• Отросток нервной клетки, проводящий импульс от этой клетки к другим нервным клеткам. − трофическая – контактируют отростками со стенками капилляров и передают питательные вещества нервной клетке. Аксон — нейрит, осевой цилиндр, отросток нервной клетки, по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам. • Отросток нервной клетки, проводящий импульс от этой клетки к другим нервным клеткам.
Отросток нервной клетки - 5 букв. Ответы для кроссворда
Нервная ткань. клетки. Нервные волокна. нейроны. Нейрон — основная клетка нервной ткани. На конце развивающегося отростка нервной клетки появляется утолщение, которое прокладывает путь через окружающую ткань. Какие нервные импульсы передаются от одной нервной клетки к другой.
Нервная система. Общие сведения
Как мембранная структура миелин имеет липидную основу и при обработке окисями тяжёлых металлов окрашивается в тёмный цвет. В цитоплазме осевого цилиндра располагаются продольно ориентированные нейрофибриллы и митохондрии , которых больше в непосредственной близости к перехватам и в концевых аппаратах волокна. Цитолемма осевого цилиндра аксона называется аксолеммой. Она обеспечивает проведение нервного импульса, который представляет собой волну деполяризации аксолеммы. Если осевой цилиндр представлен нейритом , то в нём отсутствуют гранулы базофильного вещества.
Полагают, что они возникли около 1.. Rturbakov 28 апр. Shmt1999ml 28 апр. Эльвинка2 28 апр. При полном или частичном использовании материалов ссылка обязательна.
Если бы не было миелиновой оболочки вообразите! Существует болезнь при которой собственные антитела уничтожают миелиновую оболочку нервных волокон головного и спинного мозга случаются и такие сбои в работе организма. Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным. Миелиновый слой представлен несколькими слоями мембраны глиальной клетки леммоцит, шванновская клетка , которые закручиваются вокруг осевого цилиндра отростка нейрона. Это закручивание хорошо видно на картинке, где изображен здоровый нерв, чуть выше ; Миелиновый слой оболочки волокна регулярно прерывается в местах стыка соседних леммоцитов - перехваты Ранвье. Миелиновая оболочка обеспечивает изолированное и более быстрое проведение возбуждения сальтаторный тип, лат. Нейроглия греч. Нейроглия глиальные клетки, глиоциты - вспомогательная часть нервной системы, которая выполняет ряд важных функций: Опорная - поддерживает нейроны в определенном положении Регенераторная лат. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток леммоцитов. Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками. Классификация нейронов Нейроны функционально подразделяются на чувствительные, двигательные и вставочные. Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они воспринимают раздражения, преобразуют их в нервные импульсы и передают в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель. Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС, участвуют в обработке информации и выработке команд.
Питание и рост А. Примеры употребления слова аксон в литературе. Но дистальный конец, остальная часть аксона , синаптически соединяющаяся с другими клетками, уже мертва. А каждое отмершее дистальное волокно будет заменено эмбриональной клеткой, подвергнутой геноинженерным манипуляциям, - внутри оболочки нервной клетки, которую она заменила, из нее вырастет новый аксон , и вместо старых, отмерших дистальных синапсов возникнут новые.
Значение слова «дендрит»
После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз. Собственные энергетические процессы нейрона его сомы тесно связаны с трофическими влияниями нейронов, что сказывается, прежде всего, на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон. Тема 3.
Нейросекреторные клетки. Регенерация нейронов. Нейросекреторные нервные клетки. В определенных отделах мозга беспозвоночных и позвоночных животных имеются нейроны, содержащие гранулы секрета.
Такие секретирующие нейроны называются нейросекреторными. Они имеют физиологические признаки нейрона, но обладают выраженными признаками железистых клеток. Нейросекрет синтезируются в связи с тигроидной субстанцией гранулярной ЭПС, оформляется в виде секрета в системе аппарата Гольджи. Секрет продвигается по аксону и выделяется из клеток в области их концевых разветвлений.
В отличие от обычных нейронов секрет высвобождается не в области синапса, а в кровь или ликвор мозговую жидкость. Аксоны нейросекреторных клеток направляется в нейрогипофиз и промежуточную долю аденогипофиза, образуя с ними единую систему. Выделяемый нейросекреторными клетками продукт рассматривают как гормон, регулирующий деятельность некоторых желез внутренней секреции и гонад, где нервная регуляция оказывается редуцированной. Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов.
Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются? Этот факт часто приводится в популярной и даже научной литературе.
Однако такое мнение научно не обосновано и потому не может считаться достоверным. На самом же деле любая клетка одновременно и живет и "работает". В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому целесообразным будет обратить внимание к одному из свойств нервной системы, а именно - к ее исключительной пластичности.
Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых нервные клетки, которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Значит, одна живая нервная клетка может заменить девять погибших. Но пластичность нервной системы - не единственный механизм, позволяющий сохранить интеллект до глубокой старости.
У природы имеется и запасной вариант - возникновение новых нервных клеток в головном мозге взрослых млекопитающих и человека, или нейрогенез. Первое сообщение о нейрогенезе появилось в 1962 году в статье "Формируются ли новые нейроны в мозге взрослых млекопитающих? Ее автор, профессор Ж. Он с помощью электрического тока разрушал латеральное коленчатое тело крысы и вводил туда радиоактивное вещество, проникающее во вновь возникающие клетки.
Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе и коре головного мозга. В дальнейшем аналогичное явление было установлено и другими исследователями в головном мозге птиц. В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Откуда берутся новые нейроны, если нервные клетки не делятся?
Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы - часть из них "затаивается" и ждет своего часа. Новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных.
Аналогичный процесс происходит и в нервной системе млекопитающих рис. Основные пути дифференцировки клеток ганглионарной пластинки и нервной трубки Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих. Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга.
Их перерождение в нейроны идет очень интенсивно. Продолжительность жизни таких нейронов очень высока - до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь около 2 см. Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны.
Стволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны. Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела!
Нейрогенез идет не только у грызунов, но и у человека. В этом убедились на основе анализа результатов эксперимента. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство - способность накапливаться в делящихся клетках различных органов и тканей.
Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей.
Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых клеток, но и из стволовых клеток крови. Оказалось, что стволовые клетки действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образую двуядерные клетки. Затем «старое» ядро нейрона разрушается, а его замещает «новое» ядро стволовой клетки крови.
Согласно одной из гипотез, стволовые клетки несут новый генетический материал, который, попадая в «старую» клетки мозжечка, продлевает его жизнь. Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний заболеваний, сопровождающихся гибелью нейронов головного мозга. Препараты стволовых клеток для трансплантации получают двумя способами.
Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход - использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма.
Наибольшая сложность в работе с эмбриональными клетками — заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это. Трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона. Термин «нейроглия» ввел в обиход немецкий патологоанатом Рудольф Вирхов для описания связывающих элементов между нейронами.
Эти клетки составляют половину объема мозга. Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия — вспомогательная и очень важная составная часть нервной ткани, связанная с нейронами.
По мере специализации нейрона как индивидуальной клетки в процессе эволюции возникла организация более высокого порядка — межклеточное «сообщество» нейрона и нейроглии. Нейроглия не принимает непосредственного участия генерации и проведении нервных импульсов и, тем не менее, нормальное функционирование нейрона невозможно в отсутствии или при повреждении глии. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Клетки нейроглии не образуют синапсов.
Различают глию центральной и периферической нервной системы. Клетки глии центральной нервной системы делятся на макроглию и микроглию. Макроглия развивается из глиобластов нервной трубки и включает: эпендиму, астроглию и олигодендроглию. Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга.
Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости.
Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза.
Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость ликвор. Астроглию образуют астроциты. Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции.
Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе. Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром. Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя изолируя их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством.
Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности. Олигодендроглию образуют олигодендроциты. Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра.
Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.
Микроглия образуют микроглиоциты, которые представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки возможно, из премоноцитов красного костного мозга. Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид.
Описанная морфология характерна для типичной ветвистой, или покоящейся микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы. В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия.
Клетки амебоидной микроглии формируют выросты — филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему.
Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию. Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия.
В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы. Рассмотренные выше глиальные элементы относятся к центральной нервной системе. Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня.
К периферической нейроглии относятся: нейролеммоциты или шванновские клетки и глиоциты ганглиев или мантийные глиоциты. Нейролеммоциты и шванновские клетки формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов. В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни.
Тема 4. Нервные узлы. Нервные волокна. Нервные стволы нервы Нервные узлы ганглии.
Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы. Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы. Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов.
Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными. Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды.
Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком.
Поэтому аксон обладает более быстрой скачкообразной проводимостью: скорость прохождения сигнала по волокнам с миелином и без него может отличаться в сотни раз. Что касается молекулярного состава «изолятора», то он, как и все клеточные мембраны, состоит преимущественно из липидов и белков. Дефекты нервной «изоляции» Развитие мозга плода — сложный процесс, при котором происходят быстрые перестройки морфологии и микроструктуры нервной ткани. В некоторых зонах мозга процесс формирования миелина начинается уже с 18—20-й недели беременности, а продолжается приблизительно до десятилетнего возраста. Именно нарушения миелинизации часто лежат в основе задержек физического и умственного развития ребенка, а также служат причиной формирования ряда неврологических и психиатрических патологий. Помимо заболеваний, таких как инсульт, задержки развития головного мозга плода с нарушением миелинизации иногда наблюдаются и при многоплодной беременности.
При этом десинхронизацию в развитии мозга близнецов оценить «на глаз» довольно сложно. Но как выявить дефекты миелина в период внутриутробного развития? В настоящее время акушеры-гинекологи пользуются только биометрическими показателями например, размером мозга , однако они обладают высокой изменчивостью и не дают полной картины. В педиатрии даже при наличии явных функциональных отклонений в мозговой деятельности ребенка традиционные изображения МРТ или нейросонографии ультразвукового исследования головного мозга новорожденных часто не показывают структурные отклонения. Поэтому поиск точных количественных критериев оценки формирования миелина во время беременности является актуальной задачей, которую к тому же нужно решить с помощью неинзвазивных диагностических методов, уже апробированных в акушерстве. Специалисты из новосибирского Международного томографического центра СО РАН предложили использовать для этих целей новый метод количественной нейровизуализации, уже адаптированный для дородовых пренатальных исследований. На обычном томографе Любая патология головного мозга плода, которую подозревают врачи во время ультразвукового обследования беременной, обычно является показанием к проведению МРТ; подобные исследования проводятся в МТЦ СО РАН уже более десяти лет.
Результаты МРТ могут подтвердить, уточнить, опровергнуть либо вообще изменить предварительный диагноз и, соответственно, тактику ведения беременности. Дело в том, что количество миелина и размеры отдельных структур головного мозга у эмбриона настолько малы, что любые измерения очень сложны и трудоемки. К тому же плод постоянно шевелится, что очень затрудняет получение качественных изображений и достоверных количественных данных. Поэтому нужна технология, позволяющая получать изображения быстро и с высокой разрешающей способностью даже на маленьких объектах. Именно таким оказался метод быстрого картирования макромолекулярной протонной фракции МПФ — биофизического параметра, который описывает долю протонов в макромолекулах тканей, вовлеченных в формирование МРТ-сигнала, тогда как обычно источником сигнала являются протоны, содержащиеся в воде Yarnykh, 2012; Yarnykh et al. Метод макромолекулярной протонной фракции МПФ основан на эффекте переноса намагниченности, когда протоны свободной воды «обмениваются» намагниченностью с протонами малоподвижных макромолекул, таких как белки. Скорость этого процесса влияет на величину детектируемого сигнала МРТ и зависит от площади взаимодействия макромолекулярной фракции и воды В основе метода лежит специализированная процедура математической обработки МРТ-изображений, которая позволяет вычленить компоненты сигнала, связанные с МПФ клеточных мембран.
А в головном мозге человека и животных основная их часть содержится именно в миелине. Реконструируются карты МПФ на основе исходных данных, которые могут быть получены практически на любом клиническом томографе. Для реконструкции карт МПФ используются четыре исходных изображения, полученные различными традиционными методами МРТ. Правильность такого подхода подтвердили результаты его апробации на лабораторных животных в Томском государственном университете: у мышей, которым вводили раствор, вызывающий разрушение миелина, результаты МПФ-картирования совпали с данными гистологического исследования тканей Khodanovich et al.
Она представляет собой комплексы эндоплазматической сети. В них определяют большое содержание рибонуклеопротеидов и белково-полисахаридных соединений, необходимых для синтетической функции нейронов. Кроме этого, в цитоплазме перикариона обнаруживаются безмембранные белковые образования — нейрофибриллы, формирующие цитоскелет нейроцитов. Эти особенности строения обуславливают функциональные свойства отдельной нервной клетки.
Органеллы и специфические элементы нейронов не визуализируются под световым микроскопом. Для получения изображения используются электронные технологии. Отростки нейронов представлены двумя видами: аксоном или нейритом — единственным образованием, как правило, небольшого диаметра и мало ветвящимся. Он ведет импульс от тела нейрона. Количество дендритов зависит от типа нейроцита. Количество отростков определяет градацию нейронов на: одноотростчатые или униполярные. В таком случае клетка имеет лишь нейрит. У человека униполярный тип нейронов не представлен.
Одноотросчатыми считаются лишь нейробласты до периода образования дендритов. Эти клетки содержат один аксон и один дендрит. Их представителями являются нейроны сетчатки и рецепторы кортиева органа. К ним относятся чувствительные клетки спинных и черепных ганглиев. Такие клетки имеют один вырост перикариона, который раздваивается на центральный аксон и периферический дендрит. Такие клетки наиболее широко представлены в нервной системе. Они имеют один нейрит и множество дендритов. Существует классификация структурной единицы нервной ткани, позволяющая разделить нейроны в зависимости от выполняемых ими функций.
По такому принципу нейроциты могут быть: афферентными. Эти виды клеток инициируют генерацию импульса; эффекторными. Они побуждают к деятельности иннервируемый орган; ассоциативными.
Запишите цифры 1 и 2 в правильном порядке. А осуществляет транспорт веществ в организме Б выполняет функцию опоры и питания В образует эпидермис кожи Д состоит из тесно прилегающих клеток Е содержит много межклеточного вещества Ответ 221212 2.
Установите соответствие между характеристикой ткани и ее типом: 1 эпителиальная, 2 соединительная. А межклеточное вещество практически отсутствует Б выполняет питательную и опорную функции В выстилает изнутри полости кишечника и других органов Г образует подкожную жировую клетчатку Д является компонентом частью внутренней среды организма Ответ 3. Установите соответствие между характеристикой ткани человека и ее типом: 1 эпителиальная, 2 соединительная. А состоит из плотно прилегающих друг к другу клеток Б содержит много межклеточного вещества В образует потовые железы Д образует поверхностный слой кожи Е выполняет опорную и механическую функции Ответ 4.
Проводящий отросток нервной клетки, 5 букв
отросток нервной клетки — ответ на кроссворд / сканворд, слово из 5 (пяти) букв. Клетки гидры выполняющие функцию регенерации. От тела нейрона отходит один аксон – отросток, по которому электрические сигналы (нервные импульсы, или потенциалы действия) передаются от тела нейрона. В онтогенезе нейроны образуются из клеток предшественников – нейробластов, развивающихся у хордовых из стволовых клеток нервной трубки – зачатка ЦНС. 1. Клетки, образующие нервную ткань, называются. нейроны.
Нервная ткань
Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети. Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона, например к используемому им медиатору, к размерам и форме клетки. Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки. Типы нервных сетей. Существуют три генетически детерминированных типа нервных сетей.
Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток см. Это абсурдное упрощение поможет нам проявляется в наличии трех основных типов сетей, которые встречаются повсюду, — иерархические, локальные и дивергентные с одним входом. Иерархические сети. Наиболее распространенный тип межнейронных связей встречаются в главных сенсорных и двигательных путях.
В сенсорных системах иерархическая организация носит восходящий характер. В нее включаются различные клеточные уровни, по которым информация поступает в высшие центры — от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т. Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь — определенным группам мышечных клеток. Иерархические системы обеспечивают очень точную передачу информации.
В результате конвергенции когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня или дивергенции когда контакты устанавливаются с большим числом клеток следующего уровня информация фильтруется и происходит усиление сигналов. Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении.
Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети. Локальные сети. Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они, по всей видимости, широко распространены во всех мозговых сетях.
Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации. Дивергентные сети с одним входом. В некоторых нервных сетях имеются скопления или слои нейронов, в которых один нейрон образует выходные связи с очень большим числом других клеток в таких сетях дивергенция доведена до крайних пределов.
Изучение сетей такого типа начато лишь недавно, и единственные места, где они встречаются насколько нам сейчас известно , — это некоторые части среднего мозга и ствола мозга. Преимущества подобной системы в том, что она может оказывать влияние на множество нейронов сразу и иногда осуществлять связь со всеми иерархическими уровнями, нередко выходя за пределы специфических сенсорных, двигательных и других функциональных объединений. Сфера воздействия таких сетей не ограничена какой-либо системой с определенными функциями. Дивергирующие пути этих сетей иногда называют неспецифическими и поэтому такие сети могут влиять на самые различные уровни и функции.
Они играют большую роль в интеграции многих видов деятельности нервной системы. Кроме того, медиаторы, используемые в дивергентных системах с одним входом, — это медиаторы с «условным» действием: их эффект зависит от условий, в которых он осуществляется. Подобные воздействия весьма важны и для интегративных механизмов. Однако дивергентные сети такого типа составляют лишь небольшую часть всех нервных сетей.
Тема 6. Концевые нервные аппараты и их классификация. Рефлекторная дуга и динамическая поляризация нейронов Связь нейронов с различными тканями и органами устанавливается при помощи нервных волокон, которые образуют в них концевые нервные аппараты нервные окончания. Окончания аксонов периферических нервов подразделяют на чувствительные афферентные и двигательные эфферентные.
Приспособления, которые воспринимают раздражения, называются рецепторными аппаратами, или чувствительными нервными окончаниями, а нервы, проводящие возбуждение — чувствительными. Реализация нервных импульсов осуществляется эффекторными аппаратами двигательными нервным окончаниями , а проведения возбуждения к ним происходит по двигательным нервам. Концевые нервные аппараты — сложные образования. В их состав входят не только нервные волокна, но и ткани, в которых они оканчиваются.
Структура концевых аппаратов разнообразна, меняется в зависимости от условий, в которой они находятся. Эффекторный аппарат хорошо представлен на двигательной бляшке. Он располагается на поперечнополосатом мышечном волокне в виде разветвления осевого цилиндра мякотного нервного волокна которое теряет миелин. По данным электронной микроскопии, для двигательной бляшки характерно отчетливое разграничение нервной и мышечной частей.
В гладких мышцах двигательная иннервация осуществляется безмякотными нервными окончаниями. Секреторные окончания эффекторных нейронов представлены аксонами, выступающими в Синаптический контакт с железистыми клетками. Концевые разветвления аксона либо подходят вплотную к секреторной клетке, либо глубоко вдавливаются в нее. Нейролемма аксона и плазмалемма секреторной клетки образуют соответственно пресинаптическую и постсинаптическую мембраны, разделенные узкой синаптической щелью.
Холинрецепторы присутствуют также в мембране мышечного волокна вне синапса, но здесь их концентрация на порядок меньше, чем в постсинаптической мембране и обозначаются они как холинрецепторы. Рецепторные аппараты рецепторные нервные окончания. Рецепторные воспринимающие нервные окончания у позвоночных представляют собой концевые аппараты дендритов чувствительных нейронов, тела которых располагаются чаше всего в спинальных ганглиях и их аналогах — черепномозговых чувствительных узлах или в периферических вегетативных ганглиях. В зависимости от того, откуда они воспринимают раздражение, различают экстерорецепторы и интерорецепторы.
Первые воспринимают раздражения из внешней среды, вторые — из внутренних органов. Кроме того, с учетом специфичности раздражителя различают тактильные, холодовые, тепловые, болевые рецепторы, барорецепторы, хеморецепторы, механорецепторы. По морфологическим особенностям рецепторные окончания могут быть свободными, располагающимися между клетками иннервируемой ткани, и несвободными, инкапсулированными заключенными в особые соединительнотканные капсулы. Свободные нервные окончания — наиболее распространенный тип сенсорных рецепторов.
Большинство свободных нервных окончаний — механорецепторы. Распространены в прослойках соединительной ткани внутренних органов, а также в соединительнотканной основе кожи. Свободные нервные окончания эпидермиса расположены в базальном и шиповатом слоях. В области кожи с высокой тактильной чувствительностью пальцы рук терминали достигают зернистого слоя.
Некоторые окончания в эпидермисе специализированы для регистрации изменений температуры. Свободные нервные окончания имеются и в других органах чувств слуха, равновесия, вкуса , закладывающихся из эктодермы. В многослойном эпителии локализованы чувствительные осязательные клетки Меркеля, имеющие округлую или удлиненную форму. Они соединены с эпителиоцитами при помощи десмосом и формируют контакт с нервными терминалями.
В клетках Меркеля обнаружены пептиды и нейроспецифические вещества, что свидетельствует об их эндокринной функции. Это позволяет рассматривать их как компонент диффузной нейроэндокринной системы. Капсулированные чувствительные нервные окончания построены по единому плану и наблюдаются в соединительной и мышечной тканях. Эти рецепторные нервные окончания имеют соединительнотканные капсулы различного строения.
К капсулированным рецепторам мышечной ткани относятся нервно-мышечные веретена и капсулированные кустики. Они являются специфическими рецепторами соматической мускулатуры, воспринимающие ощущение растяжения мышечного волокна. Одним концом они прикреплены к перимизию мышечного волокна, а другим - к сухожилию. В гладкой мускулатуре внутренних органов находятся кустиковидные свободные рецепторные окончания.
Строение инкапсулированных рецепторных окончаний изучены на примере осязательных телец телец Мейсснера и пластинчатых телец телец Фатер - Пачини. Осязательные тельца расположены в сосочковом слое кожи и являются механорецепторами. Тельце имеет удлиненную форму. Внутренняя часть тельца состоит из уплощенных нейроглиальных клеток, окружающих дендрит и образующих вместе внутреннюю колбу тельца.
С внешней стороны тельце покрыто соединительнотканной капсулой и образует наружную колбу. В теле человека наиболее распространены пластинчатые тельца, или тельца Фатер — Пачини, которые являются механорецепторами. Они встречаются в глубоких слоях кожи, на брыжейке, в молочной железе, кишечнике, поджелудочной железе, соединительной ткани внутренних органов, около кровеносных сосудов. Тельце имеет овальную форму, и его размеры колеблются в пределах 0,5- 1,0 мм.
Внутренняя колба, наружная капсула и терминальное нервное волокно — основные компоненты тельца. Внутренняя колба тельца содержит нейроглиальные клетки. Вокруг внутренней колбы находится мощная соединительнотканная капсула, состоящая из плоских серповидных соединительнотканных клеток. К тельцу Фатер — Пачини подходит толстое миелинизированное нервное волокно.
Внутри наружной капсулы они образуют несколько перехватов Ранвье. Подойдя к внутренней колбе рецептора, нервное волокно теряет миелин и переходит в чувствительную нервную терминаль. Эти тельца воспринимают ощущение давления на органы и внутриорганное давление. К механорецепторам примерно такого же строения относятся луковицеобразные тельца тельца Гольджи — Маццони , которые расположены в концевой части сухожилий на границе с мышцей, а также в связках капсулы суставов.
В теле человека встречаются концевые колбы колбы Краузе , которые являются терморецепторами. Они расположены в соединительнотканной основе кожи, слизистых и серозных оболочках. Они также имеют тонкую соединительнотканную капсулу, образующую наружную колбу рецептора. Температурные раздражения воспринимают капсулированные клубочки тельца Руффини — крупные рецепторы веретеновидной формы длиной до 2 мм и диаметром около 150 мкм.
Они располагаются в соединительной ткани кожи и суставов. К группе капсулированных нервных окончаний относятся генитальные тельца тельца Догеля. Они обнаружены в соединительной ткани половых органов, головки полового члена, клитора и других частях тела. По своему строению они напоминают тельца колбы Краузе.
Генитальное тельце является механо — и барорецептором, поскольку реагирует на изменение кровяного давления. Из капсулированных механорецепторов кожи птиц наиболее распространены тельца Хербста и тельца Грандри, расположенные в восковице пластинчатоклювых. Тельце Хербста имеют такое же строение, как и тельца Фатер — Пачини. Тельце Грандри мельче телец Хербста и они обладают более тонкой соединительнотканной капсулой.
Внутри капсулы находятся две крупные нейроглиальные клетки с крупными овальными ядрами. Таким образом, инкапсулированные рецепторные окончания всегда состоят из разветвлений осевого цилиндра чувствительного нейрона, оканчивающихся на глиальных клетках, окруженных соединительнотканной капсулой. Рефлекторная дуга. Все тканевые элементы нервной системы образуют нейронные связи, благодаря которым осуществляется рефлекс - ответная реакция организма на различные раздражения, осуществляемая при помощи нервной системы.
Рефлекс осуществляется при помощи рефлекторной дуги. Рефлекторная дуга имеет следующие элементы: рецептор, чувствительный нерв, участок ЦНС, двигательный нерв, исполнительный орган. При помощи рефлексов происходит приспособление организма к меняющимся условиям окружающей среды Рис. Различают простые и сложные рефлексы.
Простейший рефлекс выполняется на уровне спинного мозга без участия головного мозга. Такой рефлекс осуществляется при участии трех типов нейронов: чувствительного, вставочного и двигательного. Чувствительный нейрон, воспринимающий раздражение, находится у человека и высших животных в спинальных ганглиях, или узлах, расположенных по обеим сторонам спинного мозга. По ходу его задних корешков.
Здесь расположены чувствительные униполярные нейроны, от них отходит отросток, который разветвляется на 2 отростка. Один из этих отростков более длинный, направляется по спинномозговому нерву на периферию, где заканчивается чувствительным концевым аппаратом, воспринимающим раздражение. Другой более короткий отросток входит в спинной мозг и служит его проводником возбуждения от чувствительного концевого аппарата. В белом веществе этот центральный отросток разветвляется.
Одна ветвь направляется вверх, а другая — вниз. Пройдя некоторое расстояние, обе ветви входят в серое вещество и заканчиваются на телах нейронов, называемых вставочными связывающими, промежуточными. Вставочные нейроны — небольшие мультиполярные клетки с короткими дендритами. Их единственный нейрит проникает в белое вещество, где разделяется на две ветви, одна из которых направляется вверх, а другая — вниз.
В выше- и нижележащих отделах спинного мозга они опять заходят в серое вещество и вступают в контакт с двигательными, или моторными, нейронами. Этот тип связующих нейронов характеризуется тем, что их отростки не выходят за пределы спинного мозга и объединяет только его отделы. Кроме таких клеток, в задних рогах и в средней части серого вещества имеется и другой тип связующих нейронов. Их восходящий отросток отличается значительной длиной и поэтому достигает стволовой части головного мозга.
Связующие клетки представляют второй тип нейронов, принимающих участие в осуществлении рефлекса. В них происходит трансформация чувствительного импульса в двигательный. Дальнейший путь этого импульса связан с проводящими волокнами связующих нейронов и наличием в спинном мозге двигательных нейронов. На теле этих нервных клеток оканчиваются отростки вставочных нейронов.
Двигательные моторные нейроны расположены в передних рогах серого вещества спинного мозга отдельными группами. Эти — самые крупные клетки спинного мозга. Они являются мультиполярными и отличаются сильно разветвленными дендритами. Аксон этих клеток выходит из спинного мозга по переднему корешку и направляется к мышце.
Двигательный импульс по волокнам этих клеток попадает к исполнительному органу, который совершает работу. На этом заканчивается путь чувствительного импульса, который возник в рецепторе. Белое вещество состоит из волокон, большая часть которых принадлежит к мякотным. Они расположены вдоль спинного мозга и образуют проводящие пути — короткие, объединяющие разные уровни спинного мозга, и длинные, соединяющие спинной мозг с головным.
Тема 7. Оболочки мозга. Желудочки мозга. Центральная нервная система позвоночных животных надежно защищена костной основой.
Нервы, идущие на периферию проходят в этом костном панцире. Кроме того, центральная нервная система окружена и защищена еще и тремя мозговыми оболочками: твердой, паутинной и сосудистой. Оболочки головного и спинного мозга защищают мозговое вещество от различных вредных воздействий. Твердая оболочка с ее отростками и паутинные цистерны осуществляют механическую защиту мозга.
Паутинная и мягкая оболочки обеспечивают циркуляцию спинномозговой жидкости и питание вещества мозга. Кроме того, мозговые оболочки защищают паренхиму мозга от проникновения инфекционных и токсических веществ рис. Твердая оболочка довольно прочная, она образована плотной волокнистой соединительной тканью. В спинном мозге эта оболочка имеет вид продолговатого мешковидного образования, в полости которого располагаются спинной мозг с корешками спинномозговых нервов, спинномозговые узлы и остальные две оболочки.
Наружная поверхность твердой оболочки в спинном мозге отделена от надкостницы жировой клетчаткой и венозным сплетением.
Те олигодендроциты, которые находятся в сером веществе, располагаются, как правило, вокруг тел нейронов, плотно прилегая к ним. Поэтому их называют клетками-сателлитами. Они характеризуются наличием коротких отростков. Клетки микроглии происходят из мезодермы. Они отличаются небольшими размерами. Эти клетки могут активно передвигаться и выполнять фагоцитарные функции. Благодаря способности к активной миграции микроглия распределена по всей центральной нервной системе. Дорогина, О.
В игре есть сетка, заполненная буквами, и игроки должны использовать свои знания и словарный запас, чтобы составлять слова, которые вписываются в сетку. На каждом уровне представлена уникальная тема, например, история, наука или поп-культура, и игроки должны найти скрытые слова, связанные с этой темой. По мере прохождения игроки открывают новые уровни, сталкиваются с головоломными головоломками и получают награды.
Собственно нейроглия имеет общих с нейроцитами предшественников клетки tubus neuralis и lamellae ganglionaris. Микроглия является следствием дифференциации среднего зародышевого листка мезодермы. Читайте также: Насколько опасна гидроцефалия для ребенка? Макроглия представлена несколькими типами клеток: Астроцитами — звезчатыми клетками, выполняющими опорно-трофическую и разграничительную функции. Астроциты составляют межклеточное вещество и являются элементами. В зависимости от клеточного состава и расположения в ЦНС астроциты подразделяют на протоплазматические и фиброзные. Протоплазматические элементы имеют цитоплазматический филамент и микротрубочки, представлены в сером веществе. Фиброзные астроциты содержат больше филамента и гликогена и располагаются возле проводников белого вещества головного мозга. Эти клетки образуют выстилку центрального канала спинного мозга и церебральных желудочков.
Они обеспечивают барьерную функцию и обладают секреторной активностью. Олигодендроцитами, образующими волокон в ЦНС. В периферической нервной системе аналоги олигодендроцитов называются леммоцитами или шванновскими клетками. Клетки микроглии или тканевые макрофаги имеют костномозговое происхождение, то есть способны образовываться из тканей мезенхимы. По сути, они являются фагоцитарными клетками, разбросанными по всему мозгу, обеспечивающими защитные функции. Мнение врача: Нервная ткань является одной из самых сложных и важных тканей в организме человека. Ее основные функции включают передачу электрических сигналов от одной части тела к другой, обеспечение координации движений и регуляцию внутренних органов. Строение нервной ткани включает нейроны, которые являются основными функциональными единицами нервной системы, и глиальные клетки, поддерживающие и защищающие нейроны. Каждая часть нервной ткани имеет свою специфическую роль, что обеспечивает эффективную работу всей нервной системы.
Важно понимать, что забота о здоровье нервной ткани имеет ключевое значение для общего благополучия организма. Нейрон: строение, функции, виды. Синапсы Опыт других людей Функции и особенности строения нервной ткани вызывают большой интерес у ученых и обычных людей. Нервная ткань играет ключевую роль в передаче сигналов в организме, обеспечивая координацию движений, чувствительность к окружающей среде и работу внутренних органов. Она состоит из нейронов, которые способны генерировать и передавать электрические импульсы, и глиальных клеток, поддерживающих и защищающих нейроны.
решение вопроса
- Поиск ответов на кроссворды и сканворды
- Ответы : Как называется отросток нервной клетки? Именно нервной клетки а не нейрона...
- Короткий отросток нервной клетки
- Как называются отростки нейронов
- Дефекты нервной «изоляции»
- Дефекты нервной «изоляции»
Функции и особенности строения нервной ткани
Вверху — олигодедроциты в культуре красные, ядра — сиреневые. Формируется миелин плоскими выростами «служебных» глиальных клеток, цитоплазма в которых практически отсутствует. Миелиновая оболочка не непрерывна, а дискретна, с промежутками перехватами Ранвье. Поэтому аксон обладает более быстрой скачкообразной проводимостью: скорость прохождения сигнала по волокнам с миелином и без него может отличаться в сотни раз. Что касается молекулярного состава «изолятора», то он, как и все клеточные мембраны, состоит преимущественно из липидов и белков. Дефекты нервной «изоляции» Развитие мозга плода — сложный процесс, при котором происходят быстрые перестройки морфологии и микроструктуры нервной ткани. В некоторых зонах мозга процесс формирования миелина начинается уже с 18—20-й недели беременности, а продолжается приблизительно до десятилетнего возраста. Именно нарушения миелинизации часто лежат в основе задержек физического и умственного развития ребенка, а также служат причиной формирования ряда неврологических и психиатрических патологий. Помимо заболеваний, таких как инсульт, задержки развития головного мозга плода с нарушением миелинизации иногда наблюдаются и при многоплодной беременности.
При этом десинхронизацию в развитии мозга близнецов оценить «на глаз» довольно сложно. Но как выявить дефекты миелина в период внутриутробного развития? В настоящее время акушеры-гинекологи пользуются только биометрическими показателями например, размером мозга , однако они обладают высокой изменчивостью и не дают полной картины. В педиатрии даже при наличии явных функциональных отклонений в мозговой деятельности ребенка традиционные изображения МРТ или нейросонографии ультразвукового исследования головного мозга новорожденных часто не показывают структурные отклонения. Поэтому поиск точных количественных критериев оценки формирования миелина во время беременности является актуальной задачей, которую к тому же нужно решить с помощью неинзвазивных диагностических методов, уже апробированных в акушерстве. Специалисты из новосибирского Международного томографического центра СО РАН предложили использовать для этих целей новый метод количественной нейровизуализации, уже адаптированный для дородовых пренатальных исследований. На обычном томографе Любая патология головного мозга плода, которую подозревают врачи во время ультразвукового обследования беременной, обычно является показанием к проведению МРТ; подобные исследования проводятся в МТЦ СО РАН уже более десяти лет. Результаты МРТ могут подтвердить, уточнить, опровергнуть либо вообще изменить предварительный диагноз и, соответственно, тактику ведения беременности.
Дело в том, что количество миелина и размеры отдельных структур головного мозга у эмбриона настолько малы, что любые измерения очень сложны и трудоемки. К тому же плод постоянно шевелится, что очень затрудняет получение качественных изображений и достоверных количественных данных. Поэтому нужна технология, позволяющая получать изображения быстро и с высокой разрешающей способностью даже на маленьких объектах. Именно таким оказался метод быстрого картирования макромолекулярной протонной фракции МПФ — биофизического параметра, который описывает долю протонов в макромолекулах тканей, вовлеченных в формирование МРТ-сигнала, тогда как обычно источником сигнала являются протоны, содержащиеся в воде Yarnykh, 2012; Yarnykh et al. Метод макромолекулярной протонной фракции МПФ основан на эффекте переноса намагниченности, когда протоны свободной воды «обмениваются» намагниченностью с протонами малоподвижных макромолекул, таких как белки. Скорость этого процесса влияет на величину детектируемого сигнала МРТ и зависит от площади взаимодействия макромолекулярной фракции и воды В основе метода лежит специализированная процедура математической обработки МРТ-изображений, которая позволяет вычленить компоненты сигнала, связанные с МПФ клеточных мембран. А в головном мозге человека и животных основная их часть содержится именно в миелине.
Безмиелиновые нервные волокна имеют слабую изоляцию, допускающую переход нервного импульса с одного волокна на другое, как в области мезаксона, так и в области межлеммоцитарных контактов.
Миелиновые нервные волокна значительно толще безмиелиновых. Принцип образования их оболочек такой же, как и безмиелиновых, то есть осевые цилиндры также прогибают цитолемму глиоцитов, образуя линейный мезаксон. Однако, быстрый рост нейронов соматического отдела нервной системы , связанный с формированием и ростом всего организма, приводит к вытягиванию мезаксонов, многократному обращению леммоцитов вокруг осевых цилиндров. В результате образуются концентрические наслоения. При этом цитоплазма с ядром леммоцитов оттесняется в область последнего витка, образующего наружный слой оболочек волокна, называемой шванновской оболочкой или неврилеммой.
Отдельные дендриты образуют дендритную ветку, они же объединяются в дендритный регион. Совокупность всех дендритов называют дендритным деревом нейрона, оно образует воспринимающую поверхность нейрона. Ссылки[ ] Косицын Н. Микроструктура дендритов и аксодендритических связей в центральной нервной системе.
Савельева-Новосёлова Н.
Такие волокна называются волокнами кабельного типа рис. Так как длина аксона существенно больше размеров шванновских клеток, оболочку аксона образуют цепочки нейроглиальных клеток. Многие нервные волокна имеют миелиновую оболочку. Она также образуется нейроглиальными клетками. При формировании такой оболочки олигодендроцит в ЦНС или шванновская клетка в периферической нервной системе обхватывает участок нервного волокна рис. После этого образуется вырост в виде язычка, который закручивается вокруг волокна, образуя мембранные слои цитоплазма при этом из «язычка» выдавливается. Таким образом, миелиновая оболочка представляет собой двойные слои клеточной мембраны и по своему химическому составу является липопротеидом, то есть соединением липидов жироподобных веществ и белков.
Миелиновая оболочка осуществляет электрическую изоляцию нервного волокна наиболее эффективно. Миелиновая оболочка начинается немного отступя от тела нейрона и заканчивается примерно в 2 мкм от синапса. Она состоит из цилиндров длиной 1,5-2 мм, каждый из которых образован своей глиальной клеткой. Цилиндры разделяют перехваты Ранвье — не покрытые миелином участки волокна их длина 0,5 - 2,5 мкм , играющие большую роль в быстром проведении нервного импульса. В перехватах от аксона могут отходить коллатерали. Поверх миелиновой оболочки у мякотных волокон есть еще наружная оболочка — неврилемма, образованная цитоплазмой и ядром нейроглиальных клеток. Строение нервных волокон: А — миелиновое; Б — безмиелиновая; I — волокно; 2 — миелиновый слой; 3— ядро шванновской клетки; 4 — микротрубочки; 5—Нейрофиламенты; 6 — митохондрии; 7—соединительнотканная оболочка Рис. Строение миелиновой оболочки А.
Стрелкой показано направление продвижения выроста цитоплазматической мембраны Миелин имеет белый цвет. Именно это его свойство позволило разделить вещество нервной системы на серое и белое. Тела нейронов и их короткие отростки образуют более темное серое вещество, а волокна — белое вещество. Классификация нейронов Нейроны очень разнообразны по форме, величине, количеству и способу отхождения от тела отростков, химическому строению имеется в виду, в первую очередь, синтез тех или иных нейромедиаторов и т. Тела самых крупных нейронов достигают в диаметре 100 - 120 мкм гигантские пирамиды Беца в коре больших полушарий , самых мелких — 4-5 мкм зернистые клетки коры мозжечка. Приведем основные способы классификации нервных клеток. Различные типы нейронов: А — псевдоуниполярный нейрон спинномозгового ганглия; Б — биполярный нейрон сетчатки; В — мотонейрон спинного мозга; Г — пирамидная клетка коры больших полушарий видно, что дендриты покрыты шипиками ; Д — клетка Пуркинье мозжечка; I — тело клетки; 2 — дендрит; 3 — аксон; 4 — коллатерали аксона Функционально нейроны подразделяются на чувствительные сенсорные , вставочные переключательные, интернейроны и исполнительные двигательные или мотонейроны и др.
2.3. Отростки нейрона
Основные клетки нервной ткани – нейроны – состоят из тела и отростков. проводник импульсов. У нервной клетки много отростков-дендритов, а этот отросток — один 5 букв сканворд. Скопление нервных волокон, покрытое сверху соединительно-тканной оболочкой, называется 10). Основной их задачей является принятие нервных импульсов и раздражений из внешней среды или другой клетки и передачу их к телу нейрона. 5. Нейрон – это: 1) многоядерная клетка с отростками; 2) одноядерная клетка.
CodyCross Короткий отросток нервной клетки ответ
у нервной клетки много отростков-дендритов, а этот отросток — один. Ниже вы найдете правильный ответ на Отросток нервной клетки 5 букв, если вам нужна дополнительная помощь в завершении кроссворда, продолжайте навигацию и воспользуйтесь нашей функцией поиска. у нервной клетки много отростков-дендритов, а этот отросток — один. Ответ на вопрос в сканворде отросток нейрона состоит из 5 букв.
Отросток нервной клетки — 5 букв, кроссворд
Строение нейрона Нейрон — основная структурная и функциональная единица нервной системы. Структурно-функциональной единицей нервной системы является нервная клетка — нейрон. Его основными свойствами являются возбудимость и проводимость. Нейрон состоит из тела и отростков. Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.
Каждая нервная клетка имеет один длинный отросток — аксон, по которому импульсы направляются от тела клетки. Длина аксона может достигать нескольких десятков сантиметров.
Какие ткани? Igorek1403 28 апр. Это очень древняя форма организмов. Полагают, что они возникли около 1.. Rturbakov 28 апр. Shmt1999ml 28 апр.
Ваш творческий подход и интересные вопросы делают процесс решения заданий невероятно увлекательным. С наилучшими пожеланиями и готовностью к новым кроссвордам, Ответить.
А — веретеновидный нейрон; Б — пирамидальный нейрон; В — клетка Пуркинье; Г — звездчатый нейрон. Классификация нейронов по форме тела и ветвлению отростков Звездчатые нейроны отличаются чрезвычайным разнообразием. Система звездчатых нейронов с сильно разветвленными дендритами в фило - и онтогенезе прогрессивно возрастает и усложняется в корковых концах анализаторов. Нервные клетки данного типа составляют значительную часть от всех видов клеточных элементов коры больших полушарий. Дендритные и нейритные окончания особенно сильно разветвляются в верхних слоях коры. Аксоны звездчатых нейронов обычно не выходят за пределы коры больших полушарий, а иногда и за пределы своего слоя. Пирамидные нервные клетки встречаются во всех слоях коры больших полушарий. Они сильно варьируют по своим размерам. Наиболее крупные нейроны, известные как клетки Беца В. В местах деления III на три подслоя гигантопирамидные нейроны залегают в третьем подслое. По чувствительности к действию раздражителей нейроны делятся на моно -, би -, полисенсорные. Моносенсорные нейроны. Располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на световое раздражение сетчатки глаза. Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры большого мозга могут реагировать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более - полимодальными. Модальность — характер воспринимаемого и передаваемого сигнала например, механорецепторные, зрительные, обонятельные нейроны и т. Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем. Специфические образования нервной клетки. К специфическим образованиям относятся тигроидное вещество и нейрофибриллы. Тигроидное вещество тигроид, вещество Ниссля находится в перикарионе и дендритах, он отсутствует в аксоне. Под световым микроскопом тигроид выявляется как скопление базофильного вещества в виде глыбок или зерен. Крупные глыбки придают цитоплазме пятнистый вид шкуры тигра. С помощью электронного микроскопа установлено, что тигроид представляет мощно развитый гранулярный ЭПР. Ретикулум состоит из системы мембран с большим количеством рибосом. Высокое содержание РНК обуславливает базофилию тигроида. В нем содержится и белок. Тигроид — обязательный компонент нервной клетки, легко меняющийся в зависимости от функционального состояния. Тигролиз — распыление тигроидного вещества, отражает глубокие дистрофические изменения при нарушении целостности нейронов. При сильном возбуждении нейрона тигроид может исчезнуть вообще. Уменьшение тигроида и изменение его положения в нейронах наблюдается также в результате патологических процессов: воспаления, дегенерации, интоксикации. Все это дает основание рассматривать количество тигроида, форму его глыбок, характер их расположения как показатели физиологического состояния нейрона. В цитоплазме нейронов обнаруживаются нейрофибриллы — нитчатые структуры. В теле нейрона и дендритах они образуют густую сеть. В аксоне они вытягиваются по длине. Открытие нейрофибрилл привело к возникновению нейрофибриллярной теории проведения нервного возбуждения. Сторонники этой теории считали, что нейрофибриллы являются беспрерывным проводящим элементом нервной системы, с чем связана ее главная функция. В дальнейшем было установлено, что нейрофибриллы не принимают участие в процессе проведения нервного и возбуждения и прерываются в области контакта нервных клеток. По современным представлениям, в соответствии с нейронной теорией в проведении нервного возбуждения основная роль принадлежит плазмалемме нейрона. Вопрос о значении фибрилл остается неясным. По слипанию нейрофибрилл определяют патологическое состояние нервной клетки. Показано, что при старческом слабоумии наблюдается слипание и огрубление нейрофибриллярной сети. Обмен веществ в нейроне. Нейроны при участии клеток глии обеспечивают себя всем «необходимым» для нормального функционирования, так как синтезируют белки, углеводы и липиды, которые используются самой нервной клеткой в процессе е жизнедеятельности. Необходимые питательные вещества, кислород и соли доставляются в нервную клетку кровью. Продукты метаболизма также удаляются из нейрона в кровь. Белки нейронов служат для пластических и информационных целей. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых структурах нервной системы выше, чем в более старых. Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше - в мозжечке, наименьшая - в спинном мозге. Липиды нейронов служат энергетическим и пластическим материалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается. Углеводы нейронов являются основным источником энергии для них. Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того, что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит и глюкоза крови. Расщепление глюкозы идет преимущественно аэробным путем, чем объясняется высокая чувствительность нервных клеток к недостатку кислорода. Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. Кроме того, в нейроне имеются различные микроэлементы. Благодаря высокой биологической активности они активируют ферменты. Количество микроэлементов в нейроне зависит от его функционального состояния. Так, при рефлекторном или кофеиновом возбуждении содержание меди и марганца в нейроне резко снижается. Обмен энергии в нейроне в состоянии покоя и возбуждения различен. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз. Собственные энергетические процессы нейрона его сомы тесно связаны с трофическими влияниями нейронов, что сказывается, прежде всего, на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон. Тема 3. Нейросекреторные клетки. Регенерация нейронов. Нейросекреторные нервные клетки. В определенных отделах мозга беспозвоночных и позвоночных животных имеются нейроны, содержащие гранулы секрета. Такие секретирующие нейроны называются нейросекреторными. Они имеют физиологические признаки нейрона, но обладают выраженными признаками железистых клеток. Нейросекрет синтезируются в связи с тигроидной субстанцией гранулярной ЭПС, оформляется в виде секрета в системе аппарата Гольджи. Секрет продвигается по аксону и выделяется из клеток в области их концевых разветвлений. В отличие от обычных нейронов секрет высвобождается не в области синапса, а в кровь или ликвор мозговую жидкость. Аксоны нейросекреторных клеток направляется в нейрогипофиз и промежуточную долю аденогипофиза, образуя с ними единую систему. Выделяемый нейросекреторными клетками продукт рассматривают как гормон, регулирующий деятельность некоторых желез внутренней секреции и гонад, где нервная регуляция оказывается редуцированной. Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются? Этот факт часто приводится в популярной и даже научной литературе. Однако такое мнение научно не обосновано и потому не может считаться достоверным. На самом же деле любая клетка одновременно и живет и "работает". В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому целесообразным будет обратить внимание к одному из свойств нервной системы, а именно - к ее исключительной пластичности. Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых нервные клетки, которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Значит, одна живая нервная клетка может заменить девять погибших. Но пластичность нервной системы - не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант - возникновение новых нервных клеток в головном мозге взрослых млекопитающих и человека, или нейрогенез. Первое сообщение о нейрогенезе появилось в 1962 году в статье "Формируются ли новые нейроны в мозге взрослых млекопитающих? Ее автор, профессор Ж. Он с помощью электрического тока разрушал латеральное коленчатое тело крысы и вводил туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе и коре головного мозга. В дальнейшем аналогичное явление было установлено и другими исследователями в головном мозге птиц. В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы - часть из них "затаивается" и ждет своего часа. Новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Аналогичный процесс происходит и в нервной системе млекопитающих рис. Основные пути дифференцировки клеток ганглионарной пластинки и нервной трубки Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих. Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. Продолжительность жизни таких нейронов очень высока - до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь около 2 см. Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны. Стволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны. Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Нейрогенез идет не только у грызунов, но и у человека. В этом убедились на основе анализа результатов эксперимента. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство - способность накапливаться в делящихся клетках различных органов и тканей. Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей. Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых клеток, но и из стволовых клеток крови. Оказалось, что стволовые клетки действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образую двуядерные клетки. Затем «старое» ядро нейрона разрушается, а его замещает «новое» ядро стволовой клетки крови. Согласно одной из гипотез, стволовые клетки несут новый генетический материал, который, попадая в «старую» клетки мозжечка, продлевает его жизнь. Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний заболеваний, сопровождающихся гибелью нейронов головного мозга. Препараты стволовых клеток для трансплантации получают двумя способами. Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход - использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками — заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это. Трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона. Термин «нейроглия» ввел в обиход немецкий патологоанатом Рудольф Вирхов для описания связывающих элементов между нейронами. Эти клетки составляют половину объема мозга.