Новости коэффициент джини показывает

Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения.

Что бы сделал Робин Гуд?

Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). К 1912 году итальянский статистик Коррадо Джини разработал алгебраическую интерпретацию кривой Лоренца: коэффициент, призванный указывать, насколько неравным является экономическое распределение. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». Коэффициент Джини.

Чем опасен разрыв между бедными и богатыми и насколько он большой

  • Индекс Джини
  • Коэффициент Джини (распределение дохода) - Европейский портал информации здравоохранения
  • Gini Coefficient
  • Индекс Джини в 1980–2022 годах
  • Вы точно человек?
  • Суть коэффициента Джини

Коэффициент джини в России

Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. Коэффициент Джини. В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения.

В России зафиксирован рост доходного неравенства

Коэффициент Джини Всемирного банка - CIA World Factbook. Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. Помимо Коэффициента Джини и Децильного коэффициента, народ постоянно пытается придумать другие коэффициенты и индексы, которые бы, так или иначе, отражали неравенство. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини.

Экономика. 10 класс

Определяется она так: стоимостная оценка потребительской корзины, то есть «необходимые для сохранения здоровья человека и обеспечения его жизнедеятельности минимальный набор продуктов питания, а также непродовольственные товары и услуги…» , а также обязательные платежи и сборы, к которым относятся коммунальные платежи. Конечно, имеется в виду количество рублей в месяц. В первом случае государству нужно подсчитать, сколько требуется заложить в бюджет на социальные выплаты например, пособия малоимущим и субсидии на оплату ЖКХ и пенсии. Во втором — посмотреть динамику потребления и сделать экономические прогнозы. Величина прожиточного минимума зависит от региона и даже социальной принадлежности получателя. Всего есть три социально-демографические группы, для которых определяется прожиточный минимум: трудоспособное население, пенсионеры и дети. Отдельно он рассчитывается «в расчёте на душу населения».

Независимость от размера населения: не имеет значения, насколько велико население страны. Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной.

Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными.

Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами.

Вторую - под доли в сумме доходов, которые получает каждая такая доля населения. Если доходы каждой доли абсолютно одинаковы, получим вот такой график с прямой линией.

А теперь изменим доходы. Пусть одни децили общества получают поменьше, а другие - побольше. График начинает выглядеть по-иному.

Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.

В то же время коэффициент Джини ведь растет, показывая реальное положение дел. В расчетах федеральных ведомств немало ошибок. Дело не в сознательном занижении инфляции, попытках «не увидеть» реальный рост цен или понизить показатели коэффициента Джини. Дело в большей степени состоит в проблемной выборке для статистической оценки. Так, например, индекс прожиточного минимума высчитывает Минтруд, который не учитывает полное изменение стоимости услуг по всей стране, что на выходе дает более красивую картину по прожиточному минимуму, а значит, население кажется менее бедным, чем есть на самом деле. В обзоре ВШЭ сказано, что Росстат тоже не безгрешен. Он определяет инфляцию и прожиточный минимум на основе цен в городах и не учитывает стоимость товаров в несетевых магазинах в сельской местности.

То же касается и услуг. Десятка богатых к десятке бедных Для определения неравенства используется еще так называемый децильный коэффициент. Этот показатель в России менялся за последнее десятилетие примерно в общей парадигме коэффициента Джини и тоже наглядно показывал разницу в доходах бедных и богатых. По данным Росстата, за последние десять лет наиболее низким децильный коэффициент оказался в 2017 году 15,3 , а самым высоким — в 2008-2010 годах 16,6. По другим оценкам, в истории современной России он в реальности мог достигать и 17. Нормально это или нет? В предвоенной царской России начала XX века, например, по расчетам профессора факультета социологии Санкт-Петербургского государственного университета Бориса Миронова, децильный коэффициент равнялся всего лишь 6,5. В других странах коэффициент сильно разнится, причем далеко не всегда это коррелирует с благополучием страны.

Так, в 2015 году в Южной Корее он составлял 7,8, что считается очень хорошим показателем. Сообразно общей картине различается и коэффициент Джини по странам.

Силуанов допустил рост экономики по итогам 2023 года выше 2,5%

  • Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения
  • Контактная информация
  • Неравенство и бедность
  • Коэффициент Джини, значение по странам мира и в России
  • РБК: Росстат зафиксировал рост концентрации доходов в 2023 году
  • Коэффициент Джини — что это такое?

Коэффициент джини в России

Последствия неравенства доходов в России Неравенство доходов в России имеет серьезные последствия для общества и экономики. Вот некоторые из них: Социальные проблемы Неравенство доходов может привести к социальным проблемам, таким как бедность, безработица и социальное неравенство. Люди с низкими доходами могут испытывать трудности в доступе к основным услугам, таким как образование, здравоохранение и жилье. Это может привести к ухудшению качества жизни и увеличению социального неравенства. Экономические последствия Неравенство доходов может оказывать негативное влияние на экономику. Когда большая часть доходов сосредоточена у небольшой группы людей, это может привести к снижению потребительского спроса и ограничению рынка для товаров и услуг. Это может замедлить экономический рост и развитие страны. Политические последствия Неравенство доходов может также иметь политические последствия. Когда неравенство доходов слишком высоко, это может привести к недовольству и социальным напряжениям. Это может вызвать политическую нестабильность и угрожать социальному порядку.

Увеличение разрыва между богатыми и бедными Неравенство доходов может привести к увеличению разрыва между богатыми и бедными. Это может создать неравные возможности и ограничить социальную мобильность. Люди с низкими доходами могут испытывать трудности в получении образования, развитии карьеры и улучшении своего положения в обществе. В целом, неравенство доходов в России имеет серьезные последствия для общества и экономики. Поэтому важно разрабатывать и реализовывать меры по снижению неравенства и созданию более справедливого и равноправного общества. Меры по снижению неравенства доходов в России Для снижения неравенства доходов в России можно применять различные меры, которые направлены на улучшение доступа к образованию, создание равных возможностей для всех граждан и поддержку малоимущих слоев населения. Ниже приведены некоторые из таких мер: Повышение минимальной заработной платы Установление достойного уровня минимальной заработной платы может помочь снизить разрыв между богатыми и бедными. Это позволит людям с низкими доходами получать более стабильный и достаточный доход для проживания. Расширение доступа к образованию Образование является ключевым фактором в снижении неравенства доходов.

Поэтому важно расширять доступ к качественному образованию для всех слоев населения. Это может включать в себя предоставление грантов и стипендий для студентов из малообеспеченных семей, создание программ поддержки для детей с ограниченными возможностями и развитие профессионального образования для взрослых. Развитие инфраструктуры и доступа к услугам Улучшение инфраструктуры и доступа к основным услугам, таким как здравоохранение, жилье, транспорт и коммуникации, может помочь снизить неравенство доходов. Это позволит людям из отдаленных и малообеспеченных регионов иметь равные возможности и доступ к необходимым услугам.

Государственная статистика Единая межведомственная информационно-статистическая система ЕМИСС разрабатывалась в рамках реализации федеральной целевой программы «Развитие государственной статистики России в 2007-2011 годах». Целью создания Системы является обеспечение доступа с использованием сети Интернет государственных органов, органов местного самоуправления, юридических и физических лиц к официальной статистической информации, включая метаданные, формируемой в соответствии с федеральным планом статистических работ.

И что самое главное — не изменился алгоритм построения кривой.

Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много?

Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.

Меньше всего получили бы бедняки Китая 234 доллара , Нигерии 182 доллара и Индии 59 долларов. Россия заняла 32-е место из 42: если состояние бизнесмена Алишера Усманова в 16 миллиардов долларов разделить между российскими бедняками, то каждому достанется по 1029 долларов. Это не собственно индекс Робин Гуда или индекс Гувера, метод расчёта несколько искажён. Вопрос, с какой целью агентство провело такие расчёты? Может быть, интересно поделить чужие доходы или чужое имущество? Если нас интересуют самые богатые жители России, мы можем посмотреть список Forbes. И, наверное, полезнее узнать, за счёт чего они стали богатыми. Понимание того, как добиться успеха, может стать хорошим стимулом для молодёжи. Кроме того, делить доходы миллиардеров на численность жителей страны смысла нет. Как правило, богатые люди — владельцы не национального, а международного капитала, их корпорации производят товары и услуги для жителей всей планеты. В нашей стране при составлении государственных экономических и социальных программ ориентируются на другие показатели.

Gini Coefficient

вы делаете те новости, которые происходят вокруг нас. Свое название данный коэффициент получил по инициалам демографа и статиста Корадо Джини, предложившего эту статистическую модель. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках. Коэффициент Джини показывает степень неравенства в распределении доходов/богатства внутри страны или группы.

Gini Coefficient

В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395. Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Коэффициент Джини определяется как отношение площади фигуры, расположенной под кривой Лоренца, к площади треугольника ODC. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход.

Коэффициент Джини

Однако, в ходе анализа модели было предложено рассмотреть возможность добавления нового фактора — F18. Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку.

По другим видам доходов у нас либо нет налогов — на пенсии, стипендии, пособия, либо другие ставки налогообложения, например, на предпринимательские доходы или от финансовых операций. Ещё один инструмент выравнивания — социальные трансферты: пособия, пенсии, компенсационные выплаты и льготы. Возвращаясь к идее разделения доходов богатых среди бедных, хотелось бы напомнить пример зимних Олимпийских игр — 2014 в Сочи.

Перед их проведением некоторые тоже высчитывали, во сколько организация Олимпиады обошлась каждому россиянину. Разделили 50 миллиардов долларов на 143 миллиона жителей, оказалось, по 350 долларов на человека. Если делить только на бедных, получается более 3200 долларов на каждого. Но теперь мы так гордимся результатами Олимпиады, что вопрос, стоило ли тратить на неё деньги, снят с повестки дня. Величина коэффициента может варьироваться от ноля до единицы, при этом чем выше значение показателя, тем более неравномерно распределены доходы. Гораздо полезнее ставить свои цели и добиваться их. Коэффициент Джини в России.

Чем ближе показатель к нулю, тем меньше доходное неравенство. Кандидат экономических наук, доцент кафедры корпоративных финансов и корпоративного управления Финансового университета при Правительстве РФ Ольга Борисова объяснила в беседе с «Новыми Известиями», что у усиления такого неравенства есть несколько причин. Кратковременное сокращение доходов персонала, работающего на начало 2023 г. Значительное их количество закрывало свои точки в России, отправляя персонал в отпуск или переводя на выплаты МРОТ на неопределенный срок, пока не находили фирму-покупателя в стране. Неравномерность роста заработка по отраслям.

They do not apply to official groups presented in your selected database. For each selected series, choose your Aggregation Rule and Weight Indicator if needed from the corresponding drop-down boxes. Check the Apply to all box if you wish to use the same methodology for all selected series. Aggregation Rules include: 1. Max: Aggregates are set to the highest available value for each time period. Mean: Aggregates are calculated as the average of available data for each time period. Mean 66: Aggregates are calculated as the average of available data for each time period. Values are not shown if more than one third of the observations in the series are missing. Median: Aggregates are calculated as the median of available data for each time period. Median 66: Aggregates are calculated as the median of available data for each time period.

Похожие новости:

Оцените статью
Добавить комментарий