесс отмирания — исключительно дегенеративный: клетка стареет, в ней накапливаются повреждения, замирает обмен веществ, она работает все хуже, чахнет и, наконец, погибает. Его, по существу, не отличали от того варианта гибели клеток, который происходит при травме, воздействии ядов, прекращении кровоснабжения и т.
То есть процесс отмирания рассматривали как катастрофу, а не как физиологически естественное явление. Однако спустя столетие ученые поняли, что все происходит совсем иначе — клетки отмирают без видимой причины, и такая самопроизвольная гибель отличается от некроза. Жила, жила клетка и вдруг по непонятным причинам «умерла», причем без признаков воспаления и рубцевания. Механизм программируемой гибели клеток теперь выяснен достаточно полно.
Причиной гибели клетки может быть ее растворение, или, говоря научным языком, лизис. В 50-х годах XX века установили, что внутри клеток имеются макроскопические пузырьки—лизосомы. В них содержатся переваривающие ферменты, вроде тех, которые выделяются в желудке и кишечнике. Если целостность этих пузырьков по тем или иным причинам нарушается, то ферменты изливаются в протоплазму клетки и начинают «переваривать» ее содержимое.
Это приводит к постепенному растворению, распаду клетки на части, и в итоге — к ее гибели. Высказывалось также предположение, что программируемая смерть клетки может происходить и из-за избытка супероксид-радикалов. Суть механизма в следующем. Жизнедеятельность клетки требует кислорода, который обеспечивает ее энергией.
Молекула кислорода, как известно, состоит из двух атомов и обозначается знаком О2. В таком виде кислород не слишком реакционно способен. У них, выражаясь образно, атомы кислорода не держатся друг за друга, а имеют одну или две свободные руки валентности , готовые «схватить за руку» любой другой атом. Но при воздействии радиации, некоторых ядов, четыреххло-ристого углерода, печально известных диоксинов, при вирусных заболеваниях и некоторых нарушениях обмена веществ и т.
В этом случае они начинают окислять совсем не то, что требуется, в частности внешние и внутренние оболочки клеток. Как полагают многие исследователи, окислительные процессы провоцируют возникновение таких заболеваний, как склероз, гипертония, снижение иммунитета, рак, слабоумие. Окисление мембраны клеток дезорганизует работу ферментов, затрудняя проникновение в клетку ионов и питательных веществ, что ведет к невероятной путанице в согласованности работы клеточных механизмов и в конечном итоге заканчивается гибелью клетки. Существует еще один вариант программируемой клеточной гибели, так называемая «кальциевая смерть».
Она имеет много причин, но суть ее сводится к тому, что избыток ионов кальция, находящийся в межклеточной жидкости, по тем или иным причинам поступает в протоплазму клетки, активирует там ряд ферментов, что ведет сначала к нарушению обмена веществ, а затем и распаду клетки.
Сканворд по математике. Кроссворд на тему фотосинтез и дыхание растений 6. Кроссворд по биологии фотосинтез дыхание растений. Кроссворд по биологии по теме фотосинтез 6 класс.
Кроссворд на тему фотосинтез и дыхание растений 6 класс. Кроссворд на тему среда обитания. Кроссворд по теме среда обитания. Кроссворд по средам обитания. Кроссворд по биологии 5 класс с ответами животные.
Кроссворд по биологии на тему животные. Кроссворд по биологии по теме животные. Готовый кроссворд по биологии. Подпишите органоиды клетки, обозначенные цифрами.. Кроссворд по биологии органоиды клетки.
Впиши названия органоидов обозначенных цифрами. Клетка обозначенная на рисунке. Кроссворд на тему увеличительные приборы. Кроссворд на тему микроскоп. Кроссворд биология 5 класс бактерии.
Кроссворд по биологии 5 класс биологические науки. Кроссворд на тему простейшие по биологии 7 класс с ответами 20 вопросов. Кроссворд по биологии 8 класс биология скелет человека. Увеличительные приборы 5 класс биология кроссворд. Кроссворд по биологии 5 класс микроскоп.
Кроссворд обмен веществ. Кроссворд органы чувств. Кроссворд по биологии на тему Зрительная сенсорная система. Кроссворд на тем человек. Кроссворд на тему организм человека.
Кроссворд по теме организм человека. Кроссворд по теме органы человека. Кроссворд по горизонтали и по вертикали. Кроссворд по вертикали и горизонтали. По горизонтали и по вертикали.
По вертикали кроссворд. Кроссворд по биологии 6 класс на тему ткани растений и животных. Кроссворд ткани растений. Кроссворд по биологии ткани растений. Кроссворд строение растений.
Кроссворд биология 5 класс Пасечник. Пдастины содержащие хлорофтл крсфорд. Решите кроссворд пластиды содержащие хлорофилл. Плотное тельце в цитоплазме клетки кроссворд. Кроссворд индивидуальное развитие организма.
Кроссворд онтогенез. Кроссворд на тему онтогенез с ответами. Кроссворд по теме онтогенез. Кроссворд по ОБЖ. Кроссворд на тему Чрезвычайные ситуации природного характера.
Кроссворд по ОБЖ 9 класс. Кроссворд по физике. Интересный кроссворд по физике. Занимательные задания по физике с ответами. Занимательные вопросы по физике.
Кроссворд по информатике 8 класс с ответами и вопросами 15 слов.
Однако с 1930-х годов небольшое число исследователей заметили, что другие типы клеток, похоже, используют биоэлектричество для хранения и обмена информацией. Левин погрузился в эти нетрадиционные исследования и совершил следующий когнитивный скачок, опираясь на свой опыт в области компьютерных наук. В школе он зарабатывал написанием кода и знал, что компьютеры используют электричество для переключения транзисторов между 0 и 1 и что все компьютерные программы строятся на этой двоичной основе. Поэтому, когда он узнал, что все клетки в организме имеют каналы в мембранах, которые действуют как потенциал-зависимые каналы, позволяя пропускать через себя различные уровни тока, он сразу же понял, что эти каналы могут функционировать как транзисторы и что клетки могут использовать эту обработку информации под действием электричества для координации своей деятельности. Чтобы выяснить, действительно ли изменения напряжения меняют способы передачи клетками информации друг другу, Левин обратился к своей ферме планарий. В 2000-х годах он разработал способ измерения напряжения в любой точке планарии и обнаружил разное напряжение в головной и хвостовой частях. Когда он использовал препараты, чтобы изменить напряжение в хвосте на то, которое обычно присутствует в голове, червь был невозмутим. Но затем он разрезал планарию на две части, и после этого на передней части червя вместо хвоста выросла вторая голова.
Примечательно, что когда Левин разрезал нового червя пополам, у обеих голов выросли новые головы. Хотя генетически черви были идентичны обычным планариям, однократное изменение напряжения привело к тому, что они навсегда стали двухголовыми. В поисках подтверждения того, что биоэлектричество может управлять формой и ростом тела, Левин обратился к африканским когтистым лягушкам — обычным лабораторным животным, которые быстро метаморфируют из яйца в головастика и во взрослую особь. Он обнаружил, что может вызвать создание рабочего глаза в любом месте головастика, подав на это место определённое напряжение. Просто приложив нужный биоэлектрический сигнал к ране на 24 часа, он смог вызвать регенерацию функционирующей ноги. Дальше дело за клетками. В компьютерном программировании подпрограмма — это часть кода, своего рода стенограмма, которая сообщает машине, что она должна инициировать целый набор механических действий более низкого уровня. Прелесть этого более высокого уровня программирования в том, что он позволяет нам управлять миллиардами схем без необходимости вскрывать компьютер и физически изменять каждую из них вручную. Так было и с созданием глаз головастика.
Никому не нужно было управлять конструкцией линз, сетчатки и всех остальных частей глаза. Всё это можно было контролировать на уровне биоэлектричества. Левин считает, что это открытие может иметь глубокие последствия не только для нашего понимания эволюции познания, но и для человеческой медицины. Изучение «клеточного языка» — координации поведения клеток с помощью биоэлектричества — может помочь нам в лечении рака, заболевания, которое возникает, когда часть тела перестаёт взаимодействовать с остальными частями организма. Нормальные клетки запрограммированы функционировать как часть коллектива, выполняя возложенные на них задачи — клетки печени, кожи и так далее. Но раковые клетки перестают выполнять свою работу и начинают относиться к окружающему организму как к незнакомой среде, самостоятельно искать себе пропитание, размножаться и защищаться от нападения. Другими словами, они ведут себя как независимые организмы. Почему они теряют свою групповую идентичность? Отчасти, говорит Левин, потому что механизмы, поддерживающие клеточное единство разума, могут дать сбой.
Его команда смогла вызвать опухоли у лягушек, просто навязав «плохой» биоэлектрический паттерн здоровой ткани. Раковые клетки как будто перестают получать приказы и начинают бунт. Что ещё более интересно, Левину удалось рассеять опухоли, восстановив правильный биоэлектрический паттерн, то есть восстановив связь между взбунтовавшимся раком и организмом, как будто он возвращает «спящую» клетку в строй. В будущем, по его мнению, биоэлектрическую терапию можно будет применять к раковым опухолям человека, останавливая их рост. Она также может сыграть свою роль в регенерации отказывающих органов — почек, скажем, или сердца, — если учёные смогут взломать биоэлектрический код, который подскажет клеткам, что нужно начать расти по правильной схеме. На примере головастиков Левин показал, что животные, страдающие от обширных повреждений мозга при рождении, смогли построить нормальный мозг после правильной подачи биоэлектричества. Исследования Левина всегда находили реальное применение, например, в лечении рака, регенерации конечностей и заживлении ран. Но за последние несколько лет он позволил философскому течению проникнуть в свои статьи и выступления. Ситуация начала меняться после выхода в 2019 году знаменитой работы под названием «Вычислительная граница самости», в которой он использовал результаты своих экспериментов, чтобы утверждать , что все мы — коллективный разум, созданный из более мелких, высококомпетентных агентов, решающих задачи.
Как сказал Бонгард из Вермонта в интервью New York Times, «мы — это разумные машины, состоящие из разумных машин, состоящих из разумных машин, и так до бесконечности». Левин понял это отчасти благодаря наблюдению за телами своих когтистых лягушек в процессе их развития. При превращении лягушки из головастика во взрослую особь её морда подвергается масштабной перестройке. Голова меняет форму, а глаза, рот и ноздри перемещаются на новые места. Принято считать, что эти перестройки жёстко запрограммированы и следуют простым механическим алгоритмам, выполняемым генами, но Левин подозревал, что не так уж всё и предопределено. Поэтому он при помощи электрического тока изменил нормальное развитие эмбрионов лягушек, создав головастиков с глазами, ноздрями и ртами в неправильных местах. Левин назвал их «головастиками Пикассо», и они действительно выглядели соответствующе. Если бы перестройка была запрограммирована заранее, то окончательная морда лягушки должна была бы быть такой же беспорядочной, как у головастика. Ничто в эволюционном прошлом лягушки не давало ей генов для решения столь необычной ситуации.
Но Левин с изумлением наблюдал за тем, как глаза и рты находят правильное расположение, а головастики превращаются в лягушек. У клеток была абстрактная цель, и они работали вместе, чтобы достичь её. Сплотившись в единый разум с помощью биоэлектричества, клетки совершили биоинженерные подвиги, намного превосходящие достижения наших лучших генных жокеев. Наиболее пристальный интерес к работе Левина проявили специалисты в области искусственного интеллекта и робототехники, которые видят в базовом познании способ устранить некоторые основные недостатки. При всей своей выдающейся способности манипулировать языком или играть в игры с чётко определёнными правилами, ИИ всё ещё испытывают огромные трудности с пониманием физического мира. Они могут сочинять сонеты в стиле Шекспира, но спросите их, как ходить на двух ногах или предсказать, как мяч скатится с холма, и они запутаются. По мнению Бонгарда, это происходит потому, что эти ИИ в некотором смысле слишком самоуверенны. А они, как правило, связаны с такими вещами, как здравый смысл и причинно-следственные связи, что указывает на то, почему вам нужно тело. Если у вас есть тело, вы можете узнать о причинах и следствиях, потому что вы можете стать причиной разных последствий.
Если её хорошо кормить, Thiomargarita magnifica вырастает до двух сантиметров в длину. То есть, в абсолютно исчислении это не много, но в относительном… Тиомаргариту не то чтобы трудно было найти. Но и найдя, исследователи долго не могли поверить, что это — бактерия, и потратили 10 лет, пытаясь обнаружить у неё признаки принадлежности к домену эукариотов и даже многоклеточности. Но главная новость в том, что признаки более зрелого, чем положено безъядерным прокариотам, строения у гигантской бактерии, именно, обнаружились. Геном тиомаргариты не рассеян по всему объёму, а сосредоточен в ограждённом внутренней мембраной мешке.