Непрерывная звуковая волна разбивается на отдельные маленькие.". Информационный объём звукового файла зависит от: частоты дискретизации тактовой. Составляющие непрерывной звуковой волны Непрерывная звуковая волна может быть разбита на несколько составляющих, которые определяют основные характеристики звука.
Кодирование звуковой и видеоинформации
Разложение непрерывной звуковой волны является важным инструментом в области аудиоанализа и синтеза звука. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определённая величина интенсивности звука. При разложении непрерывной звуковой волны на гармоники получается спектр колебаний, который определяет тональный состав звука. Качество непрерывного звукового сигнала в дискреиный сигнал зав. На что разбивается непрерывная звуковая волна. Информационный объём звукового файла зависит от: частоты дискретизации тактовой.
Что включает в себя процесс оцифровки звука?
Двигаясь на сверхзвуке самолет как бы тащит ударную звуковую волну за собой. Внешне это явление очень напоминает след, который оставляет корабль двигаясь по воде. Волны сильнее вблизи корабля, а угол их распространения зависит в основном, от скорости корабля. Ударная волна при полете на сверхзвуке Ударная волна при полете на сверхзвуке Поэтому если над нами пролетит самолет, летящий на сверхзвуке на много больше, чем 1 Мах, то на земле мы услышим хлопок, а потом гул удаляющегося самолета.
Причем нас спасет именно высота, на которой, над нами, пролетел самолет. При высоте полета, около 10 км этот хлопок будет не очень громким, Мы его даже навряд ли правильно оценим, так как сам самолет при такой высоте полета будет от нас уже на расстоянии 12-15 км. Ну а если представить, что самолет на сверхзвуке пролетит над нами на высоте 50-100 метров, это будет уже совсем другая, очень печальная история.
Ударная волна будет порядка 200 КПа, что в разы больше смертельного порога для человека и такая ударная волна способна разрушить практически любое строение и технику. Ученые и инженеры давно «приглядывались» к эффекту ударной звуковой волны, в далеко не мирных целях.
Более высокие скорости иногда выражаются в числах Маха и соответствуют сверхзвуковым скоростям. При движении в среде со сверхзвуковой скоростью тело обязательно создаёт за собой звуковую волну. При равномерном прямолинейном движении фронт звуковой волны имеет конусообразную форму, с вершиной в движущемся теле. Излучение звуковой волны обуславливает дополнительную потерю энергии движущимся телом помимо потери энергии вследствие трения и прочих сил. Аналогичные эффекты испускания волн движущимися телами характерны для всех физических явлений волновой природы, например: черенковское излучение, волна, создаваемая судами на поверхности воды.
Запись выполнена в режиме «стерео». Видеоинформация Для того чтобы сохранить видеоинформацию в памяти компьютера, необходимо закодировать звук, а также изменяющееся во времени изображение, важно обеспечить их синхронность. Как мы выяснили ранее, звуковую информацию оцифровывают, видеоинформацию же рассматривают как последовательность кадров, меняющихся с определённой частотой. Кадр рассматривается как множество пикселей, каждый кадр кодируется, совокупность всех кадров описывает видео. Основными характеристиками частота кадров скорость воспроизведения кадров в секунду ; экранное разрешение количество пикселей на экране ; глубина цвета количество бит на пиксель. Для того чтобы определить, какой объем памяти требуется для хранения видеоинформации, необходимо воспользоваться следующей формулой: , где I — искомый объем видеоданных, H и W — высота и ширина изображения в пикселях, — частота кадров в секунду, t — продолжительность передачи видео в секундах, i — глубина цвета. Если же на видео накладывается звук, то к объему видео необходимо прибавить объем памяти, необходимый для хранения звуковой информации.
Для волны процессы очень похожие. Если звуковая волна может раскачать препятствие — она его раскачивает, и вся энергия колебаний передаётся препятствию. А если волны не могут раскачать поверхность на которую натыкаются - происходит отражение.
Эхо от лат. Мы воспринимаем эхо как повторение звука: сначала мы слышим сам звук, затем звук отражённый от препятствия. Эмпирическим путём было установлено, что человеческий слуховой аппарат воспринимает смещённые по времен звуки как один звук, если смещение между ними меньше чем 0,06 секунд. Этим объясняется, что в квартирах даже в бетонных домах вы не слышите эха. Отражение звука можно использовать на благо — направить звук в нужном направлении.
Что такое звуковой удар и как он ощущается
В наше время волновой кризис уже достаточно хорошо изучен и преодоление звукового барьера если это требуется :- особого труда не составляет. На самолетах, которые предназначены для полетов с достаточно большими скоростями применены определенные конструктивные решения и ограничения, облегчающие их летную эксплуатацию. Как известно, волновой кризис начинается при числах М, близких к единице. Поэтому практически все реактивные дозвуковые лайнеры пассажирские, в частности имеют полетное ограничение по числу М. Обычно оно находится в районе 0,8-0,9М. Летчику предписывается следить за этим. Кроме того на многих самолетах при достижении уровня ограничения срабатывает сигнализация, после чего скорость полета должна быть снижена. Стреловидное крыло. Принципиальное действие.
Причину такого эффекта можно объяснить достаточно просто. А он заведомо меньше по величине общего потока V. Поэтому на стреловидном крыле наступление волнового кризиса и рост волнового сопротивления происходит ощутимо позже, чем на прямом крыле при той же скорости набегающего потока. Типичное стреловидное крыло. Одной из модификаций стреловидного крыла стало крыло со сверхкритическим профилем упоминал о нем здесь. Оно тоже позволяет сдвинуть начало волнового кризиса на большие скорости, кроме того позволяет повысить экономичность, что немаловажно для пассажирских лайнеров. SuperJet 100. Стреловидное крыло со сверхкритическим профилем.
Если же самолет предназначен для перехода звукового барьера проходя и волновой кризис тоже и полета на сверхзвуке, то он обычно всегда отличается определенными конструктивными особенностями. В частности, обычно имеет тонкий профиль крыла и оперения с острыми кромками в том числе ромбовидный или треугольный и определенную форму крыла в плане например, треугольную или трапециевидную с наплывом и т. Сверхзвуковой МИГ-21. Послелователь Е-2А. Типичное треугольное в плане крыло. Пример типичного самолета, созданного для полета на сверхзвуке. Тонкие профили крыла и оперения, острые кромки. Трапециевидное крыло.
И сам момент этого перехода чаще всего никак не ощущается повторяюсь :- ни летчиком у него разве что может снизиться уровень звукового давления в кабине , ни сторонним наблюдателем, если бы, конечно, он мог за этим наблюдать :-. Однако, здесь стоит сказать еще об одном заблуждении, со сторонними наблюдателями связанным. Наверняка многие видели такого рода фотографии, подписи под которыми гласят, что это есть момент преодоления самолетом звукового барьера, так сказать, визуально. Эффект Прандтля-Глоэрта. Не связан с прохождением звукового барьера. Во-первых, мы уже знаем, что звукового барьера, как такового-то и нет, и сам переход на сверхзвук ничем таким сверхординарным в том числе и хлопком или взрывом не сопровождается. То, что мы видели на фото — это так называемый эффект Прандтля-Глоэрта. Я о нем уже писал здесь.
Он никак напрямую не связан с переходом на сверхзвук. Просто на больших скоростях дозвуковых, кстати :- самолет, двигая перед собой определенную массу воздуха создает сзади некоторую область разрежения. Сразу после пролета эта область начинает заполняться воздухом из близлежащего пространства с естественным увеличением объема и резким падением температуры. Если влажность воздуха достаточна и температура падает ниже точки росы окружающего воздуха, то происходит конденсация влаги из водяных паров в виде тумана, который мы и видим. Как только условия восстанавливаются до исходных, этот туман сразу исчезает. Весь этот процесс достаточно скоротечен. Такому процессу на больших околозвуковых скоростях могут способствовать местные скачки уплотнения, иногда помогая формировать вокруг самолета нечто похожее на пологий конус. Большие скорости благоприятствуют этому явлению, однако, если влажность воздуха окажется достаточной, то оно может возникнуть и возникает на довольно малых скоростях.
Например, над поверхностью водоемов. Большинство, кстати, красивых фото такого характера сделаны с борта авианосца, то есть в достаточно влажном воздухе. Вот так и получается. Кадры, конечно, классные, зрелище эффектное, но это совсем не то, чем его чаще всего называют. Звуковой барьер здесь совсем не при чем и сверхзвуковой барьер тоже. И это хорошо, я думаю, иначе наблюдателям, которые делают такого рода фото и видео могло бы не поздоровиться. Ударная волна, знаете ли … В заключении один ролик ранее я его уже использовал , авторы которого показывают действие ударной волны от самолета, летящего на малой высоте со сверхзвуковой скоростью. Определенное преувеличение там, конечно, присутствует :- , но общий принцип понятен.
И опять же эффектно … А на сегодня все.
При этом производится дискретизация сигнала по времени. Непрерывная звуковая волна разбивается на на отдельные маленькие участки, и для каждого такого участка устанавливается своя амплитуда. Дискретизация — это преобразование аналоговой информации непрерывнго звука в набор дискретных значений, каждому из которых присваивается значение его кода.
Что самое интересное, ударные волны распространяются и достигают земли беззвучно. Хлопок же мы слышим только в тот момент, когда ударная волна, то есть граница воображаемого конуса, проходит сквозь человека. В этот момент давление воздуха вокруг человека скачкообразно повышается, что воспринимается ушами как хлопок. То есть этот звук существует только для слушателя в момент прохождения через него ударной волны, и с ускорением самолета никак не связан. Насколько опасна ударная волна, распространяющаяся от сверхзвукового самолета? Так как расстояние от него до земли достаточно большое, она не способна вызвать какие-либо разрушения.
Однако возле самолета ударная волна достаточно мощная. Поэтому, если он будет пролетать низко над многоэтажным домом, то выше 30 этажа ударная волна вполне может выбить стекла. Преодоление самолетом звукового барьера — что это такое Итак, если хлопок не связан с преодолением звукового барьера, то что вообще означает этот термин?
Значение непрерывной звуковой волны состоит в ее способности передавать информацию и воздействовать на нас. Звуковая волна содержит различные компоненты, такие как амплитуда, частота и фаза, которые определяют ее звучание и характер. Сочетание этих компонентов влияет на то, как мы воспринимаем звуки и как они воздействуют на нас, включая наше настроение, эмоциональное состояние и физиологические реакции. Таким образом, непрерывная звуковая волна является неотъемлемой частью нашей жизни, она не только передает информацию о звуках, но и имеет существенное значение для нашего слухового восприятия и воздействия на наш организм. Разложение звуковой волны на составляющие частоты Каждая непрерывная звуковая волна может быть разложена на составляющие частоты при помощи математической процедуры, называемой преобразованием Фурье. Этот процесс позволяет нам разделить сложную звуковую волну на отдельные частоты, которые составляют ее спектр. Преобразование Фурье основывается на идее, что сложная волна может быть представлена как сумма более простых синусоидальных волн с разными частотами, амплитудами и фазами. Используя этот подход, мы можем анализировать звуковую волну и определить, какие конкретные частоты присутствуют в ней и с какой амплитудой. Разложение звуковой волны на спектр частот позволяет нам лучше понять ее структуру и характеристики. Например, мы можем определить основные и гармонические компоненты в звуке, их амплитуды и относительные частоты. Это полезно для анализа и синтеза звуковых сигналов, а также для исследования и понимания работы слуховой системы. Преобразование Фурье является одним из основных инструментов в области цифровой обработки сигналов и акустики. Оно находит широкое применение во многих областях, включая аудиоинженерию, музыкальное производство, компьютерную графику и науку о звуке.
Акція для всіх передплатників кейс-уроків 7W!
Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. Количество измерений в секунду может лежать в диапазоне от 8000 до 48 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-СD. Следует также учитывать, что возможны как моно-, так и стерео-режимы.
Что такое глубина кодирования? Глубина кодирования звука — это количество возможных уровней сигнала. Другими словами глубина кодирования это точность измерения сигнала.
Глубина кодирования измеряется в битах. Например, если количество возможных уровней сигнала равно 255, то глубина кодирования такого звука 8 бит. Что происходит в процессе кодирования непрерывного звукового сигнала? В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.
Дискретизация по времени. Информационный объем оцифрованного звука. Глубина кодирования звука Разрядность квантования.
Кодирование оцифрованного звука. Дискретное цифровое представление текстовой информации. Дискретное представление звука. Дискретное представление звуковой и видеоинформации. Дискретное представление звуковой информации кратко. Изменение громкости. Уровни качества звука. Уровень дискретизации буква.
Изменение сигнала в результате дискретизации. Кодирование и обработка звуковой информации кроссворд. Память компьютера: дискретна непрерывна. Схема дискретизации звукового сигнала. Копирование звуковой информации. Принцип кодирования звука. Глубина кодирования звука. Квантованный по уровню сигнал.
Кодирование уровней громкости это. Дискретизация информации это. Аналоговая и дискретная информация в информатике. Аналоговая информация это в информатике. Примеры дискретизации. При процессе временная дискретизация непрерывный звуковой сигнал. Дискретизация сигнала по уровню. Глубина дискретизации.
Двоичное кодирование звука Информатика. Глубина кодирования звукового сигнала. Двоичное представление звуковой информации. Дискретизация непрервныхпроцессоа.
Аналогово-цифровые преобразователи АЦП [ править править код ] Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями АЦП. Это преобразование включает в себя следующие операции: Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации. Дискретизацию во времени, то есть замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты времени — отсчетов. Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения. Квантование по уровню представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования. Кодирование или оцифровку, в результате которого значение каждого квантованного отсчета представляется в виде числа, соответствующего порядковому номеру уровня квантования. Читайте также: Проверка состояния батареи телефона Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Для записи звука в полосе частот 20-20 000 Гц, требуется частота дискретизации от 44,1 и выше в настоящее время появились АЦП и ЦАП c частотой дискретизации 192 и даже 384 кГц. Для получения качественной записи достаточно разрядности 16 бит, однако для расширения динамического диапазона и повышения качества звукозаписи используется разрядность 24 реже 32 бита. Кодирование оцифрованного звука перед его записью на носитель [ править править код ] Для хранения цифрового звука существует много различных способов. Оцифрованный звук являет собой набор значений амплитуды сигнала, взятых через определенные промежутки времени. Блок оцифрованной аудио информации можно записать в файл без изменений, то есть последовательностью чисел — значений амплитуды. В этом случае существуют два способа хранения информации. Первый — PCM Pulse Code Modulation — импульсно-кодовая модуляция — способ цифрового кодирования сигнала при помощи записи абсолютных значений амплитуд. В таком виде записаны данные на всех аудио CD. Можно сжать данные так, чтобы они занимали меньший объем памяти, нежели в исходном состоянии.
Кодирование звуковой информации
- Мы ценим вашу конфиденциальность
- Непрерывная зависимость
- Кодирование и обработка звуковой информации
- Всё, что Вам нужно знать о звуке
- Что такое скорость звука?
- Видеоинформация
Кодирование звуковой и видеоинформации
Непрерывная звуковая волна разбивается на на отдельные маленькие участки, и для каждого такого участка устанавливается своя амплитуда. ответ на: Непрерывная звуковая волна разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается, 41355014, Каждая таблица в Access состоит из полей. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.
Всё, что Вам нужно знать о звуке
Составляющие непрерывной звуковой волны Непрерывная звуковая волна может быть разбита на несколько составляющих, которые определяют основные характеристики звука. 1. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Для самолёта ударная волна создаёт громкий и грохочущий звуковой удар. Непрерывная звуковая волна представляет собой последовательность сжатий и разрежений воздушных молекул, которые передаются в виде звука.
Популярно: Информатика
- Форма, частота и амплитуда волны
- Что происходит в процессе кодирования непрерывного звукового сигнала?
- Презентация 10 -8 Кодирование звуковой информации С
- Дисперсия света
- Звуковая информация
Кодирование звуковой информации дискретизация
Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз. Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. Такой процесс называется оцифровкой звука. Таким образом, непрерывная зависимость громкости звука от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек". Рис 2. Временная дискретизация звука Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате.
Качество полученного звука зависит от количества измерений уровня громкости звука в единицу времени, то есть частоты дискретизации.
Дискретное представление звука. Дискретное представление звуковой и видеоинформации. Дискретное представление звуковой информации кратко. Изменение громкости. Уровни качества звука. Уровень дискретизации буква. Изменение сигнала в результате дискретизации.
Кодирование и обработка звуковой информации кроссворд. Память компьютера: дискретна непрерывна. Схема дискретизации звукового сигнала. Копирование звуковой информации. Принцип кодирования звука. Глубина кодирования звука. Квантованный по уровню сигнал. Кодирование уровней громкости это.
Дискретизация информации это. Аналоговая и дискретная информация в информатике. Аналоговая информация это в информатике. Примеры дискретизации. При процессе временная дискретизация непрерывный звуковой сигнал. Дискретизация сигнала по уровню. Глубина дискретизации. Двоичное кодирование звука Информатика.
Глубина кодирования звукового сигнала. Двоичное представление звуковой информации. Дискретизация непрервныхпроцессоа. Процесс дискретизации звука. В процессе кодирования звукового сигнала производится. Чем определяется качество двоичного кодирования звука. Дискретизация звука это кратко. Качество дискретизации.
Однако возле самолета ударная волна достаточно мощная. Поэтому, если он будет пролетать низко над многоэтажным домом, то выше 30 этажа ударная волна вполне может выбить стекла. Преодоление самолетом звукового барьера — что это такое Итак, если хлопок не связан с преодолением звукового барьера, то что вообще означает этот термин? В аэродинамике им принято называть резкий скачок сопротивления воздуха, который возникает при достижении самолетом определенной скорости, близкой к скорости звука. Сверхзвуковой самолет имеет особую конструкцию, которая обеспечивает управляемость при полете с высокой скоростью На такой скорости воздушные потоки начинают обтекать самолет иначе, то есть совсем не так, как это происходит на меньших скоростях. Это в свое время осложняло инженерам создание сверхзвукового самолета.
К слову, даже сейчас создание сверхзвукового авиалайнера является большой проблемой для инженеров. Разогнать обычный самолет до сверхзвуковой скорости особых проблем нет, но если он преодолеет сверхзвуковой барьер, потеряет управляемость и не сможет летать устойчиво. То есть, даже если он разгонится до такой скорости, то при ее достижении потерпит крушение.
Еще одной характеристикой качества звука является глубина кодирования звука , эта величина определяет количество бит на один звуковой сигнал.
В настоящее время звуковые карты, как правило, обеспечивают 16-битную глубину кодирования звуковой информации. Количество уровней звукового сигнала можно рассчитать следующим образом: уровней сигнала. Для того чтобы определить, какой объем памяти требуется для хранения звуковой информации длительностью t секунд, с частотой дискретизации f Гц, глубиной кодирования b бит по s каналам, необходимо воспользоваться следующей формулой:. Определим информационный объем данных, которые были получены при оцифровке звукового сообщения длительность 2 минуты, частота 45кГц, использовалась 16-битная звуковая карта.
Запись выполнена в режиме «стерео». Видеоинформация Для того чтобы сохранить видеоинформацию в памяти компьютера, необходимо закодировать звук, а также изменяющееся во времени изображение, важно обеспечить их синхронность.
Информатика. 10 класс
Качество непрерывного звукового сигнала в дискреиный сигнал зав. На что разбивается непрерывная звуковая волна. Разложение непрерывной звуковой волны является важным инструментом в области аудиоанализа и синтеза звука. Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков.
Звук. Звуковая информация презентация
Ну, на то он и сверхзвук, что бы вплоть до точки "начала звучания сверхзвукового самолёта" ничего не слышать. И вот, обращаю Ваше внимание, какая петрушка получается: сверхзвуковой самолёт летит, ревёт, звуковой энергии излучает столько, что мало не покажется!.. А мы его не слышим. Ну, нечего, услышим! Закон сохранения энергии ещё никто не отменял! Опустим пока сам момент "начала звучания". Пусть, например, мы заткнули оба уха, а потом открыли,... В правом, кроме удаляющегося рёва, ничего не будет. Так что же услышит наше левое ухо?
Но при этом этот "кажущийся" самолёт будет лететь влево. Сначала над Ближним Муракино, потом над Средним, а потом и над Дальним. Приходить в левое ухо! Подведём итог этих двух пролётов. При сверхзвуковом полёте самолёта имеем противоположную картину: наше левое ухо воспринимает уменьшающийся по интенсивности поток звуковой энергии как УДАЛЕНИЕ самолёта в левую сторону. А что мы имеем, когда самолёт летит со звуковой скоростью? Правильно, вся энергия, которую самолёт, как источник звука а это - ой, как немало! Я думаю, теперь Вам понятно, почему возникает "звуковой удар".
Но это, так сказать, только первое приближение. Потому что мы, по правде говоря, рассмотрели самолёт, пронёсшийся в нескольких сантиметрах у нас над головами, и скорость которого относительно нас с Вами на всём продолжении полёта от Дальнего Муракина до точки наблюдения была постоянна. А реальность несколько другая. Рассмотрим сверхзвуковой самолёт, летящий с двойной скоростью звука как говорят - два Маха и на высоте где-то 200 метров. Самолёт показался где-то над Дальним Муракино. Это ещё маленькая точка чуть выше горизонта. Разложим скорость самолёта на две составляющие: одна направлена строго на нас с Вами а мы всё ещё в поле , и она указывает на то, что самолёт приближается к нам, другая, перпендикулярная ей - направлена вверх и соответствует постепенному "поднятию" самолёта к точке зенита. Понятно, что если Дальнее Муракино далеко а оно далеко , то почти все два Маха направлены на нас, а к зениту направлена совсем маленькая составляющая скорости.
Другое дело - точка зенита. В этом случае уже скорость прохождения точки зенита равна двум Махам, а составляющая, направленная на нас с Вами, равна нулю. Таким образом, составляющая скорости самолёта направленная на нас с Вами проходит значение от двух скоростей звука от двух Махов до ноля. Понятно, что где-то на отрезке от Дальнего Муракино до точки зенита она достигает и значения скорости звука.
Для ее разложения в ряд Фурье на интервале [ x 1, x 2] мы можем искусственно представить в виде некоторой периодической функции , полученной путем «зацикливания» значений функции f x из рассматриваемого интервала. После этой процедуры, непериодическая функция f x превращается в периодическую , которая может быть разложена в ряд Фурье. До сих пор мы говорили о математике. Как же все сказанное соотносится с практикой? Действительно, рассмотренный нами способ разложения в ряд Фурье работает для функций, записанных в виде аналитических выражений. К сожалению, на практике записать функцию в виде аналитического выражения возможно лишь в единичных случаях.
В реальности чаще всего приходится работать с изменяющимися во времени величинами, никак неподдающимися аналитической записи. Кроме того, значения анализируемой величины чаще всего известны не в любой момент времени, а лишь тогда, когда производится их регистрация иными словами, значения анализируемой величины дискретны. В частности, интересующие нас сейчас реальные звуковые колебания, являются как раз такой величиной. Оказывается, к таким величинам тоже может быть применена вариация анализа Фурье. Для разложения в ряд Фурье сигналов, описанных их дискретными значениями, применяют Дискретное Преобразование Фурье ДПФ — специально созданная разновидность анализа Фурье. БПФ очень широко используется буквально во всех областях науки и техники. Частотные составляющие спектра - это синусоидальные колебания так называемые чистые тона , каждое из которых имеет свою собственную амплитуду, частоту и фазу. Любое, даже самое сложное по форме колебание например, звук голоса человека , можно представить в виде суммы простейших синусоидальных колебаний определенных частот и амплитуд. На рис. На графике по оси абсцисс откладывается время, а по оси ординат - амплитуда волны измеренная в децибелах.
Спектр этого звукового сигнала представлен в виде графика на рис. На графике спектра по оси абсцисс откладывается частота спектральных составляющих измеренная в Гц , а по оси ординат — амплитуда этих спектральных составляющих. Обратим внимание на один очень важный момент: даже самую сложную зависимость функцию спектральное разложение превращает в некоторый математический ряд строго определенного вида ряд может быть конечным и бесконечным. Таким образом, спектральное разложение как бы преобразует график в график: график функции превращается в график спектра функции. А что, если наша функция — это звуковой сигнал некоторой длительности? Выходит, что в результате спектрального преобразования он тоже превратится в статичную картинку спектра; таким образом, информация о временных изменениях будет утеряна — перед нами будет единый статичный спектр всего сигнала. Как же проследить динамику изменения спектра сигнала во времени? Чтобы получить представление об изменении спектра во времени, аудио сигнал необходимо анализировать не целиком, а по частям говорят «блоками» или «окнами». Например, трехсекундный аудио сигнал можно разбить на 30 блоков. Нужно учитывать, однако, что чем меньше анализируемый блок сигнала, тем менее точен менее информативен спектр этого блока.
Таким образом, при проведении спектрального анализа мы сталкиваемся с дилеммой, решение которой строго индивидуально для каждого конкретного случая. Стремясь получить высокое временное разрешение, с тем, чтобы суметь распознать изменения спектра сигнала в динамике, мы «дробим» анализируемый сигнал на большое количество блоков, но при этом для каждого получаем огрубленный спектр. И наоборот, стремясь получить как можно более точный и ясный спектр, нам приходится жертвовать временным разрешением и делить сигнал на меньшее количество блоков. Эта дилемма называется принципом неопределенности спектрального анализа. Психоакустика Слуховая система человека — сложный и вместе с тем очень интересно устроенный механизм. Чтобы более ясно представить себе, что для нас есть звук, нужно разобраться с тем, что и как мы слышим. В анатомии ухо человека принято делить на три составные части: наружное ухо, среднее ухо и внутреннее ухо. К наружному уху относится ушная раковина, помогающая сконцентрировать звуковые колебания, и наружный слуховой канал. Звуковая волна, попадая в ушную раковину, проходит дальше, по слуховому каналу его длина составляет около 3 см, а диаметр - около 0. Барабанная перепонка преобразует звуковую волну в вибрации усиливая эффект от слабой звуковой волны и ослабляя от сильной.
Эти вибрации передаются по присоединенным к барабанной перепонке косточкам - молоточку, наковальне и стремечку — во внутреннее ухо, представляющее собой завитую трубку с жидкостью диаметром около 0. Эта трубка называется улиткой. Внутри улитки находится еще одна мембрана, называемая базилярной, которая напоминает струну длиной 32 мм, вдоль которой располагаются чувствительные клетки более 20 тысяч волокон. Толщина струны в начале улитки и у ее вершины различна. В результате такого строения мембрана резонирует разными своими частями в ответ на звуковые колебания разной высоты. Так, высокочастотный звук затрагивает нервные окончания, располагающиеся в начале улитки, а звуковые колебания низкой частоты — окончания в ее вершине. Механизм распознавания частоты звуковых колебаний достаточно сложен. В целом он заключается в анализе месторасположения затронутых колебаниями нервных окончаний, а также в анализе частоты импульсов, поступающих в мозг от нервных окончаний. Существует целая наука, изучающая психологические и физиологические особенности восприятия звука человеком. Эта наука называется психоакустикой.
В последние несколько десятков лет психоакустика стала одной из наиболее важных отраслей в области звуковых технологий, поскольку в основном именно благодаря знаниям в области психоакустики современные звуковые технологии получили свое развитие. Давайте рассмотрим самые основные факты, установленные психоакустикой. Основную информацию о звуковых колебаниях мозг получает в области до 4 кГц. Этот факт оказывается вполне логичным, если учесть, что все основные жизненно необходимые человеку звуки находятся именно в этой спектральной полосе, до 4 кГц голоса других людей и животных, шум воды, ветра и проч. Частоты выше 4 кГц являются для человека лишь вспомогательными, что подтверждается многими опытами. В целом, принято считать, что низкие частоты «ответственны» за разборчивость, ясность аудио информации, а высокие частоты — за субъективное качество звука. Слуховой аппарат человека способен различать частотные составляющие звука в пределах от 20-30 Гц до приблизительно 20 КГц. Указанная верхняя граница может колебаться в зависимости от возраста слушателя и других факторов. В спектре звука большинства музыкальных инструментов наблюдается наиболее выделяющаяся по амплитуде частотная составляющая. Ее называют основной частотой или основным тоном.
Основная частота является очень важным параметром звучания, и вот почему. Для периодических сигналов, слуховая система человека способна различать высоту звука. В соответствии с определением международной организации стандартов, высота звука - это субъективная характеристика, распределяющая звуки по некоторой шкале от низких к высоким. На воспринимаемую высоту звука влияет, главным образом, частота основного тона период колебаний , при этом общая форма звуковой волны и ее сложность форма периода также могут оказывать влияние на нее. Высота звука может определяться слуховой системой для сложных сигналов, но только в том случае, если основной тон сигнала является периодическим например, в звуке хлопка или выстрела тон не является периодическим и по сему слух не способен оценить его высоту. Вообще, в зависимости от амплитуд составляющих спектра, звук может приобретать различную окраску и восприниматься как тон или как шум. В случае если спектр дискретен то есть, на графике спектра присутствуют явно выраженные пики , то звук воспринимается как тон, если имеет место один пик, или как созвучие, в случае присутствия нескольких явно выраженных пиков. Если же звук имеет сплошной спектр, то есть амплитуды частотных составляющих спектра примерно равны, то на слух такой звук воспринимается как шум. Для демонстрации наглядного примера можно попытаться экспериментально «изготовить» различные музыкальные тона и созвучия. Для этого необходимо к громкоговорителю через сумматор подключить несколько генераторов чистых тонов осцилляторов.
Причем, сделать это таким образом, чтобы была возможность регулировки амплитуды и частоты каждого генерируемого чистого тона. В результате проделанной работы будет получена возможность смешивать сигналы от всех осцилляторов в желаемой пропорции, и тем самым создавать совершенно различные звуки.
Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга микшировать звуки и применять различные акустические эффекты эхо, воспроизведение в обратном направлении и др. Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования.
Контрольные вопросы 1. В чем состоит принцип двоичного кодирования звука? От каких параметров зависит качество двоичного кодирования звука? Информатика и ИКТ: Учебник для 10 кл. Угринович Содержание урока.
Кодирование аудиоинформации. Кодирование звука таблица. Измерение частоты дискретизации звука.
Кодирование звуковой информации Информатика 8 класс. Частота оцифровки сигнала. Глубина звука частота дискретизации. Процесс кодирования звука. В процессе кодирования звукового сигнала производится его временная. Двоичное кодирование звука. Кодирование звукового сигнала. Кодирование графики и звука.
Квантование звука. Кодирование звуковой информации оцифровка звука. Формула нахождения глубины кодирования звука. Что такое частота дискретизации и Разрядность дискретизации. Процесс кодирования звукового сигнала:. В процессе кодирования непрерывного звукового сигнала производится. Дискретизация конспект небольшой. Принципы дискретизации звука.
Разбиение звуковой волны на отдельные временные участки это. Дискретизация аудио. Частота кодирования звука. Дискретизация по уровню звука. Дискретизация звука график. Частота дискретизации звука. Временная дискретизация звука график. Диаграмма временной дискретизации звука.
Звуковая волна дискретизация. Волновое представление звука. Графика звук кодирование. Дискретизация звуковой информации.
Информатика. 10 класс
На что разбивается непрерывная звуковая волна?. Дискретизация неидеальной звуковой волны. ответ на: Непрерывная звуковая волна разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается, 41355014, Каждая таблица в Access состоит из полей. Слайд 12Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные.