Новости из чего состоит водородная бомба

Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета. это все те же РДС-6с. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Эксперты называют В61-12 одной из наиболее точных термоядерных бомб, а сама она использует корректировку при помощи GPS, где для повышения точности задействуются хвостовые рули. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца.

ВОДОРОДНАЯ БОМБА

В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова». Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз. Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект.

Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий. В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом «лучевая имплозия». Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.

Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы. США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой.

Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию.

Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Две сверхдержавы несколько лет спорили о том, кто станет первым обладателем нового вида разрушительного оружия. В Москве хотели достичь ядерного паритета с Вашингтоном и вкладывали в гонку вооружений огромные средства. Впрочем, работы по созданию водородной бомбы начались не благодаря щедрому финансированию, а из-за донесений законспирированной агентуры в Америке. В 1945 года в Кремле узнали о том, что в США идет подготовка к созданию нового оружия.

Это была сверхбомба, проект которой получил название Super. Он передал Советскому Союзу конкретные сведения, которые касались секретных американских разработок сверхбомбы. К 1950 году проект Super был выброшен в корзину, так как западным ученым стало ясно, что такая схема нового оружия не может быть реализована. Руководителем этой программы был Эдвард Теллер. В 1946 году Клаус Фукс и Джон развили идеи проекта Super и запатентовали собственную систему.

Принципиально новым в ней был принцип радиоактивной имплозии. В СССР эту схему начали рассматривать несколько позже - в 1948 году. В целом можно сказать, что на стартовом этапе полностью базировался на американских информации, полученной разведкой. Но, продолжая исследования уже на основе этих материалов, советские ученые заметно опередили своих западных коллег, то позволило СССР получить сначала первую, а потом и самую мощную термоядерную бомбу. В этом документе рассматривалась возможность использования бомбы с дейтерием.

Данное выступление стало началом советской ядерной программы. В 1946 году теоретические исследования тали проводиться в Институте химической физики. Первые результаты этой работы были обсуждены на одном из заседаний Научно-технического совета в Первом главном управлении. Еще через два года Лаврентий Берия поручил Курчатову и Харитону проанализировать материалы о системе фон Неймана, которые были доставлены в Советский Союз благодаря законспирированной агентуре на западе. Данные из этих документов дали дополнительный импульс исследованиям, благодаря которым родился проект РДС-6.

Подрыв произошел на атолле Энивотек, в Тихом океане. Устройство не могло использоваться в качестве оружия, так как производился с помощью дейтерия. Кроме того, оно отличалось огромным весом и габаритами. Такой снаряд просто нельзя было сбросить с самолета. Испытание первой водородной бомбы было проведено советскими учеными.

После того как в США узнали об успешном использовании РДС-6с, стало ясно что необходимо как можно быстрее сократить отставание от русских в гонке вооружений. Американское испытание прошло 1 марта 1954 года. В качестве полигона был выбран атолл Бикини на Маршалловых островах. Тихоокеанские архипелаги выбирались не случайно. Здесь почти не было населения а те немногие люди, которые жили на близлежащих островах, были выселена накануне эксперимента.

Самый разрушительный взрыв водородной бомбы американцев стал известен как «Кастл Браво». Мощность заряда оказалась в 2,5 раза выше предполагаемой. Взрыв привел к радиационному заражению значительной площади множества островов и Тихого океана , что привело к скандалу и пересмотру ядерной программы. План был написан выдающимся физиком Андреем Сахаровым. Согласно этому решению, группа ученых под руководством Игоря Тамма отправилась в закрытый Арзамас-16.

Специально для этого грандиозного проекта был подготовлен Семипалатинский полигон. Перед тем как началось испытание водородной бомбы, там были установлены многочисленные измерительные, киносъемочные и регистрирующие приборы. Кроме того, по поручению ученых там появились почти две тысячи индикаторов. Область, которую затронуло испытание водородной бомбы, включала в себя 190 сооружений. Семипалатинский эксперимент был уникальным не только из-за нового вида оружия.

Использовались уникальные заборники, предназначенные для химических и радиоактивных проб. Их могла открыть только мощная ударная волна. Регистрирующие и киносъемочные приборы были установлены в специально подготовленных укрепленных сооружениях на поверхности и в подземных бункерах. Он получил название Alarm Clock. Первоначально проект этого устройства был предложен как альтернатива Super.

В апреле 1947 года в лаборатории в Лос-Аламосе началась целая серия экспериментов, предназначенная для исследования природы термоядерных принципов. От Alarm Clock ученые ожидали наибольшего энерговыделения. Осенью Теллер решил использовать в качестве горючего для устройства дейтерид лития. Исследователи еще не использовали это вещество, но ожидали, что оно позволит повысить эффективность Интересно, что Теллер уже тогда отмечал в своих служебных записках зависимость ядерной программы от дальнейшего развития компьютеров. Эта техника была необходима ученым для более точных и сложных расчетов.

Alarm Clock и РДС-6с имели много общего, но многим и отличались. Американский вариант не был столь практичным как советский из-за своей величины. Большие размеры он унаследовал от проекта Super. В конце концов, американцам пришлось отказаться от этой разработки. Последние исследования прошли в 1954 году, после чего стало ясно, что проект нерентабелен.

Взрыв первой термоядерной бомбы Первое в человеческой истории испытание водородной бомбы произошло 12 августа 1953 года. Утром на горизонте появилась ярчайшая вспышка, которая слепила даже через защитные очки. Взрыв РДС-6с оказался в 20 раз мощнее атомной бомбы. Эксперимент был признан удачным. Ученые смогли достичь важного технологического прорыва.

Впервые в качестве горючего был использован гидрид лития. В радиусе 4 километров от эпицентра взрыва волной уничтожило все постройки. Это разрушительное оружие было не только самым мощным. Важным достоинством бомбы являлась ее компактность. Снаряд помещался в бомбардировщик Ту-16.

Именно поэтому звезды не гаснут, а взрыв водородной бомбы обладает такой разрушительной силой. Ученые скопировали эту реакцию с использованием жидких изотопов водорода — дейтерия и трития, что и дало название "водородная бомба". В последствии стал использоваться дейтерид лития-6, твердое вещество, соединение дейтерия и изотопа лития, которое по своим химическим свойствам является аналогом водорода. Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более "чистым", чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд. А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались "слойками". Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу. Почему при взрыве образуется "гриб"? На самом деле облако грибовидной формы — обыкновенное физическое явление.

Такие облака образуются при обычных взрывах достаточной мощности, при извержениях вулканов, сильных пожарах и падениях метеоритов. Горячий воздух всегда поднимается выше холодного, однако тут его нагрев происходит настолько быстро и так мощно, что он видимым столбом поднимается вверх, закручивается в кольцеобразный вихрь и тянет за собой "ножку" — столб пыли и дыма с поверхности земли.

Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Харитоном ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий. В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объёмах, повторив таким образом схему Теллера — Улама. Следующий большой шаг был предложен и развит Франк-Каменецким , Трутневым , Сахаровым и Зельдовичем в 1953 году.

А именно, был выполнен «Проект 49», предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, то есть была разработана идея радиационной имплозии. Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 58 мегатонн «мощного» изделия [12] , доставленная бомбардировщиком Ту-95. Однако такой вариант отвергли, так как он бы привёл к сильнейшему загрязнению полигона осколками деления, и урановая оболочка была заменена на свинцовую [8]. Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле.

Великобритания[ править править код ] В Великобритании разработки термоядерного оружия были начаты в 1954 году в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний , что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии. Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации. В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» Операция Схватка.

Первым под наименованием «Short Granite» Хрупкий Гранит было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства. В ходе испытания «Orange Herald» Оранжевый вестник была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных не термоядерных бомб. Почти все свидетели испытаний включая экипаж самолёта, который её сбросил считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в её состав входил заряд плутония массой 117 килограммов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов.

Пилот Френсис Пауэрс U. Air Force photo , by commons. Интересы США и Страны Советов расходились в процессе деколонизации Африки, германского мирного урегулирования и прочего. К тому же в 1962 году на отношения между державами повлиял Карибский кризис. Огненное облако взрыва РДС-6с ССО В этих обстоятельствах СССР была необходима своеобразная гарантия защиты: строительство ядерных баз, усовершенствование ядерных боеприпасов и разработка стратегических бомбардировщиков. Мощнейший арсенал, с которым Советский Союз вступил в новое десятилетие, стал сдерживающим фактором для Запада. Прорыв в науке, совершенный советскими учеными, которые создали первую в мире водородную бомбу, позволил избежать новых военных конфликтов. На основе исследований ученых разработка бомбы началась по двум направлениям. Первый — «слойка», представляющая собой атомный заряд, который окружен несколькими слоями легких и тяжелых элементов.

Водородная (термоядерная) бомба: испытания оружия массового поражения

В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Момент взрыва водородной бомбы в акватории Тихого океана. РИА Новости. Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов. Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития.

60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США

Иллюстрация взрыва водородной бомбы После взрыва в Хиросиме и Нагасаки, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Конструкция бомбы состояла из чередующихся сферических слоев делящихся материалов и термоядерного горючего (дейтерий, тритий). Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера.

«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия

Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд. Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой — сильным ядерным взаимодействием. Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент. Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Большинство атомных ядер стабильны, но некоторые из них неустойчивы радиоактивны.

Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом. Бета-распад: нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии — гамма-луч. Именно последний тип распада используется в ядерной бомбе.

Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию, которая высвобождает колоссальное количество энергии. Из чего делают ядерные бомбы? Их могут делать из урана-235 и плутония-239. Наиболее распространенный 238U не поддерживает цепную реакцию: на это способен лишь 235U. Поэтому уран приходится искусственно обогащать. Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235U.

Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию — но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238U. Как измеряется их мощность? Она измеряется в килотоннах кт и мегатоннах Мт. Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.

Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн. Кто создал ядерное оружие? Американский физик Роберт Оппенгеймер и генерал Лесли Гровс В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы.

Огненный шар при взрыве превысил радиус четыре километра, достичь поверхности земли ему помешала мощная отраженная ударная волна, отбросившая огненный шар от земли. Огромное облако, образовавшееся в результате взрыва, достигло высоты 67 километров, а диаметр купола из раскаленных продуктов — 20 километров. Взрыв был такой силы, что сейсмическая волна в земной коре, порожденная ударной волной, три раза обошла вокруг Земли. Вспышка была видна на расстоянии более 1000 километров. В брошенном поселке, расположенном на расстоянии 400 километров от эпицентра, были вырваны деревья, выбиты стекла и снесены крыши домов. Ударной волной самолет-носитель, который к тому времени находился на расстоянии 45 километров от точки сброса, скинуло до высоты 8000 метров, и в течение некоторого времени после взрыва Ту-95В был неуправляем. Экипаж получил некоторую дозу радиации. За счет ионизации, на 40 мин была потеряна связь с Ту-95В и Ту-16. Что случилось с самолетами и экипажами, все это время никто не знал. Через какое-то время оба самолета вернулись на базу, на фюзеляже Ту-95В виднелись подпалы. Фото: defence. Участники испытаний прибыли в точку, над которой произошел термоядерный взрыв, уже через два часа; уровень радиации в этом месте большой опасности не представлял. В этом сказались конструктивные особенности советской бомбы, а также то, что взрыв произошел на достаточно большом удалении от поверхности. По итогам самолетных и наземных измерений энерговыделение взрыва было оценено в 50 мегатонн тротилового эквивалента, что совпало с ожидаемым по расчетам значением. Испытание 30 октября 1961 года показало, что разработки в области ядерного оружия могут быстро перешагнуть критический предел. Основной целью, которая ставилась и была достигнута этим испытанием, стала демонстрация возможности создания СССР неограниченных по мощности термоядерных зарядов. Данное событие сыграло ключевую роль в установлении ядерного паритета в мире и предотвращении использования атомного оружия. Материал подготовлен на основе информации РИА Новости и открытых источников МОСКВА, РИА Новости 12 Оригинал Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала. Ученый и гуманист Судьба Андрея Сахарова была исключительной: он вошел в историю дважды, как великий ученый и не менее великий политик. Обычная двухкомнатная квартира в Нижнем Новгороде, где жил в ссылке опальный академик, превращена в музей. По словам его сотрудников, посетителей много, но гостей, особенно молодых, больше интересует создание водородной бомбы, чем Сахаров-правозащитник. Советская пропаганда любила обвинять диссидентов, помимо прочего, и в том, что они-де ничтожества и неудачники, ищущие дешевой популярности. Про светило мировой физики, трижды Героя Социалистического Труда, осыпанного всеми мыслимыми благами, этого нельзя было сказать даже при сильном желании. По словам самого Сахарова, в молодости он был бесконечно далек от политики и думал только о воплощении научных идей. Правообладатель иллюстрации RIA Novosti Image caption Участие в создании водородной бомбы побудило Андрея Сахарова задуматься о мирном сосуществовании и интеллектуальной свободе Его диссидентство началось с банкета по поводу очередного испытания в Семипалатинске. Сахаров предложил тост «за то, чтобы наши «изделия» всегда успешно взрывались над полигонами и никогда над городами». Повисло неловкое молчание, словно он сморозил непристойность. Потом старший по званию из военных маршал артиллерии Митрофан Неделин рассказал анекдот: «Лежит старуха на печи, а дед молится перед образами: «Господи, укрепи и направь! Бабка подает голос: «Ты, старый, молись только об укреплении, а направить я и сама сумею! Тогда, вспоминал Сахаров, он и ужаснулся тому, с кем имеет дело. Читайте также: «Петр Великий» станет «Варягом», если нападет на «Нимитц» Последней каплей для властей стала критика Сахаровым советского вторжения в Афганистан. Из всех регалий у него осталось только звание академика. По уставу, исключить человека из Академии могло только общее собрание, причем тайным голосованием. Даже несколько «белых шаров» выглядели бы как оппозиция советской власти, и политбюро предпочло не связываться.

Устройство, которое, наконец, использовалось в успешном испытании 1952 года, основывалось на этом радиационном взрыве в более продвинутой форме, разработанном Эдвардом Теллером и Станиславом Уламом. Это знаменитая двухступенчатая «конфигурация Теллера-Улама», проиллюстрированная на прилагаемой диаграмме. Он стал своего рода моделью для более позднего развития термоядерного синтеза с лазерным управлением. Конфигурация Теллера-Улама слева. Первое испытание водородной бомбы «Айви Майк» Избавляемся от триггера деления Учитывая успех водородной бомбы в высвобождении большого количества термоядерной энергии, естественно спросить, в какой степени термоядерные взрывы можно уменьшить до такой степени, что они могут быть использованы для коммерческого производства электроэнергии. Сам процесс термоядерного синтеза не создает внутренних препятствий для миниатюризации: не существует нижнего предела количества топлива, которое может быть использовано для обеспечения «микровзрыва» термоядерного синтеза. А вот первая ступень водородной бомбы не может быть произвольно уменьшена, по крайней мере, каким-либо прямым образом, потому что самоподдерживающаяся реакция деления требует определенной минимальной критической массы, что приводит к слишком сильному взрыву. Даже если бы мы могли производить микровзрывы деления, то они все равно генерировали бы значительную радиоактивность, предотвращение которойкак раз и является главной мотивацией для достижения термоядерного синтеза. Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. Введите лазер Одно из самых полезных свойств лазеров заключается в том, что лазерный луч может быть сфокусирован до крошечного пятна, сравнимого по размеру с длиной световой волны. Концентрация энергии луча таким образом позволяет достичь очень высоких интенсивностей. Коммерчески доступны лазерные системы, которые могут мгновенно испарять любой известный материал. Каков предел этой возможности? Можно ли достичь температуры в диапазоне 100 миллионов градусов, необходимых для получения ядерной реакции синтеза? Ответ положительный. Уже в 1968 году — всего через восемь лет после изобретения первого лазера — группа Николая Басова из Физического института им. Лебедева в СССР сообщила о первом наблюдении термоядерных реакций, запускаемых лазерным облучением мишени из гидрида лития. Советские результаты были быстро повторены в лабораториях Франции и США. В США Джон Наколлс думал в некотором роде параллельным образом о том, как миниатюризировать термоядерные взрывы до такой степени, чтобы их можно было вызвать без использования атомной бомбы в качестве «запала». Нобелевский лауреат Николай Геннадьевич Басов слева — автор идеи 1961 г. Джон Наколлс справа и Джон Эммет, пионеры в области лазерного синтеза в США Основной подход к лазерному синтезу, появившийся после первоначальных предложений Басова и Наколлса, основывается на том же принципе радиационного взрыва, который использовался в водородной бомбе Теллера-Улама. Мы бомбардируем сферическую топливную таблетку со всех сторон одновременными лазерными импульсами.

Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва — это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи , включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, то есть не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека. Имея те же поражающие факторы, что и у ядерного оружия , термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления. Общее описание Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество , которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6 Li - единственный промышленный источник получения трития: В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру порядка 50 млн градусов , в водородной бомбе сначала взрывается небольшая по мощности атомная бомба. Взрыв сопровождается резким ростом температуры, электромагнитным излучением , а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий. Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию 234 , которая и дает основное выделение энергии при взрыве водородной термоядерной бомбы. Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности. Дополнительным поражающим фактором является нейтронное излучение , возникающее в момент взрыва водородной бомбы. Устройство термоядерного боеприпаса Термоядерные боеприпасы существуют как в виде авиационных бомб водородная или термоядерная бомба , так и боеголовок для баллистических и крылатых ракет. История СССР Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза - дейтерида лития в смеси с тритием «первая идея Сахарова». Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз. Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом - инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа Джозефа Сталина «Дядя Джо». Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн. После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий. В конце 1953 года физик Виктор Давиденко предложил располагать первичный деление и вторичный синтез заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом «лучевая имплозия». Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов. Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы. США Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой.

Презентация по физике на тему: "Термоядерные реакции. Водородная бомба"

Испытание этой термоядерной бомбы стало ключевым фактором, позволившим Советскому Союзу обеспечить ядерно-оружейный паритет с США. Водородная бомба Термоядерное оружие (она же водородная бомба) — тип ядерного, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Это достигается помещением в бомбу специального твердого соединения — дейтерида лития, который состоит из лития-6 и водорода-2.

Объективные проблемы

  • Объективные проблемы
  • Термоядерное оружие: Как устроена водородная бомба
  • Принцип работы водородной бомбы
  • Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы

Последствия взрыва водородной бомбы

Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. Термоя́дерное ору́жие — вид ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые. История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера. История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера.

«Настоящая водородная» (к 55-летию испытаний термоядерного заряда РДС-37)

Термоядерное оружие (водородные бомбы) предусматривает использование энергии неуправляемой реакции ядерного синтеза, то есть преобразования легких элементов в более тяжелые (например, двух атомов "тяжелого водорода", дейтерия, в один атом гелия). неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. Полностью же на использование твёрдого термоядерного горючего советские разработчики перешли только в водородной бомбе, взорванной в 1955 году. Термоядерную бомбу иначе еще называют водородной бомбой.

Похожие новости:

Оцените статью
Добавить комментарий