В журнале Developmental Cell опубликован материал о сенсационном открытии ученых из Кембриджского университета (UC), которые успешно вернули клетки злокачественной опухоли нервной системы, нейробластомы, в нормальное состояние. Правильнее говорить «опухоли головного мозга и центральной нервной системы». Онколог Ирина Олейникова из ФНКЦ ФМБА назвала 7 часто встречающихся вирусов, которые могут спровоцировать развитие рака.
Нервная система становится целью для борьбы с раком: новые открытия ученых
Нейробластомы и ганглионейробластомы центральной нервной системы (ЦНС-НБ и ЦНС-ГНБ) являются первичными редкими и мало изученными злокачественными опухолями у взрослых пациентов. Из-за длительной активации симпатической нервной системы происходит воздействие на бета-2-адренорецепторы, запускающее деградацию белка Р53, и активация фактора роста сосудов. Главная/ Все клинические рекомендации/Первичные опухоли центральной нервной системы. Онколог Ирина Олейникова из ФНКЦ ФМБА назвала 7 часто встречающихся вирусов, которые могут спровоцировать развитие рака. В нашей системе МРТ премиум-класса с индукцией 3,0 Тл и апертурой 70 см используются интеллектуальные технологии, позволяющие получать снимки наивысшего качества.
Микробиом, нервная система и канцерогенез
Операция может продлиться несколько часов: к опухоли сложно подобраться. Это опухоль центральной нервной системы, размером примерно с яблоко. Сложность в крайне редком ее расположении — в позабрюшинном пространстве, совсем близко жизненно важные органы. Образование идет от спинного мозга прямо к аорте. Руководит операцией Иван Стилиди — директор центра имени Блохина. Хирургам предстоит удалить опухоль, практически до нее не дотрагиваясь. С этой точки зрения нам на помощь анестезиологи, которые медикаментозно влияют на ситуацию, контролируют ее. Мы же работаем атравматично, без контакта, для того чтобы все притоки и отток от опухоли по венам, куда и выбрасываются эти гормоны, прекратить, ликвидировать и таким образом радикально удалить образование», — рассказал директор НМИЦ онкологии им. Блохина Иван Стилиди.
Они губительны не только для злокачественных, но и для здоровых клеток. У здоровых клеток он отсутствует. Это позволило ученым синтезировать вирус, который доставляет препарат только в те клетки, где есть плазмолипин. Создать новый препарат удалось благодаря эндогенному ретровирусу, который впервые описали российские ученые из Института молеклярной биологии и их коллеги из немецкого Института экспериментальной вирусологии.
В ряде клиник проводят исследование ликво-ра на наличие опухолевых маркеров. Черепные нервы могут быть повреждены в любом месте от уровня ядра до корешка или ствола нерва. Чаще других страдают отводящий и лицевой нервы, а также каудальная группа. Возможна и карциноматоз-ная инфильтрация сплетения. Автор: И.
Флуоресцентные технологии позволяют «подсветить» определенные участки организма при помощи специальных красителей, что дает возможность изучать запутанную паутину нервов. Так, ученые начали перепрограммировать определенные ткани, чтобы при росте опухоли те окрашивались в красный цвет. Это позволяет отлавливать отдельные раковые клетки, если они отделились от общей массы и потенциально могут привести к образованию метастазов. В последние годы исследователи все чаще уделяют внимание роли нервной системы в развитии опухоли. Все химические процессы, происходящие в тканях, поддерживаются мозгом. Питание для тканей не исключение, поэтому скрытая роль нервной системы в развитии рака может быть очень значительной. Ее поддержка нужна онкоцитам из-за их высокой скорости роста.
Рак мозга: симптомы, статистика и шансы на выздоровление
Он сравнивает эти процессы с выступлением оркестра, в котором все музыканты играют синхронно, что, собственно, и делает музыку музыкой. Клетки мозга, захваченные опухолью, так сильно повреждены, что нейроны более дальних участков рекрутированы на выполнение тех задач, с которыми раньше справлялась меньшая область коры. Результаты исследования показывают, что именно это взаимодействие приводит к снижению когнитивных способностей пациента с раком мозга, а вовсе не воспалительный процесс или давление растущей опухоли на остальные участки, как в науке считалось до сих пор. Он регулируется нервной системой. Он ведет разговоры с окружающими его клетками и активно интегрируется в нейронные контуры, изменяя их поведение», — говорит нейрохирург. Открываются новые перспективы лечения Можно ли повлиять на избыточную активность мозга, которая возникает благодаря опухоли и, в свою очередь, способствует ее росту?
В поисках такого решения ученые обратились к габапентину. Этот препарат знаком многим: его прописывают при эпилепсии, а также при разных видах нейропатической боли, чтобы разомкнуть цепочку между периферическими нервами и мозгом, блокируя соответствующие рецепторы нейронов, и таким образом нарушить прохождение болевого сигнала. При эпилепсии габапентин контролирует судорожную активность мозга, снижая его электрическую активность. Ученые вживили мышам клетки человеческой глиобластомы, а затем пролечили их габапентином. Оказалось, что препарат остановил рост опухоли.
Можно предположить, что это произошло благодаря тому, что «общение» глиобластомы и мозга было остановлено. По-видимому, габапентин — перспективная терапия рака мозга.
Некоторые симптомы, вызванные лечением рака, могут прекратиться после окончания лечения, но некоторые из них могут продолжаться бесконечно. Хотя повреждение нервов и нервной системы невозможно полностью предотвратить, эти нарушения наиболее эффективно лечатся, если они диагностированы в раннем периоде развития.
Двести лет назад французский патологоанатом Жан Крювелье впервые описал распространение рака по нервам, однако только последние исследования показали, что нервные волокна могут активно проникать в опухоль, стимулируя ее рост.
Эксперименты с перерезанием нервных волокон показали, что это может остановить или замедлить развитие раковых клеток в таких органах, как простата, желудок, печень и кожа. Особое внимание уделяется изучению глиом — одних из самых агрессивных опухолей мозга. Оказалось, что активность нейронов непосредственно способствует росту этих опухолей, причем раковые клетки могут активно получать сигналы от здоровых нейронов и использовать нейрональные белки, такие как NLGN3, для своего развития.
Эксперты заявляют, что опухолевые клетки являются очень независимыми органами и заставляют кровеносные сосуды, а также нервную систему больного человека работать на себя. Длительное время считалось, что нервы выступают проводником боли и опорой для раковых клеток. Но со временем учёные пришли к выводу, что нейроны бросают к ним тонкие нити нейритов.
В Москве врачи удалили опухоль центральной нервной системы у беременной пациентки
Учитывая эти данные, можно предположить, что вегетативная адренергическая, холинергическая и чувствительная передача сигналов влияет на эпителиальные опухоли, тогда как глутаматергическая передача сигналов в ЦНС регулирует первичные и метастатические опухоли в головном мозге. Рисунок 2 Адаптировано из Ali H. Zahalka, et al, 2020 [14]. Реактивация нервно-опосредованных путей роста и регенерации в опухоли. Фаза нервной стимуляции части a — c. Связывание нейротрофина с его родственным рецептором на нервах приводит к образованию импульса, который ретроградно распространяется к соме, влияя на экспрессию генов и рост аксонов. Нервно-опосредованная регуляция фазы роста части d—f. Симпатические нервы способствуют образованию сосудистой сети. Аналогично, в опухоли симпатические нервы способствуют образованию сосудов, кровоснабжающих растущую опухоль, а парасимпатические нервы подают сигналы опухолевым клеткам к митозу и миграции, что, в свою очередь, приводит к увеличению роста и образованию микрометастазов. Реактивация нервно-опосредованных путей Чтобы лучше понять механизмы, с помощью которых нервы взаимодействуют с ТМЕ и влияют на опухоль, нужно получить представление о влиянии нервов на развитие и регенерацию Рис. Во время своего развития железы и эпителиальные органы подвергаются процессу, известному как лобуляция.
Было показано, что этот процесс сильно зависит от развития и роста нервов [78—83] Рис. В качестве модели для исследования эмбрионального морфогенеза поднижнечелюстная слюнная железа изучена лучше всего. Это произошло благодаря возможности культивировать ее ex vivo.. Как и многие железы, поднижнечелюстная слюнная железа максимизирует пространство и площадь поверхности благодаря ветвящимся протокам и ацинусам, чтобы произвести необходимый объем секрета [84]. Концевые эпителиальные утолщения и протоки секретируют нейротурин, который вызывает однонаправленный рост аксонов из парасимпатического субмандибулярного ганглия [78]. Эти парасимпатические нервы, в свою очередь, высвобождают ацетилхолин, который передает сигналы через мускариновые рецепторы в SRY-box 2 SOX2 , вызывая разветвление и созревание ацинусов, и высвобождает вазоинтестинальный пептид VIP , который стимулирует тубулогенез [78—80,86] Рис. Адренергические нервы также играют важную роль в развитии желез. В позднем пренатальном периоде адренергические нервы начинают иннервировать слюнные железы, способствуя созреванию железистых ацинусов и формированию сосудистой сети [50,81] Рис. Эта иннервация необходима для органогенеза. Исследования показывают, что симпатэктомия или генетическая делеция основного адренергического нейротрофина NGF ингибирует образование желез [87,88].
NGF играет решающую роль в инициации и дальнейшей иннервации железы. Однако при завершении органогенеза уровни NGF падают, и аксоногенез, соответственно, снижается [89]. Синтезируемый железой NGF, связываясь с родственным рецептором TRKA на нейрональной пресинаптической мембране, влияет на экспрессию генов и аксоногенез [90, 91] Рис. В эмбриональной поджелудочной железе начало адренергической иннервации ассоциировано с фазой быстрого роста и созревания железы, а генетическая делеция NGF или нейрон-специфическая делеция TRKA приводит к неполной адренергической иннервации поджелудочной железы и, как следствие, нарушению её структуры, а симпатэктомия — к фенокопии [82,88,92]. Помимо вклада в органогенез, нервы также необходимы для формирования и роста конечностей. У развивающегося эмбриона один из самых высоких уровней NGF обнаруживается в зачатке конечности, в недифференцированной мезенхиме, примыкающей к апикальному эктодермальному гребню тонкий эпителиальный слой, необходимый для правильного формирования конечности [89]. До дифференцировки и формирования конечности в мезенхиме её зачатка появляются чувствительные нервы [93], и наблюдается конденсация мезенхимы начальный этап дифференцировки структуры конечности в тесной связи с разветвлением и ростом нервов [93]. Подобная роль нервов наблюдается при регенерации конечностей Рис. У саламандр регенерация структур конечностей дистальнее ампутации зависит от наличия нервов, так как денервация слоев проксимальнее места ампутации препятствует восстановлению [95]. Эти нервы передают сигналы вышележащим эпителиальным и мезенхимальным клеткам бластеме , которые обуславливают клеточную миграцию и контролируют пролиферацию клеток [96] Рис.
Нервы важны не только для формирования кровеносных сосудов во время органогенеза [97,98], но и для их восстановления в процессе регенерации [99]. Этот феномен формирования сосудов и эпителия был продемонстрирован на Xenopus laevis гладкая шпорцевая лягушка. После ампутации передней конечности и последующего хирургического перенаправления иннервации с задней конечности, в результате наблюдалась гипериннервация и ускоренная регенерация в зоне ампутации [100]. В данном случае влияние нервов на регенерацию реализуется через комбинацию эффектов от действия нейротрансмиттеров и факторов роста, таких как специфичный для саламандры секретируемый белок nAG , который не имеет функционально сходного ортолога у млекопитающих [101]. У млекопитающих включая людей происходит нервно-зависимая регенерация кончика пальца [102], это связано с сигнальным путем WNT Рис. Делеция WNT в эпителиальных клетках кончика пальца снижала экспрессию нейротрофинов и ингибировала рост аксонов и регенерацию у мышей [103]. Зависимость регенерации аксонов от WNT является общим путем для органогенеза во время эмбрионального развития [103—105]. Существуют также другие состояния, при которых нервы поддерживают регенерацию. Во время инициации и на ранних стадиях прогрессирования опухоль реактивирует нервно-зависимые пути, сходные с теми, что задействованы для обеспечения роста Рис. Как уже обсуждалось в предыдущем разделе, плотность нервов увеличивается более чем в два раза во время предраковой стадии развития опухоли.
Это подобно тому, что наблюдается при формировании желез во время органогенеза и формирования бластемы в процессе регенерации. При этом увеличение числа нервов сопровождается увеличением образования нейротрофинов [110] Рис. В этом исследовании уровни нейротрофинов продолжали расти по мере того, как заболевание прогрессировало до агрессивной аденокарциномы, превышая в 6 раз уровни в сопоставимых по возрасту контрольных группах. Кроме того, было обнаружено, что у мышей с протоковой аденокарциномой поджелудочной железы имеется десятикратное повышение плотности нервов по сравнению с сопоставимой по возрасту контрольной группой одна треть этих нервов является адренергической [4]. Также в исследовании было обнаружено повышение уровня Ngf в эпителиальном компартменте опухоли поджелудочной железы. Когда авторы селективно повысили экспрессию NGF в эпителии поджелудочной железы с использованием трансгенной Ngf-knock-in модели, наблюдалось увеличение плотности адренергических нервов. И наоборот, снижение экспрессии NGF генетическим путем с использованием небольшой интерферирующей РНК siRNA или путем блокады антителами NGF ингибирует прогрессирование рака поджелудочной железы и метастазирование [112,113]. В отличие от экспрессии NGF в эпителии протоковой аденокарциномы мыши, уровни нейротрофинов в образцах полученных из опухоли человека были повышены в стромальном компартменте, а уровни их родственных рецепторов были повышены в эпителиальном компартменте [4,114]. Поэтому необходимы дальнейшие исследования, чтобы выяснить место образования нейротрофина, способствуещего равитию рака. Повышенная экспрессия нейротрофина ассоциирована с плохим клиническим исходом при различных типах рака.
В образцах рака простаты человека повышенная экспрессия pro-NGF — предшественника белка NGF — связана с более агрессивным заболеванием, и наибольшее количество NGF и BDNF было обнаружено в стромальном компартменте этих опухолей [115,116]. Аналогично, повышенная экспрессия NGF была обнаружена в тканях рака молочной железы человека, а повышенные уровни BDNF были обнаружены в опухолях яичников человека и были связаны с более высокой плотностью нервов и повышенной смертностью [117,118]. Сверхэкспрессия NGF в эпителиальных клетках желудка увеличивала иннервацию его слизистой оболочки и индуцировала развитие аденокарциномы желудка у мышей дикого типа [60]. Было также показано, что сигнальный путь WNT является ключевым нейротрофическим фактором стимуляции нервов [3,103]. В клинических образцах рака желудка повышенные уровни WNT коррелировали как с большей плотностью нервов в опухоли, так и стадией опухоли [3]. А денервация желудка на мышиной модели рака желудка снижала уровни WNT и рост опухоли. В органогенезе и регенерации нервы выполняют несколько функций, в том числе стимулируют пролиферацию эпителия, миграцию и формирование стромы. Парасимпатические нервы регулируют экспансию ацинарных клеток через передачу сигналов M1R к SOX2 [80]. Некоторые виды рака могут взаимодействовать с нервами для активации сходных путей Рис. Рак предстательной железы происходит из ацинарных эпителиальных клеток.
Недавние исследования показали, что усиление парасимпатических сигналов способствует метастазированию рака предстательной железы. Кроме того, опухоли предстательной железы мыши и человека демонстрируют повышенную экспрессию SOX2 в раковых клетках [119]. Другие доказательства того, что парасимпатические нервы регулируют раковые стволовые клетки РСК в опухолях железистого происхождения, получены в трансгенных мышиных моделях рака. Например, холинергические нервы иннервируют стволовые клетки желудка, экспрессирующие фактор транскрипции MIST1 также известный как bHLHa15 , а условная делеция Chrm3 кодирующая M1R в этих клетках ингибирует рост опухоли желудка in vivo [60]. Поскольку парасимпатические нервы оказывают антагонистическое действие в мышиных моделях рака поджелудочной железы то есть они подавляют рост опухоли , введение агониста мускариновых рецепторов бетанхола снижает количество РСК поджелудочной железы [44]. Необходимы дальнейшие исследования, изучающие иннервацию РСК в различных опухолях, чтобы определить, участвует ли адренергическая иннервация непосредственно в экспансии РСК, а также для определения характеристики рецепторов вегетативных нервов, экспрессируемых РСК. Формирование иннервации зависит от сочетания нейрональной миграции и аксоногенеза. Недавние исследования обнаружили увеличение количества клеток, экспрессирующих даблкортин маркер, связанный с нейрональными предшественниками, а также с конусом роста аксонов [120,121] в трансгенных опухолях предстательной железы мыши [122]. Это открытие предполагает, что нейронные предшественники могут перемещаться по кровотоку от мозга к предстательной железе. Происходит ли подобный процесс при других типах опухолей или в раковых опухолях человека, требуется изучить в дальнейшем.
Однако это наблюдение вызывает множество вопросов, например, как нейронные предшественники преодолевают гематоэнцефалический барьер, каковы сигнальные пути от мозга к опухоли простаты и дифференцируются ли эти предшественники в полноценные функциональные вегетативные нервы. Поскольку клетки рака предстательной железы также могут экспрессировать даблкортин [123], потребуются углубленные исследования для определения происхождения новообразованных аксонов в опухолях. Нервная регуляция TME Последние достижения в области генной инженерии привели к большему пониманию молекулярных основ нервной регуляции опухоли. Эксперименты in vitro показали, что нейротрансмиттеры передают сигналы непосредственно опухолевым клеткам, способствуя пролиферации, выживанию и миграции клеток, как было рассмотрено ранее [124]. Следует отметить, что прямая иннервация эпителиального компартмента то есть клеток, из которых происходят солидные опухоли действительно может играть роль в возникновении и прогрессировании опухолей, как это было показано для рака желудка [60]. В некоторых органах, таких как простата, эпителиальные клетки гистологически отделены от нервов барьером из гладких мышц, тогда как в других, например, в слюнных железах, эпителиальные клетки подвергаются прямой иннервации. Таким образом, специфические для эпителиальных клеток нокауты генов, кодирующих вегетативные и сенсорные рецепторы Adrb2, Adrb3, Chrm1 и Chrm3 и ген, кодирующий рецептор субстанции P Nk1r, также известный как Tacr1 в моделях автохтонного рака у мышей, позволяют получить представление о вкладе эпителиального компартмента в нервно-опосредованную регуляцию опухоли. Гистологические исследования показывают, что нервы проходят через стромальный компартмент и непосредственно иннервируют структуры стромы [40,125,126]. Работы на животных in vivo свидетельствуют о взаимодействии в TME между нервами, стромой и эпителиальным компартментом. Например, недавнее исследование показало, что адренергические нервы косвенно регулируют пролиферацию опухолевых клеток, стимулируя ангиогенез и, таким образом, доступность питательных веществ для опухоли [2].
Далее обсудим влияние нервов на отдельные компоненты TME Рис. Zahalka, et al, 2020 [14] Нервная регуляция опухолевого микроокружения Нервы взаимодействуют со множеством стромальных и злокачественных эпителиальных компонентов, способствуя росту и распространению опухоли. Опухоль создает вокруг себя иммуносупрессивное микроокружение. Передача сигналов от адренергических нервов стимулирует секрецию интерлейкина-8 IL-8 , которые в свою очередь привлекают опухоль-ассоциированные макрофаги ТАМ , способствующие ангиогенезу и дальнейшей иммуносупрессии. Ангиогенез, ключевой компонент развития опухоли, напрямую регулируется нервами. Как упоминалось ранее, парасимпатическая передача импульсов через холинергические рецепторы, экспрессируемые опухолевыми клетками, способствует миграции опухолевых клеток и образованию микрометастазов. Ангиогенез и лимфангиогенез Ангиогенез необходим для роста опухоли [127]. В стромальном компоненте тканей адренергические нервы тесно связаны с сосудистой сетью главным образом, с артериолами и капиллярами [128,129]. Недавно было обнаружено, что адренергические нервы регулируют инициацию и ангиогенез на ранних стадиях рака простаты с помощью механизма, называемого «ангиометаболический переключатель» angiometabolic switch [2] Рис. Эндотелиальные клетки обычно регулируются гликолитической метаболической программой при направленной миграции клеток, необходимой для ангиогенеза при нормальном развитии и при раке [130,131].
В TME мышиной модели рака предстательной железы было обнаружено, что эндотелиальные клетки демонстрируют более высокую экспрессию Adrb2, а симпатэктомия или условная делеция Adrb2 в эндотелиальных клетках ингибирует ангиогенез путем смещения метаболизма эндотелиальных клеток от гликолиза к окислительному фосфорилированию за счет активации регуляции цитохром С оксидазы фактора сборки 6 Coa6 [2]. Подобно сосудистой сети, лимфатическая система высоко иннервирована адренергическими нервами [132,133]. В ортотопических и трансгенных моделях рака молочной железы лимфангиогенез и ремоделирование лимфатической системы зависели от адренергической передачи сигналов через рецептор Adrb2 на лимфатическом эндотелии, что способствовало метастазированию опухоли [57]. Было показано, что симпатическая денервация уменьшает образование лимфатических сосудов, что коррелирует с уменьшением агрессивности рака [17]. Иммунитет и воспаление Внутри TME вегетативные нервные волокна иннервируют иммунную сеть. Вырабатываемый T-клетками ацетилхолин, в свою очередь, ингибирует продукцию фактора некроза опухоли TNF в макрофагах, экспрессирующих никотиновый ацетилхолиновый рецептор [135]. Хотя эта нейроиммунная сеть, называемая «воспалительным рефлексом», отвечает за иммуносупрессию в условиях стресса, вегетативная иннервация также напрямую влияет на привлечение и стимуляцию иммунных клеток в TME. Инфильтрация опухоли лимфоцитами и их активация являются ключевыми компонентами противоопухолевого иммунного ответа [136]. Повышенный уровень стресса связан с повышенной активацией лимфоцитов посредством производства провоспалительных цитокинов, таких как интерлейкин-6 IL-6 [137]. Опухоли яичников, резецированные у пациенток, находящихся в состоянии стресса, по сравнению с опухолями яичников, резецированных у пациенток, не испытывающих стресс, но сопоставимых по возрасту и стадии заболевания, имеют повышенный внутриопухолевый уровень норадреналина и IL-6 [138].
Тем не менее, в тканях с высокой степенью иннервации, таких как поджелудочная железа и предстательная железа, были обнаружены низкие уровни T-хелперов 1 TH1 [136, 140—142]. Адренергические нервы вносят свой вклад в это иммуносупрессивное окружение несколькими способами Рис. Лимфатическая система, которая отвечает за транспортировку лимфоцитов, высоко иннервирована адренергическими нервами. На ортотопической мышиной модели рака молочной железы нокаут Adrb2 в MDSC замедляет рост опухоли, снижает экспрессию PDL1 и уровни иммуносупрессивных цитокинов в сыворотке крови [146]. Эти наблюдения, а также тот факт, что опухоли с хорошим ответом на иммунотерапию, по-видимому, обильно инфильтрированы TH1 клетками [136], предполагают, что денервация или прекращение адренергических сигналов может обеспечить новые подходы для улучшения иммунотерапевтического ответа в высокоиннервированных опухолях [147]. TNF является основным хемоаттрактантов для клеток врожденного иммунитета, таких как макрофаги. Стимуляция блуждающего нерва активирует постсинаптические адренергические нервы в чревном ганглии, который иннервирует селезенку, ингибируя высвобождение TNF из макрофагов. А ваготомия устраняет эту иммуносупрессию, повышая тем самым системные уровни TNF [134,148]. Ацетилхолин, в свою очередь, стимулирует никотиновые АХ-рецепторы на макрофагах селезенки, ингибируя высвобождение TNF [148]. В трансгенных моделях рака поджелудочной железы ваготомия существенно увеличивала уровни TNF, приводя к увеличению количества TAM [43,44].
В ортотопической модели рака молочной железы увеличение адренергической передачи сигналов в условиях стресса увеличивало количество внутриопухолевых TAM [58]. Аналогичным образом, при раке предстательной и поджелудочной желез нервно-зависимое увеличение количества ТАМ было ассоциировано с прогрессированием опухоли. Тогда как снижение числа макрофагов ингибировало рост опухоли [19,43,44,46,149]. Суммируя эти данные, можно предположить, что нейроиммунная связь является важным регуляторным компонентом TME, где отдельные ветви вегетативной нервной системы действуют противоположно друг другу, обеспечивая тем самым баланс, который нарушается при возникновении рака. Фибробласты и внеклеточный матрикс Изменения в 3D-структуре и составе TME значительно влияют на прогрессирование опухоли и метастазирование Рис. Например, во многих опухолях плотный внеклеточный матрикс ВКМ действует как физический и химический барьер для инфильтрации иммунных клеток, создавая привилегированную в иммунном отношении среду [150]. В то же время, изменения в составе ВКМ по отношению к среде, богатой коллагеном I типа, приводят к тому, что она действует как ангиогенный суперполимер, способствуя ангио- и нейрогенезу [151—154]. Кроме того, в то время как повышенная плотность ВКМ помогает предотвратить иммунный ответ на ранних стадиях развития опухоли, деградация ВКМ матриксными металлопротеазами MMP способстет миграции и распространению опухолевых клеток метастазов на поздних стадиях развития заболевания [155]. При воспалительных процессах, таких как цирроз печени, наблюдается повышенная адренергическая передача сигналов [156]. В ответ на повышенный уровень норадреналина в печени повышается пролиферация фибробластов и выработка коллагена I типа [152].
На более поздних стадиях онкологического заболевания ремоделирование коллагена необходимо для распространения рака. На ортотопических мышиных моделях протоковой аденокарциномы поджелудочной железы повышенная адренергическая передача сигналов, вызванная стрессом, более чем в 100 раз увеличивала экспрессию MMP в стромальном компартменте, увеличивая метастазирование. В ортотопической мышиной модели рака молочной железы адренергическая иннервация стромы усиливает ремоделирование коллагена, тем самым стимулируя метастазирование, снижение уровня норадреналина ингибирует этот процесс [159]. Таргетная терапия, направленная на иннервацию опухоли Поскольку передача нервных импульсов тесно связана с возникновением и развитием опухолей, таргетная терапия, нацеленная на иннервацию, стала областью большого клинического интереса [160]. Хирургическая денервация с целью противоопухолевой терапии, включая пересечение крупных нервных стволов, содержащих смешанные двигательные и вегетативные нервные волокна, была описана еще в начала 19 века, однако была неточной, и эта методикаприводила к серьезным побочным эффектам [13]. По мере развития хирургической техники и лучшего понимания вегетативной нейроанатомии были разработаны более точные методы денервации. Например, интраоперационная химическая денервация ложа поджелудочной железы, называемая «спланхникэктомия» для некупируемой боли при неоперабельном раке поджелудочной железы, показала хорошие результаты выживаемости в рандомизированных плацебо-контролируемых клинических исследованиях [161]. Однако химическая денервация была непостоянной, и со временем боль прогрессировала. В тоже время временная денервация ботулиническим токсином ортотопического рака предстательной железы у мышей оказалась эффективной [33], но испытания на людях не имели такого же успеха [162]. Методология временной денервации как терапии все еще требует дальнейшего изучения.
Однако эффект хирургической денервации в клинических условиях изучался лишь при некоторых патологиях. При лечении рака желудка у пациентов, перенесших ваготомию в дополнение к гастрэктомии, наблюдалось снижение частоты рецидива опухоли по сравнению с теми, кто перенес только гастрэктомию [3]. Это говорит о том, что денервация может быть дополнительным фактором эффективности хирургического лечения рака. Фармакологическое ингибирование нервной передачи стало перспективной терапевтической мишенью в противоопухолевой терапии. Использование этого класса препаратов, первоначально разработанных для лечения сердечно-сосудистых заболеваний, было описано в ретроспективных исследованиях. Работы были посвящены снижению риска смертности, связанной с множеством видов солидных опухолей, включая рак поджелудочной, молочной и предстательной желез, опухолей яичников, а также меланомы [19,163-166]. Уровень катехоламинов в периоперационном периоде повышается, что, как полагают, частично связано с хирургическими манипуляциями с опухолью или тканями организма, а также с операционным стрессом [169—171]. Ингибирование сигнальных путей нейротрофинов является еще одной новой областью клинического интереса. В то время как нацеливание на передачу сигналов TRKA при раке в доклинических исследованиях на грызунах показало многообещающие результаты, клинические испытания имели смешанные результаты. Теоретически, нацеливание на TRKA у взрослых должно ингибировать инфильтрацию нервов, при этом оказывая минимальное влияние на установленные нервы, поскольку сенсорные и симпатические нейроны теряют трофическую зависимость NGF во взрослом возрасте [179].
Хотя низкомолекулярные ингибиторы рецептора TRKA увеличивают выживаемость при злокачественных новообразованиях, где опухоль экспрессирует аберрантные рецепторы TRKA, они, как было показано, не влияют на выживаемость или прогрессирование заболевания в солидных опухолях с низкой частотой хромосомных перестроек TRK [180—183]. Кроме того, поскольку эти ингибиторы обладают сродством к тирозинкиназам других рецепторов, они имеют множество побочных эффектов, не связанных с основным местом приложения [184]. Таргетирование самого NGF антителами к NGF хорошо переносится пациентами, с минимальными нейрональными или когнитивными побочными эффектами. Было обнаружено, что моноклональное антитело, специфичное к NGF, — танезумаб — эффективно уменьшает боль, вызванную метастазированием в кости [185,186], но его влияние на прогрессирование опухоли еще предстоит оценить. Выводы В этой статье представлены данные, свидетельствующие о том, что реактивация путей развития и регенерации для стимуляции нейрогенеза является важным компонентом при инициации и прогрессирования опухолей. Вклад различных вегетативных и чувствительных нервных волокон отличается в зависимости от типа опухоли и зависит как от типа ткани, из которой образуется злокачественная опухоль, так и от характера иннервации ткани. Несмотря на последние достижения в области генной инженерии, а также технологий визуализации, которые привели к успехам в изучении роли нервной системы в TME, многие вопросы остаются без ответа. Например, было установлено, что на ранних стадиях рака наблюдается увеличение числа нервов, сопровождающееся повышением уровня нейротрофинов, но еще предстоит выяснить, какие клетки в ТМЕ являются источником нейротрофинов, и какова природа стимулов, которые инициируют выработку нейротрофина. И остается открытым вопрос, как мы можем селективно нацеливаться на возможные терапевтические точки, не затрагивая существующие нервные связи в других частях тела? Хотя ингибирование нервных сигнальных путей оказывает существенное влияние на предотвращение прогрессирования рака на доклинических моделях, трансляция этих методов и технологий все еще находится на самых ранних стадиях и потребует междисциплинарного сотрудничества для успешного внедрения их в клинику.
Список литературы Hanahan, D. Hallmarks of cancer: the next generation. Cell 144, 646—674 2011. Zahalka, A. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321—326 2017. This article shows that adrenergic nerves regulate the vasculature in the TME to promote tumour growth and cancer progression. Zhao, C. Denervation suppresses gastric tumorigenesis. Transl Med.
This article shows that surgical transection of the vagus nerve inhibits development of gastric cancer. Renz, B. Magnon, C. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 2013. This paper showed a role for adrenergic and cholinergic nerves in prostate tumour growth and metastasis. Langley, J. Heffer, W. Erin, N. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells.
Breast Cancer Res. Kappos, E. Denervation leads to volume regression in breast cancer. Peterson, S. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16, 400—412 2015. Sinha, S. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk.
Об этом рассказал врач-невролог Александр Евдокимов. Непроизвольное подергивание верхнего или нижнего века может указывать на проблемы центральной и периферической нервной системы. В таких случаях нервный тик долго не проходит. Подергивание может длиться и два, и четыре месяца. Врач посоветовал показаться неврологу, чтобы провести обследование.
Нервные волокна проникают в опухоль и способствуют ее росту. Если перерезать эти нервные волокна, рост опухоли останавливается. Нейроны оказались частью поддерживающего окружения опухоли и их активность может влиять на процесс ракового роста. Наибольший интерес вызывает изучение глиомы - агрессивной опухоли мозга, где активность нейронов способствует росту.
Сибирский онкологический журнал. Embryonal tumors of the central nervous system in adults: a report of three cases. Review of the literature. Siberian Journal of Oncology. Serial diffusion-weighted and conventional mr imaging in primary cerebral neuroblastoma treated with radiotherapy and chemotherapy. A case report and literature review. Neuroradiol J. J Neuropathol Exp Neurol. Supratentorial primitive neuroectodermal tumors of the central nervous system in adults: molecular and histopathologic analysis of 12 cases. Am J Surg Pathol. Central nervous system neuroblastic tumor with FOXR2 activation presenting both neuronal and glial differentiation: a case report. Evaluation of the proliferation marker Ki-67 in gliomas: Interobserver variability and digital quantification. Diagn Pathol. Foxr2 promotes formation of CNS-embryonal tumors in a Trp53-deficient background. J Clin Oncol. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity.
Главный онколог «СМ-Клиника» об опухолях спинного мозга
Ученые нашли новый способ бороться с раком через нервную систему — 07.02.2024 — Здоровье на РЕН ТВ | Особенность рака в том, что больные клетки подчиняют себе работу сосудов, соединительной ткани и даже нервной системы. |
Рак мозга: симптомы, статистика и шансы на выздоровление | Поэтому когда нервные волокна проникают в рак простаты, образуя связь со здоровыми клетками, опухоль растёт. |
Ученые научились лечить рак с помощью вируса | Эксперт Российского общества клинических онкологов Григорий Кобяков рассказал об уровне заболеваемости злокачественными опухолями головного мозга в России и об основных признаках этого заболевания. |
Опухоли центральной нервной системы | Эксперт Российского общества клинических онкологов Григорий Кобяков рассказал об уровне заболеваемости злокачественными опухолями головного мозга в России и об основных признаках этого заболевания. |
Опухоли ЦНС
Диагноз: Рак нервной системы. Забрюшинная нейробластома, 4 стадия. Необходимо: Иммунотерапия в госпитале Sant Joan de Dеu (Испания, Барселона). Вместе с парасимпатической нервной системой она регулирует работу внутренних органов, действуя во многом независимо от головного мозга (отчего симпатическую и парасимпатическую нервную систему объединяют под общим названием автономной нервной системы). Опухоли центральной и периферической нервной системы человека составляют 0,8-1,2% от общего числа всех опухолевых заболеваний. Нейротерапия, основанная на понимании взаимодействия между нервной системой и опухолью, может стать перспективным методом лечения.
Ученые нашли эффективное лечение рака нервных оболочек
Стресс провоцирует негативные мысли, обиды, глубокую депрессию, истощающую человека морально и физически, онкология в этом случае возникает из-за запуска патогенетических иммунных процессов и нарушения функций нейроэндокринной системы. У 17-летнего гражданина Израиля, который в 2001, 2002 и 2004 годах получал в Москве экспериментальное лечение эмбриональными стволовыми клетками по поводу атаксии-телеангиэктазии (АТ), начали образовываться доброкачественные опухоли нервной системы. Как оказалось, у женщин страдающих раком молочной железы, параметры активности головного мозга были практически одинаковыми с аналогичными параметрами у здоровых женщин. В нашей системе МРТ премиум-класса с индукцией 3,0 Тл и апертурой 70 см используются интеллектуальные технологии, позволяющие получать снимки наивысшего качества. Нейротерапия, основанная на понимании взаимодействия между нервной системой и опухолью, может стать перспективным методом лечения.
Актуальность вопроса
- Связь с нами:
- В UC смогли вернуть в норму клетки злокачественной опухоли нервной системы |
- III. Диагностика опухолей ЦНС
- Главный онколог «СМ-Клиника» об опухолях спинного мозга
- Ученые из России нашли новый способ лечения онкологии через нервную систему
- Актуальность вопроса
РИА Новости: Ученые предложили бороться с раком через нервную систему
В случае с головным мозгом это невозможно — нельзя удалять окружающую новообразование нервную ткань, потому что практически каждая нервная клетка выполняет важные функции. Нейрохирург вынужден действовать очень осторожно, аккуратно. Если опухоль имеет неровные края или неудобное расположение, то в некоторых случаях ее вообще не удается удалить. При этом проводят хирургические вмешательства, которые помогают нормализовать состояние больного. После хирургического вмешательства проводят лучевую терапию. При необходимости назначают химиотерапию. В некоторых случаях их проводят до операции. Прогноз При доброкачественных опухолях прогноз благоприятный.
Рецидивы после операции встречаются крайне редко. Злокачественные опухоли нередко рецидивируют, а некоторые из них удалить невозможно. Обнаружили ошибку?
Неврологические симптомы Местные симптомы могут проявляться в виде эпилептических припадков, галлюцинаций, локальных болей и зависят от локализации опухоли. Симптомы «на отдалении» чаще всего представлены стволовыми симптомами, обусловленными смещением мозга и сдавлением стволовых отделов. Обычно они возникают на поздних стадиях заболевания и проявляются тошнотой, рвотой, замедлением пульса, артериальной гипертензией, угнетением сознания.
Общемозговые симптомы при опухолях чаще всего бывают следствием внутричерепной гипертензии и проявляются головной болью с характерным усилением к утру, тошнотой, рвотой, угнетением сознания. Головная боль в большинстве случаев обусловлена повышением внутричерепного давления. Эпилептические припадки — первый симптом у трети больных. Характеризуются нарушениями памяти и внимания, абстрактного мышления, эмоциональными расстройствами.
Некоторые симптомы, вызванные лечением рака, могут прекратиться после окончания лечения, но некоторые из них могут продолжаться бесконечно. Хотя повреждение нервов и нервной системы невозможно полностью предотвратить, эти нарушения наиболее эффективно лечатся, если они диагностированы в раннем периоде развития.
Ученые нашли новый способ борьбы с раком: через воздействие на нервную систему 08:50 07. Непростая связь между раком и нервами оказалась гораздо глубже, чем предполагалось, недавние исследования показали, что злокачественные опухоли не только используют нервную систему для поддержания своего роста, но и взаимодействуют с ней активно Ученые из Стэнфордского университета обнаружили, что нервные волокна проникают в раковые опухоли, способствуя их росту. Это открытие помогло понять, как раковые клетки взаимодействуют с организмом и дает новые возможности для разработки методов лечения.
Неврологические осложнения у больных раком
Рак заставляет работать на себя соединительные ткани, кровеносные сосуды и даже, согласно последним данным, нервную систему. При этом долгое время считалось, что взаимодействие онкологии и нервной системы ограничивалось передачей болевых сигналов. Это тяжелая патология, которая характеризуется полиморфизмом и прогрессирующим расстройством функций центральной нервной системы. Злокачественные опухоли периферической нервной системы опасны тем, что 5-летняя выживаемость является достаточно низкой. Оказалось, что рак способен управлять соединительной тканью, кровеносными сосудами и нервной системой. Опухоли центральной нервной системы — различные новообразования спинного и головного мозга, их оболочек, ликворных путей, сосудов.
Стрессовые нервы мешают иммунитету бороться с раком
Важно понимать, что у больного есть поддержка со стороны невролога, который с одной стороны может уменьшить риски возможных осложнений, а с другой — улучшить качество жизни, путем подбора адекватной терапии. И конечно, таким пациентам просто необходима консультация невролога при подготовке к хирургическому лечению, чтобы оценить все риски и неврологический статус. Команда специалистов, которая формируется исходя из сопутствующей патологии, принимает решения о возможности отмены или замены препаратов перед операцией, химиотерапией или лучевой терапией. Однако терапия в области неврологии онкопациентам не противопоказана! Этой категории людей можно успешно подобрать препараты, которые будут улучшать самочувствие и качество жизни, при этом не влияя на основную патологию. Все же большинство жалоб формируются постепенно.
Если речь идет об онкологическом пациенте, то на фоне начатого противоопухолевого лечения-химиотерапии самое частое осложнение это полиневропатия. Современные цитостатики обладают различными видами токсичности, в том числе и нейротоксичностью, то есть неблагоприятно влияют на центральную и периферическую нервную систему. Как только возникают ощущения онемения, жжение, иногда зуда, жара или мурашек в руках или ногах, ощущение, что конечности «мерзнут» стоит обратиться к неврологу и начать лечение.
Cell 154, 651—663 2013. Schoors, S. Cell Metab. Felten, D. Sympathetic noradrenergic innervation of immune organs. McHale, N.
Sympathetic stimulation causes increased output of lymphocytes from the popliteal node in anaesthetized sheep. Rosas-Ballina, M. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98—101 2011. This study shows that the autonomic nervous system can directly regulate the immune system. Wang, H. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384—388 2003. Salmon, H.
Host tissue determinants of tumour immunity. Cancer 19, 215—227 2019. Maes, M. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 10, 313—318 1998. Computational identification of gene-social environment interaction at the human IL6 locus. USA 107, 5681—5686 2010. Shahzad, M. Stress effects on FosB- and interleukin-8 IL8 -driven ovarian cancer growth and metastasis.
Feig, C. USA 110, 20212—20217 2013. Miller, A. Bronte, V. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. Nakai, A. Control of lymphocyte egress from lymph nodes through beta2-adrenergic receptors. Qiao, G. Cancer Immunol.
Wong, C. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101—105 2011. Mohammadpour, H. Bucsek, M. Borovikova, L. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458—462 2000. Cheng, Y.
Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells. Joyce, J. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74—80 2015. Hisasue, S. Cavernous nerve reconstruction with a biodegradable conduit graft and collagen sponge in the rat. Twardowski, T. Type I. Collagen and collagen mimetics as angiogenesis promoting superpolymers.
Tuxhorn, J. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Burns-Cox, N. Changes in collagen metabolism in prostate cancer: a host response that may alter progression. Egeblad, M. New functions for the matrix metalloproteinases in cancer progression. Cancer 2, 161—174 2002. Henriksen, J. Noradrenaline and adrenaline concentrations in various vascular beds in patients with cirrhosis relation to haemodynamics.
Oben, J. Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells. Kim-Fuchs, C. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. The antidepressant desipramine and alpha2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev. Chen, D. Innervating prostate cancer. Lillemoe, K.
Chemical splanchnicectomy in patients with unresectable pancreatic cancer. A prospective randomized trial. Al-Wadei, H. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs 20, 477—482 2009. Powe, D. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1, 628—638 2010. De Giorgi, V.
Treatment with beta-blockers and reduced disease progression in patients with thick melanoma. Diaz, E. Impact of beta blockers on epithelial ovarian cancer survival. Grytli, H. Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 73, 250—260 2013. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Neeman, E. A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins.
Bahnson, R. Catecholamine excess: probable cause of postoperative tachycardia following retroperitoneal lymph node dissection RPLND for testicular carcinoma. Halme, A. On the excretion of noradrenaline, adrenaline, 17-hydroxycorticosteroids and 17-ketosteroids during the postoperative stage. Acta Endocrinol. Lindenauer, P. Perioperative beta-blocker therapy and mortality after major noncardiac surgery. Blessberger, H. Perioperative beta-blockers for preventing surgery-related mortality and morbidity.
Cochrane Database Syst. Al-Niaimi, A. The impact of perioperative beta blocker use on patient outcomes after primary cytoreductive surgery in high-grade epithelial ovarian carcinoma. Yap, A. Effect of beta-blockers on cancer recurrence and survival: a meta-analysis of epidemiological and perioperative studies. Musselman, R. Association between perioperative beta blocker use and cancer survival following surgical resection. Cata, J. Perioperative beta-blocker use and survival in lung cancer patients.
Horowitz, M. Exploiting the critical perioperative period to improve long-term cancer outcomes. Denk, F. Nerve Growth Factor and Pain Mechanisms. Smith, M. Collins, C. Preclinical and clinical studies with the multi-kinase inhibitor CEP-701 as treatment for prostate cancer demonstrate the inadequacy of PSA response as a primary endpoint. Cancer Biol. Drilon, A.
Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. Chan, E. Drugs 26, 241—247 2008. Shabbir, M. Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside. Drugs 19, 427—436 2010. US National Library of Medicine. Sopata, M. Efficacy and safety of tanezumab in the treatment of pain from bone metastases.
Pain 156, 1703—1713 2015. Barford, K. TrkA bumps into its future self. Cell 42, 557—558 2017. Spitzer, N. Neurotransmitter Switching? No Surprise. Neuron 86, 1131—1144 2015. Habecker, B.
Noradrenergic regulation of cholinergic differentiation. Science 264, 1602—1604 1994. Yang, B. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Yamamori, T. The cholinergic neuronal differentiation factor from heart-cells is identical to leukemia inhibitory factor. Science 246, 1412—1416 1989. Amit, M. Mechanisms of cancer dissemination along nerves.
Cancer 16, 399—408 2016. Taylor, H. Epithelial invasion of nerves in benign diseases of the breast. Cancer 20, 2245—2249 1967. Ali, T. Perineural involvement by benign prostatic glands on needle biopsy. Cracchiolo, J. Patterns of recurrence in oral tongue cancer with perineural invasion. Fagan, J.
Perineural invasion in squamous cell carcinoma of the head and neck. Head Neck Surg. Al-Hussain, T. Significance of prostate adenocarcinoma perineural invasion on biopsy in patients who are otherwise candidates for active surveillance. Beard, C. Perineural invasion is associated with increased relapse after external beam radiotherapy for men with low-risk prostate cancer and may be a marker for occult, high-grade cancer. Kraus, R. The perineural invasion paradox: is perineural invasion an independent prognostic indicator of biochemical recurrence risk in patients with pT2N0R0 prostate cancer? A multi-institutional study.
Zurborg, S. Generation and characterization of an Advillin-Cre driver mouse line. Lau, J. Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse. Nassar, M. Nociceptor-specific gene deletion reveals a major role for Nav1. USA 101, 12706—12711 2004. Chen, X. A chemical-genetic approach to studying neurotrophin signaling.
Neuron 46, 13—21 2005. Karai, L. Investigation 113, 1344—1352 2004. Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Vincenzi, F. Effect of botulinum toxin on autonomic nerves in a dually innervated tissue. Nature 213, 394—395 1967. Ben-Shaanan, T. Montgomery, K.
Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sternson, S.
В частности, симпатические центры срабатывают, когда нужно срочно напрячься и что-то сделать, когда нужно потратить энергию на физическую или эмоциональную нагрузку. Стресс — тоже нагрузка, поэтому нервы и нервные центры симпатической нервной системы можно назвать стрессовыми. Ну, а когда нужно прийти в себя от лихорадочных усилий, начинают работать парасимпатические центры. Т-лимфоциты, окружившие раковую клетку.
Изначально исследователи пытались выяснить, что можно сделать с утомившимися Т-лимфоцитами. Слишком долгая активность во время болезни истощает их, и во многом из-за этого иммунная система в целом перестаёт бороться со злокачественными клетками. Есть особые приёмы в иммунотерапии, которые позволяют вдохнуть в утомлённые Т-лимфоциты новую жизнь.
Ученые воодушевлены и называют результаты экспериментов «ошеломляющими» и «невероятными». Опухоли были уничтожены, а окружающие ткани остались неповрежденными. Одна инъекция — и никаких рецидивов, повторных симптомов», — отметили авторы исследования.
Медики подчеркивают, что подопытным мышам были имплантированы клетки нейробластомы человека. То есть потенциально метод должен действовать и при лечении людей. Впрочем, для этого все равно нужны отдельные испытания.
№55. Первичные опухоли центральной нервной системы
Диагностика: стандарт инструментальной диагностики опухолей центральной нервной системы — МРТ с внутривенным контрастированием. Редкими типами опухолей центральной нервной системы, относящиеся к группе нейроэктодермальных опухолей, являются. Диагностировать рак нервной системы, симптомы которого возникают при травмах ЦНС и других заболеваниях, по симптомам в таких случаях сложно. Из-за длительной активации симпатической нервной системы происходит воздействие на бета-2-адренорецепторы, запускающее деградацию белка Р53, и активация фактора роста сосудов. У 17-летнего гражданина Израиля, который в 2001, 2002 и 2004 годах получал в Москве экспериментальное лечение эмбриональными стволовыми клетками по поводу атаксии-телеангиэктазии (АТ), начали образовываться доброкачественные опухоли нервной системы. Онколог Ирина Олейникова из ФНКЦ ФМБА назвала 7 часто встречающихся вирусов, которые могут спровоцировать развитие рака.