Формулы нахождения площадей поверхностей и объемов фигур: таблица. ЕГЭ Профиль 2022.
Шпаргалки и формулы по стереометрии
Study with Quizlet and memorize flashcards containing terms like Площадь квадрата, Периметр квадрата, Длина диагонали квадрата and more. Работа по теме: 8. Основные формулы стереометрии — подборка шпаргалок по математике. Артур Шарафиев. картинка: Запоминаем ВСЕ формулы по стереометрии за 5 мин! №2 МАТЕМАТИКА ПРОФИЛЬ. Тригонометрия на ЕГЭ: основные проблемы темы Задания по тригонометрии в базе и профиле на ЕГЭ 5 формул тригонометрии: теория для ЕГЭ Что еще пригодится вам для тригонометрии на ЕГЭ. Как подготовиться к решению заданий ЕГЭ № 14 по стереометрии | 1С:Репетитор.
Стереометрия: формулы и методы
Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого: Далее подставим все данные в формулу и найдем площадь поверхности многогранника — Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность. Задачи на нахождение расстояния между точками составного многогранника. В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны. Теорема Пифагора В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.
Объёмы фигур формулы таблица шпаргалка. Объемы и площади фигур стереометрия. Формулы фигур стереометрии по ЕГЭ. Формулы из стереометрии для ЕГЭ. Стереометрия 10 класс формулы.
Площади фигур стереометрия. Стереометрия формулы. Стереометрия формулы площадей и объемов ЕГЭ. Формулы по геометрии 10 класс стереометрия. Планиметрия и стереометрия формулы.
Основные формулы стереометрии для ЕГЭ. Формулы объёмов и площадей поверхности стереометрических фигур. Формулы площадей всех фигур стереометрия. Формулы по геометрии 11 класс стереометрия. Шпаргалка по стереометрии ЕГЭ профиль.
Ыормулыпо стереометрии. Формулы объёмных фигур стереометрия. Стереометрия формулы площадей и объемов шпаргалка. Стереометрия 11 класс формулы ЕГЭ. Основные формулы по стереометрии.
Формулы по стереометрии 10 класс. Формулы площадей фигур по стереометрии. Основные формулы геометрии 10 класс стереометрия. Основные формулы в стереометрии. Формулы стереометрии таблица.
Теория по стереометрии формулы. Площади поверхности фигур стереометрия. Площади фигур стереометрия ЕГЭ. Формулы стереометрии шпаргалка. Стереометрия стенд.
Формулы по стереометрии. Наглядные пособия для кабинета математики. Формулы объёма геометрических фигур 11 класс ЕГЭ. Формулы площадей и объемов фигур по стереометрии. Формулы объема геометрия 11 класс.
Формулы площадей фигур планиметрия. Планиметрия формулы шпаргалка. Формулы планиметрии для ЕГЭ. Базовые формулы стереометрии. Планиметрия 11 класс формулы.
Формулы математика профиль ЕГЭ геометрия. Шпаргалка ЕГЭ математика профильный уровень геометрия. Геометрические формулы для ЕГЭ. Формулы для 8 задания по геометрии ЕГЭ. Стереометрия шпаргалка для ЕГЭ.
Стереометрия 11 класс формулы. Формулы по геометрии 11 класс ЕГЭ стереометрия.
Скрещивающиеся прямые Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются. Через две скрещивающиеся прямые проходит единственная пара параллельных плоскостей. Расстояние между скрещивающимися прямыми — это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
Угол между скрещивающимися прямыми — это острый угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.
Пробные варианты ЕГЭ 2022 по математике базового уровня из различных источников. Пробные варианты ЕГЭ 2022 по математике базовый уровень Инструкция по выполнению работы Экзаменационная работа включает в себя 21 задание. На выполнение работы отводится 3 часа 180 минут. Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Все бланки ЕГЭ заполняются яркими чёрными чернилами.
Формулы по стереометрии для ЕГЭ. Шпаргалка по стереометрии для ЕГЭ
А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете. Для ЕГЭ по математике профиль. К этой теме относятся почти все задачи по стереометрии, предлагавшиеся на ЕГЭ и в различных работах МИОО начиная с 2009–2010 учебного года. : Все необходимые формулы и помощь в решении задач ЕГЭ 2024 по математике профильный уровень. Формулы площадей и объёмов для решения задач по стереометрии.
Все формулы по стереометрии для егэ таблица профиль
Как подготовиться к решению заданий ЕГЭ № 14 по стереометрии | 1С:Репетитор. это задачи по стереометрии, или простыми словами - задачи по геометрии с объёмными фигурами. Собрали в удобном мини-формате все формулы, которые пригодятся при подготовке к ЕГЭ. Самые актуальные шпаргалки по стереометрии на сайте. стереометрия формулы для егэ. Выучить формулы по математике – это еще не все, что надо для успешной сдачи ЕГЭ.
Все формулы для стереометрии для профиля - 85 фото
Шпаргалка ЕГЭ математика профильный уровень геометрия. Геометрические формулы для ЕГЭ. Формулы для 8 задания по геометрии ЕГЭ. Стереометрия шпаргалка для ЕГЭ. Стереометрия 11 класс формулы. Формулы по геометрии 11 класс ЕГЭ стереометрия. Формулы площадей для ЕГЭ профильная математика. Формулы вычисления площадей и объемов геометрических фигур.
Формулы объёмов и площадей фигур для ЕГЭ. Формулы для ЕГЭ профильная математика геометрия. Формулы ЕГЭ математика профильный уровень геометрия. Геометрические формулы для ЕГЭ база математика. Предмет стереометрии. Шпаргалка по стереометрии. Стереометрия чертежи.
Все фигуры стереометрии. Стереометрия ЕГЭ 1 часть формулы. Формулы площадей геометрических фигур 11 класс. Все формулы объемов и площадей фигур для ЕГЭ. Формулы объемов геометрических фигур таблица ЕГЭ. Формулы площади и объема фигур 11 класс. Формулы объёмов фигур 11 класс.
Многогранники формулы площадей и объемов. Формулы геометрии и стереометрии шпаргалка. Формулы площадей для ЕГЭ по математике профильный уровень. Формулы объемов фигур для ЕГЭ шпаргалка. Вся теория по геометрии планиметрия таблица. Основные формулы геометрии таблица. Справочный материал по стереометрии.
Формулы по геометрии для ЕГЭ. Формулы объемов многогранников и тел вращения. Формулы площадей и объемов всех фигур. Все формулы объемов и площадей фигур. Формулы площади и объёма геометрических фигур. Объёмы фигур формулы ЕГЭ математика. Шпаргалка ЕГЭ формулы площадей и объемов стереометрических фигур.
Площади геометрических фигур формулы таблица. Формулы нахождения площадей плоских фигур. Формулы площадей плоских фигур по геометрии. Формулы площадей всех геометрических фигур в таблице. Формулы площадей и объемов фигур. Формулы площадей и объемов геометрических фигур таблица. Формулы объема и площади геометрических фигур для ЕГЭ.
Формулы объемов Призмы и пирамиды. Стереометрия Призма формулы. Формулы площадей поверхности многогранников Призма. Площадь поверхности и объем многогранника.
Ее можно посчитать для квадрата, прямоугольника, параллелограмма, треугольника, ромба, трапеции, круга. Объем присущ трехмерным объектам, таким как куб, шар, параллелепипед, призма, пирамида, конус. Объемные тела условно делят на многогранники состоят из нескольких многоугольников и поверхности вращения есть условная линия, вдоль которой вращается плоская фигура.
На вычисление объема это не влияет.
Объем присущ трехмерным объектам, таким как куб, шар, параллелепипед, призма, пирамида, конус. Объемные тела условно делят на многогранники состоят из нескольких многоугольников и поверхности вращения есть условная линия, вдоль которой вращается плоская фигура. На вычисление объема это не влияет.
В таблицах представлены основные формулы объемов и площадей фигур для ЕГЭ.
Рассмотрим основную теорию. Площадь — величина, которая есть у плоских фигур. Ее можно посчитать для квадрата, прямоугольника, параллелограмма, треугольника, ромба, трапеции, круга. Объем присущ трехмерным объектам, таким как куб, шар, параллелепипед, призма, пирамида, конус.
Егэ математика стереометрия
В них нет ничего сложного, если разобраться с базовыми формулами по нахождению объёма и площади поверхности. Я репетитор и занимаюсь частными индивидуальными занятиями с учениками, чтобы заниматься со мной пиши? Задачи из первой части может решить каждый, а я буду максимально тебе в этом помогать!
Лампы перегорают независимо друг от друга.
Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит. Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6.
Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние два промахнулся. Результат округлите до сотых. Какой долг будет 15-го числа 25-го месяца, если общая сумма выплат после полного погашения кредита составит 691 тысяч рублей?
Найдите всe значения параметра a, при каждом их которых система имеет ровно 3 различных решения. Источники заданий варианта: школа Пифагора, Профиматика, беседы vk. Программа экзамена, как и в прошлые годы, составлена из материалов основных математических дисциплин.
В билетах будут присутствовать и математические, и геометрические, и алгебраические задачи. Структура экзамена Задания ЕГЭ профильной математики разделены на два блока. Поэтому при подготовке к ЕГЭ теорию по математике всегда подкрепляйте решением практических задач.
Как будут распределять баллы Задания части первой КИМов по математике близки к тестам ЕГЭ базового уровня, поэтому высокого балла на них набрать невозможно. Баллы за каждое задание по математике профильного уровня распределились так: Длительность экзамена и правила поведения на ЕГЭ Для выполнения экзаменационной работы отведено 3 часа 55 минут 235 минут. В это время ученик не должен: За подобные действия экзаменующегося могут выдворить из аудитории.
На государственный экзамен по математике разрешено приносить с собой только линейку, остальные материалы вам выдадут непосредственно перед ЕГЭ. Справочные материалы выдаются на месте. Эффективная подготовка — это решение онлайн тестов по математике 2022.
Учите формулы по математике и сдавайте ЕГЭ на максимальные баллы! Группы разного уровня подготовки Группы для обучения подбираются согласно текущему уровню подготовки к ЕГЭ Вашего ребенка Это позволяет сделать обучение максимально эффективным для каждого Полный контроль за процессом обучения Вам предоставляется доступ в облачный личный кабинет с полной информацией о посещаемости и успеваемости ученика,а также домашними заданиями и тестами Уникальный преподавательский коллектив К работе с Вашими детьми допускаются только опытные и харизматичные профессиональные репетиторы и преподаватели ВУЗов, способные зажечь искру любви к предмету Авторские методики обучения и мотивации Система тестов, уникальная аттестация, целеполагание и тьюторская поддержка учеников позволяют увеличить эффективность обучения и мотивировать Вашего ребенка на успех Остались вопросы?
Формулы площадей поверхности многогранников Призма. Площадь поверхности и объем многогранника. Площади поверхности фигур стереометрия.
Формулы объема и площади геометрических фигур для ЕГЭ. Площади фигур стереометрия ЕГЭ. Задания по стереометрии с кубом. Задачи по стереометрии по чертежам. Формулы для задания номер 2 по стереометрии.
Легкие задачи по стереометрии. Формулы объемов многогранников и тел вращения. Формулы площадей и объемов всех фигур. Все формулы объемов и площадей фигур. Формулы площади и объема фигур 11 класс.
Формулы объёмов фигур 11 класс. Многогранники формулы площадей и объемов. Формулы площадей многогранников 10 класс. Многогранники 10 класс формулы. Элементы составных многогранников формулы.
Площадь многогранника формула. Шпора на ЕГЭ по математике профильный уровень геометрия. Формулы для ЕГЭ по математике профильный уровень геометрия. Формулы геометрии ЕГЭ 2021. Формулы площади поверхности Призмы и пирамиды.
Многогранники Призма пирамида. Многогранники пирамида куб Призма. Вся теория по геометрии планиметрия таблица. Основные формулы геометрии таблица. Формулы по геометрии для ЕГЭ.
Формулы площадей поверхности и объёмов всех фигур. Формулы площадей и объемов всех фигур для ЕГЭ. Формулы объёма геометрических фигур таблица. Формулы объёмов всех фигур. Формулы площадей и объемов геометрических фигур таблица.
Объемы фигур формулы таблица шпаргалка 11 класс. Формулы объемов Призмы, пирамиды, цилиндра, конуса и шара. Объёмы фигур формулы таблица. Формулы площади и объема фигур шпаргалка. Шар стереометрия формулы.
Стереометрия 11 класс таблица 11. Геометрия стереометрия формулы тела вращения. Фигуры вписанные стереометрия формулы. Формулы цилиндра ЕГЭ. Объемы тел вращения таблица.
Тела вращения формулы. Формулы цилиндра конуса и шара и сферы. Формулы по геометрии для ОГЭ 9 класс шпаргалка.
Стереометрия: формулы и методы
Время чтения: 4 минуты Формулы для ЕГЭ по профильной математике На ЕГЭ по профильной математике с собой можно взять только черные гелевые ручки и линейку. На экзамене профильного уровня, в отличие от базового, не выдаются справочные материалы — выпускникам не предоставляются формулы, необходимые для решения задач.
В них нет ничего сложного, если разобраться с базовыми формулами по нахождению объёма и площади поверхности. Я репетитор и занимаюсь частными индивидуальными занятиями с учениками, чтобы заниматься со мной пиши?
Задачи из первой части может решить каждый, а я буду максимально тебе в этом помогать!
На чертеже это, например, AF. Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину пирамиды и диагональ основания.
На чертеже это, например, ACE. Еще один стереометрический чертеж с обозначениями для лучшего запоминания на рисунке правильная треугольная пирамида : Если все боковые ребра SA , SB , SC , SD на чертеже ниже пирамиды равны, то: Около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр точка O. Иными словами, высота отрезок SO , опущенная из вершины такой пирамиды на основание ABCD , попадает в центр описанной вокруг основания окружности, то есть в точку пересечения посерединных перпендикуляров основания.
Важно: Также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны. Если боковые грани наклонены к плоскости основания под одним углом углы DMN , DKN , DLN на чертеже ниже равны , то: В основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр точка N. Иными словами, высота отрезок DN , опущенная из вершины такой пирамиды на основание, попадает в центр вписанной в основание окружности, то есть в точку пересечения биссектрис основания.
Высоты боковых граней апофемы равны. Площадь боковой поверхности такой пирамиды равна половине произведения периметра основания на высоту боковой грани апофему. Важно: Также верно и обратное, то есть если в основание пирамиды можно вписать окружность, причем вершина пирамиды проецируется в её центр, то все боковые грани наклонены к плоскости основания под одним углом и высоты боковых граней апофемы равны.
Правильная пирамида Определение: Пирамида называется правильной , если её основанием является правильный многоугольник, а вершина проецируется в центр основания. Тогда она обладает такими свойствами: Все боковые ребра правильной пирамиды равны. Все боковые грани правильной пирамиды наклонены к плоскости основания под одним углом.
Важное замечание: Как видим правильные пирамиды являются одними из тех пирамид к которым относятся свойства, изложенные чуть выше. Действительно, если основание правильной пирамиды — это правильный многоугольник, то центр его вписанной и описанной окружностей совпадают, а вершина правильной пирамиды проецируется именно в этот центр по определению. Однако важно понимать, что не только правильные пирамиды могут обладать свойствами, о которых говорилось выше.
В правильной пирамиде все боковые грани — равные равнобедренные треугольники. В любую правильную пирамиду можно как вписать сферу, так и описать около неё сферу. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Формулы для объема и площади пирамиды Теорема об объеме пирамид, имеющих равные высоты и равные площади оснований. Две пирамиды, имеющие равные высоты и равные площади оснований, имеют равные объемы Вы конечно, наверняка уже знаете формулу для объема пирамиды, ну или видите ее несколькими строчками ниже, и Вам кажется это утверждение очевидным, но на самом деле, если судить «на глаз», то данная теорема не так уж и очевидна см. Это относится кстати и к другим многогранникам и геометрическим фигурам: их внешний вид обманчив, поэтому, действительно — в математике нужно доверять только формулам и правильным расчетам.
Объём пирамиды может быть вычислен по формуле: где: S осн — площадь основания пирамиды, h — высота пирамиды. Боковая поверхность пирамиды равна сумме площадей боковых граней. Для площади боковой поверхности пирамиды можно формально записать такую стереометрическую формулу: где: S бок — площадь боковой поверхности, S 1 , S 2 , S 3 — площади боковых граней.
Полная поверхность пирамиды равна сумме площади боковой поверхности и площади основания: Определения: — простейший многогранник, гранями которого являются четыре треугольника, иными словами, треугольная пирамида. Для тетраэдра любая из его граней может служить основанием. Всего у тетраэдра 4 грани, 4 вершины и 6 рёбер.
Тетраэдр называется правильным , если все его грани — равносторонние треугольники. У правильного тетраэдра: Все ребра правильного тетраэдра равны между собой. Все грани правильного тетраэдра равны между собой.
Периметры, площади, высоты и все остальные элементы всех граней соответственно равны между собой. Из общих формул для объема и площадей пирамиды, а также знаний из планиметрии не сложно получить формулы для объема и площадей правильного тетраэдра а — длина ребра : Определение: При решении задач по стереометрии, пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. В таком случае, это ребро и является высотой пирамиды.
Ниже примеры треугольной и пятиугольной прямоугольных пирамид. На рисунке слева SA — ребро, являющееся одновременно высотой. Усечённая пирамида Определения и свойства: Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.
Фигура, полученная на пересечении секущей плоскости и исходной пирамиды, также называется основанием усеченной пирамиды. Боковые грани усечённой пирамиды являются трапециями. На чертеже это, например, AA 1 B 1 B.
Боковыми ребрами усеченной пирамиды называются части ребер исходной пирамиды, заключенные между основаниями. На чертеже это, например, AA 1. Высотой усеченной пирамиды называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания к плоскости другого основания.
Усеченная пирамида называется правильной , если она является многогранником, который отсекается плоскостью, параллельной основанию правильной пирамиды. Основания правильной усеченной пирамиды — правильные многоугольники. Боковые грани правильной усеченной пирамиды — равнобедренные трапеции.
Апофемой правильной усеченной пирамиды называется высота ее боковой грани. Площадью боковой поверхности усеченной пирамиды называется сумма площадей всех ее боковых граней. Формулы для усеченной пирамиды Объём усечённой пирамиды равен: где: S 1 и S 2 — площади оснований, h — высота усечённой пирамиды.
Однако на практике, удобнее искать объем усеченной пирамиды так: можно достроить усечённую пирамиду до пирамиды, продлив до пересечения боковые рёбра. Тогда объём усечённой пирамиды можно найти, как разность объёмов всей пирамиды и достроенной части. Площадь боковой поверхности также можно искать как разность между площадями боковой поверхности всей пирамиды и достроенной части.
Площадь боковой поверхности правильной усечённой пирамиды равна полупроизведению суммы периметров её оснований и апофемы: где: P 1 и P 2 — периметры оснований правильной усеченной пирамиды, а — длина апофемы. Площадь полной поверхности любой усеченной пирамиды, очевидно, находится как сумма площадей оснований и боковой поверхности: Пирамида и шар сфера Теорема: Около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит вписанный многоугольник то есть многоугольник около которого можно описать сферу. Данное условие является необходимым и достаточным.
Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Замечание: Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу. Однако, список пирамид около которых можно описать сферу не исчерпывается этими типами пирамид.
Тогда точка О — центр описанного шара. Теорема: В пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке необходимое и достаточное условие. Эта точка будет центром сферы.
Замечание: Вы, очевидно, не поняли того, что прочитали строчкой выше. Однако, главное запомнить, что любая правильная пирамида является такой, в которую можно вписать сферу. При этом список пирамид, в которые можно вписать сферу не исчерпывается правильными.
Определение: Биссекторная плоскость делит двугранный угол пополам, а каждая точка биссекторной плоскости равноудалена от граней, образующих двугранный угол. На стереометрическом чертеже ниже изображен шар вписанный в пирамиду или пирамида описанная около шара , при этом точка О — центр вписанного шара. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой необходимое и достаточное условие.
Конус называется описанным около пирамиды , когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые ребра пирамиды равны между собой необходимое и достаточное условие. Важное свойство: Пирамида и цилиндр Цилиндр называется вписанным в пирамиду , если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
Цилиндр называется описанным около пирамиды , если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник необходимое и достаточное условие. Сфера и шар Определения: Сфера — замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы.
Сфера также является телом вращения, образованным при вращении полуокружности вокруг своего диаметра. Радиусом сферы называется отрезок, соединяющий центр сферы с какой-либо точкой сферы. Хордой сферы называется отрезок, соединяющий две точки сферы.
Диаметром сферы называется хорда, проходящая через ее центр. Центр сферы делит любой его диаметр на два равных отрезка. Любой диаметр сферы радиусом R равен 2R.
Шар — геометрическое тело; совокупность всех точек пространства, которые находятся на расстоянии не большем заданного от некоторого центра. Это расстояние называется радиусом шара. Шар образуется вращением полукруга около его неподвижного диаметра.
Обратите внимание: поверхность или граница шара называется сферой. Можно дать и такое определение шара: шаром называется геометрическое тело, состоящее из сферы и части пространства, ограниченного этой сферой. Радиусом , хордой и диаметром шара называются радиус, хорда и диаметр сферы, которая является границей данного шара.
Разница между шаром и сферой аналогична разнице между кругом и окружностью. Окружность — это линия, а круг — это ещё и все точки внутри этой линии. Сфера — это оболочка, а шар — это ещё и все точки внутри этой оболочки.
Плоскость, проходящая через центр сферы шара , называется диаметральной плоскостью. Сечение сферы шара диаметральной плоскостью называется большой окружностью большим кругом. Теоремы: Теорема 1 о сечении сферы плоскостью.
Сечение сферы плоскостью есть окружность. Заметим, что утверждение теоремы остается верным и в случае, если плоскость проходит через центр сферы. Теорема 2 о сечении шара плоскостью.
Сечение шара плоскостью есть круг, а основание перпендикуляра, проведенного из центра шара к плоскости сечения, есть центр круга, полученного в сечении. Наибольший круг, из числа тех, которые можно получить в сечении данного шара плоскостью, лежит в сечении, проходящем через центр шара О. Он то и называется большим кругом.
Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара AB. Этот диаметр является и диаметром пересекающихся больших кругов.
Через две точки сферической поверхности, расположенные на концах одного диаметра на рис. A и B , можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов.
Определения: Касательной плоскостью к сфере называется плоскость, имеющая со сферой только одну общую точку, а их общая точка называется точкой касания плоскости и сферы. Касательной плоскостью к шару называется касательная плоскость к сфере, которая является границей этого шара. Любая прямая, лежащая в касательной плоскости сферы шара и проходящая через точку касания, называется касательной прямой к сфере шару.
По определению касательная плоскость имеет со сферой только одну общую точку, следовательно, касательная прямая также имеет со сферой только одну общую точку — точку касания. Теоремы: Теорема 1 признак касательной плоскости к сфере.
Допускается использование гелевой или капиллярной ручки. При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
Формулы по стереометрии для ЕГЭ
При решении геометрических задач гиа и егэ по математике, например, № 4, 7, необходимо знать следующие формулы для нахождения площадей фигур. Формулы объема стереометрия. Стереометрия ЕГЭ профиль. Стереометрия 11 класс таблица. Все формулы по стереометрии для ЕГЭ. Стереометрия, часть С. Теория к заданию 14 из ЕГЭ по математике (профильной). Большинство задач по стереометрии в части В ЕГЭ по математике рассчитаны на знание и применение формул.
Тригонометрия на ЕГЭ: 5 формул для базы и профиля
Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ. Математика ЕГЭ Стереометрия 2. 2. Введение Стереометрия ©2023 ООО «Юмакс». Работа по теме: 8. Основные формулы стереометрии — подборка шпаргалок по математике. Тригонометрия на ЕГЭ: основные проблемы темы Задания по тригонометрии в базе и профиле на ЕГЭ 5 формул тригонометрии: теория для ЕГЭ Что еще пригодится вам для тригонометрии на ЕГЭ. В главе «Стереометрия, часть 1» приведены все формулы, по которым вы числяются объемы и площади поверхности трехмерных тел.
Подборка основных геометрических формул для и егэ по математике
Справочные материалы по ге. Все формулы для ЕГЭ по математике профильный шпаргалка. Формулы ЕГЭ математика профильный уровень. Формулы для ЕГЭ по математике база 2022. Формулы для ЕГЭ по математике профильный уровень 2022. Формулы площадей и объемов всех фигур. Таблица площадей и объемов геометрических фигур. Формулы площадей поверхности и объёмов всех фигур.
Формулы площадей и объемов всех фигур для ЕГЭ. Шпоры по математике школа Пифагора. Школа Пифагора ЕГЭ шпоры. Шпаргалка по геометрии школа Пифагора. ОГЭ математика площади фигур формулы. Площади фигур в ОГЭ справочные материалы. Основные формулы по геометрии для ОГЭ.
Справочный материал для ОГЭ по математике 2023 геометрия. Шпаргалки для ЕГЭ по профильной математике 2022. Формулы для профильной математики ЕГЭ 2021. Шпаргалки ЕГЭ математика база 2022. Основные формулы геометрии таблица. Геометрия 10 класс основные теоремы и формулы. Основные формулы планиметрии и стереометрии.
Формулы стереометрии для ЕГЭ. Справочный материал ЕГЭ математика профиль. Справочные материалы. Справочные материалы тригонометрия. Справочный материал профиль. Стереометрия 11 класс таблица. Формулы для ЕГЭ по математике геометрия стереометрия.
Стереометрия формулы для ЕГЭ профиль пирамида. Теория по стереометрии для ЕГЭ. Теоремы по геометрии 7-8 класс шпаргалка. Формулы по планиметрии шпаргалка. Шпаргалка по формулам планиметрии на ЕГЭ. Стереометрия 10 класс шпаргалка ЕГЭ. Формулы по математике для ЕГЭ база 2021.
Справочные материалы ОГЭ математика 9 класс 2022. Справочный материал ОГЭ математика 9 класс 2022. Справочные материалы профильная математика ЕГЭ. Площади планиметрия для ЕГЭ. Площадь треугольника формула. Шпаргалка по стереометрии ЕГЭ профиль. Формулы по стереометрии.
Ыормулыпо стереометрии. Стереометрия тела вращения формулы. Формулы объема тел вращения: цилиндра, конуса и шара. Формулы объема по стереометрии. Формулы геометрии для ЕГЭ по математике профильный. Шпоры ЕГЭ профильная математика геометрия. ЕГЭ математика база справочные материалы на экзамене.
Справочные материалы 9 класс ОГЭ математика. Планиметрия 11 класс формулы. Формулы планиметрии для ЕГЭ шпаргалка. Формулы по геометрии для ЕГЭ стереометрия. Формулы стереометрии таблица для ЕГЭ. Основные формулы. Ключевые математические формулы.
Основные формулы математики. Треугольники ЕГЭ. Равнобедренный треугольник формулы ЕГЭ. Формулы для треугольника ЕГЭ. Треугольник теория ЕГЭ. Стереометрия Призма формулы. Формулы Призмы и Куба.
Формулы площадей поверхности многогранников Призма. Формула вычисления площади Призмы. Таблица с площадями всех фигур.
Площадь основания шарового сегмента: Площадь внешней поверхности шарового сегмента: Площадь полной поверхности шарового сегмента: Объем шарового сегмента: В стереометрии шаровым слоем называется часть шара, заключенная между двумя параллельными плоскостями. Объем шарового слоя проще всего искать как разность объемов двух шаровых сегментов. В стереометрии шаровым сектором называется часть шара, состоящая из шарового сегмента и конуса с вершиной в центре шара и основанием, совпадающим с основанием шарового сегмента. Здесь подразумевается, что шаровой сегмент меньше чем пол шара. Объем шарового сектора вычисляется по формуле: Определения: В некоторой плоскости рассмотрим окружность с центром O и радиусом R. Через каждую точку окружности проведем прямую, перпендикулярную плоскости окружности.
Цилиндрической поверхностью называется фигура, образованная этими прямыми, а сами прямые называются образующими цилиндрической поверхности. Все образующие цилиндрической поверхности параллельны друг другу, так как они перпендикулярны плоскости окружности. Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые перпендикулярны образующим цилиндрической поверхности. Неформально, можно воспринимать цилиндр как прямую призму, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности цилиндра. Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между секущими плоскостями, которые перпендикулярны ее образующим, а части круги , отсекаемые цилиндрической поверхностью на параллельных плоскостях, называются основаниями цилиндра. Основания цилиндра — это два равных круга. Образующей цилиндра называется отрезок или длина этого отрезка образующей цилиндрической поверхности, расположенный между параллельными плоскостями, в которых лежат основания цилиндра. Все образующие цилиндра параллельны и равны между собой, а также перпендикулярны основаниям.
Осью цилиндра называется отрезок, соединяющий центры кругов, являющихся основаниями цилиндра. Высотой цилиндра называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания цилиндра к плоскости другого основания. В цилиндре высота равна образующей. Радиусом цилиндра называется радиус его оснований. Цилиндр называется равносторонним , если его высота равна диаметру основания. Если секущая плоскость параллельна оси цилиндра, то сечением цилиндра служит прямоугольник, две стороны которого — образующие, а две другие — хорды оснований цилиндра. Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось. Осевое сечение цилиндра — прямоугольник, две стороны которого есть образующие цилиндра, а две другие — диаметры его оснований. Если секущая плоскость, перпендикулярна оси цилиндра, то в сечении образуется круг равный основаниям.
На чертеже ниже: слева — осевое сечение; в центре — сечение параллельное оси цилиндра; справа — сечение параллельное основанию цилиндра. Цилиндр и призма Призма называется вписанной в цилиндр , если ее основания вписаны в основания цилиндра. В этом случае цилиндр называется описанным около призмы. Высота призмы и высота цилиндра в этом случае будут равны. Все боковые ребра призмы будут принадлежать боковой поверхности цилиндра и совпадать с его образующими. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать в такой цилиндр можно также только прямую призму. Примеры: Призма называется описанной около цилиндра , если ее основания описаны около оснований цилиндра. В этом случае цилиндр называется вписанным в призму. Высота призмы и высота цилиндра в этом случае также будут равны.
Все боковые ребра призмы будут параллельны образующим цилиндра. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать такой цилиндр можно только в прямую призму. Примеры: Цилиндр и сфера Сфера шар называется вписанной в цилиндр , если она касается оснований цилиндра и каждой его образующей. При этом цилиндр называется описанным около сферы шара. Сферу можно вписать в цилиндр, только если это равносторонний цилиндр, то есть диаметр его основания и высота равны между собой. Центром вписанной сферы будет служить середина оси цилиндра, а радиус этой сферы будет совпадать с радиусом цилиндра. Пример: Цилиндр называется вписанным в сферу , если окружности оснований цилиндра являются сечениями сферы. Цилиндр называется вписанным в шар, если основания цилиндра являются сечениями шара. При этом шар сфера называется описанным около цилиндра.
Вокруг любого цилиндра можно описать сферу. Центром описанной сферы также будет служить середина оси цилиндра. Пример: На основе теоремы Пифагора легко доказать следующую формулу, связывающую радиус описанной сферы R , высоту цилиндра h и радиус цилиндра r : Объем и площадь боковой и полной поверхностей цилиндра Теорема 1 о площади боковой поверхности цилиндра : Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту: где: R — радиус основания цилиндра, h — его высота. Эта формула легко выводится или доказывается на основе формулы для площади боковой поверхности прямой призмы. Площадью полной поверхности цилиндра , как обычно в стереометрии, называется сумма площадей боковой поверхности и двух оснований. Площадь каждого основания цилиндра то есть просто площадь круга вычисляется по формуле: Следовательно, площадь полной поверхности цилиндра S полн. Эта формула также легко выводится доказывается на основе формулы для объема призмы. Теорема 3 Архимеда : Объём шара в полтора раза меньше объёма, описанного вокруг него цилиндра, а площадь поверхности такого шара в полтора раза меньше площади полной поверхности того же цилиндра: Конус Определения: Конусом точнее, круговым конусом называется тело, которое состоит из круга называемого основанием конуса , точки, не лежащей в плоскости этого круга называемой вершиной конуса и всех возможных отрезков, соединяющих вершину конуса с точками основания. Неформально, можно воспринимать конус как правильную пирамиду, у которой в основании круг.
Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности конуса. Отрезки или их длины , соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Все образующие прямого кругового конуса равны между собой. Поверхность конуса состоит из основания конуса круга и боковой поверхности составленной из всех возможных образующих. Объединение образующих конуса называется образующей или боковой поверхностью конуса. Образующая поверхность конуса является конической поверхностью. Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе, как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.
При этом боковая поверхность конуса образуется вращением гипотенузы, а основание — вращением катета, не являющимся осью. Радиусом конуса называется радиус его основания. Высотой конуса называется перпендикуляр или его длина , опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту, то есть прямая проходящая через центр основания и вершину. Если секущая плоскость проходит через ось конуса, то сечение равнобедренный треугольник, основание которого — диаметр основания конуса, а боковые стороны — образующие конуса. Такое сечение называется осевым. Если секущая плоскость проходит через внутреннюю точку высоты конуса и перпендикулярна ей, то сечением конуса является круг, центр которого есть точка пересечения высоты и этой плоскости. Высота h , радиус R и длина образующей l прямого кругового конуса удовлетворяют очевидному соотношению: Объем и площадь боковой и полной поверхностей конуса Теорема 1 о площади боковой поверхности конуса.
Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую: где: R — радиус основания конуса, l — длина образующей конуса. Эта формула легко выводится или доказывается на основе формулы для площади боковой поверхности правильной пирамиды. Площадью полной поверхности конуса называется сумма площади боковой поверхности и площади основания. Следовательно, площадь полной поверхности конуса S полн. Объем конуса равен одной трети произведения площади основания на высоту: где: R — радиус основания конуса, h — его высота. Эта формула также легко выводится доказывается на основе формулы для объема пирамиды. Определения: Плоскость, параллельная основанию конуса и пересекающая конус, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом. Основание исходного конуса и круг, получающийся в сечении этого конуса плоскостью, называются основаниями , а отрезок, соединяющий их центры - высотой усеченного конуса.
Прямая проходящая через высоту усеченного конуса то есть через центры его оснований является его осью. Часть боковой поверхности конуса, ограничивающая усеченный конус, называется его боковой поверхностью , а отрезки образующих конуса, расположенные между основаниями усеченного конуса, называются его образующими. Все образующие усеченного конуса равны между собой. Формулы для усеченного конуса: Объем усеченного конуса равен разности объемов полного конуса и конуса, отсекаемого плоскостью, параллельной основанию конуса. Однако на практике, всё же удобнее искать объем усеченного конуса как разность объёмов исходного конуса и отсеченной части. Площадь боковой поверхности усеченного конуса также можно искать как разность между площадями боковой поверхности исходного конуса и отсеченной части. Действительно, площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей полного конуса и конуса, отсекаемого плоскостью, параллельной основанию конуса. Площадь полной поверхности усеченного конуса , очевидно, находится как сумма площадей оснований и боковой поверхности: Обратите внимание, что формулы для объема и площади боковой поверхности усеченного конуса получены на основе формул для аналогичных характеристик правильной усеченной пирамиды. Конус и сфера Конус называется вписанным в сферу шар , если его вершина принадлежит сфере границе шара , а окружность основания само основание является сечением сферы шара.
При этом сфера шар называется описанной около конуса. Вокруг прямого кругового конуса всегда можно описать сферу. Центр описанной сферы будет лежать на прямой содержащей высоту конуса, а радиус этой сферы будет равен радиусу окружности, описанной около осевого сечения конуса это сечение является равнобедренным треугольником. Примеры: Сфера шар называется вписанной в конус , если сфера шар касается основания конуса и каждой его образующей. При этом конус называется описанным около сферы шара. В прямой круговой конус всегда можно вписать сферу. Её центр будет лежать на высоте конуса, а радиус вписанной сферы будет равен радиусу окружности, вписанной в осевое сечение конуса это сечение является равнобедренным треугольником. Примеры: Конус и пирамида Конус называется вписанным в пирамиду пирамида — описанной около конуса , если основание конуса вписано в основание пирамиды, а вершины конуса и пирамиды совпадают. Пирамида называется вписанной в конус конус — описанным около пирамиды , если ее основание вписано в основание конуса, а боковые ребра являются образующими конуса.
Высоты у таких конусов и пирамид равны между собой. Примечание: Подробнее о том, как в стереометрии конус вписывается в пирамиду или описывается около пирамиды уже говорилось в Как успешно подготовиться к ЦТ по физике и математике? Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия: Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ.
После этого Вам останется подумать только над самыми сложными задачами. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки. При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются.
В тетраэдр можно вписать сферу, радиус вписанной сферы находим по формуле, приведенной ниже. Найти объем каждого параллелепипеда. Задачи на нахождение площади поверхности составного многогранника.
Найдите площадь поверхности многогранника, изображённого на рисунке все двугранные углы прямые. Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого: Далее подставим все данные в формулу и найдем площадь поверхности многогранника — Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность. Задачи на нахождение расстояния между точками составного многогранника.
В данных задачах приведены составные многогранники, у которых двугранные углы прямые.