«Прорыв» предусматривает создание ядерных энергетических технологий нового поколения на базе замкнутого топливного цикла с использованием реакторов на быстрых нейтронах. Рассказываем, как устроены реакторы на быстрых нейтронах и почему они могут в корне изменить наше представление об энергетике. Исследуем, как работают реакторы на быстрых нейтронах и в чем заключается их преимущество в ядерной энергетике. Невольно возникает вопрос, а не отстанет Россия, ныне передовая страна со своим реактором на быстрых нейтронах БН-600, от Индии в области строительства быстрых реакторов? Этот проект нужен для отработки технологии реакторов на «быстрых» нейтронах с использованием уранплутониевого топлива.
В России завершается сборка мощнейшего «суперреактора» на быстрых нейтронах
Мощность для исследовательского реактора не важна, но она прямо связана с нейтронным потоком, который и является главным инструментом исследований. А поток влияет на сроки набора дозы облучения — возможность провести эксперименты с облучением за три года вместо 10 лет безусловно важна для исследователей, и это и является главным преимуществом высокопоточного реактора, так же, как и возможность проведения экспериментов в более широком диапазоне температур. На основе МБИРа создается самая современная исследовательская площадка не только для России, но фактически для всего мира. Росатом неоднократно заявлял, что открыт для взаимовыгодного сотрудничества в данном проекте со всеми заинтересованными сторонами, поэтому и возникла идея сформировать на базе МБИРа Международный центр исследований. Росатом предложил зарубежным партнерам уникальную возможность — принять участие в создании исследовательской инфраструктуры, которая нацелена на решение актуальных научных задач в обоснование инновационных реакторных концепций и будет отвечать всем передовым требованиям. Универсальная исследовательская установка с высоким нейтронным потоком не может быть реализована в малом масштабе или на модульной основе, таким образом, высокая стоимость — неизбежный фактор. Данный факт приводит к идее, продвигаемой МАГАТЭ, а именно к региональным «центрам коллективного пользования», в рамках которых один реактор может обслуживать потребности многих стран. Участвуя в проекте, международные партнеры смогут получить доступ к уникальному инструменту, которого нет больше нигде в мире, и при этом минимизировать и оптимизировать свои расходы. Текущий год стал отправной точкой для проведения работ по созданию МЦИ. Росатом уже подписал два международных меморандума о сотрудничестве и планирует до конца года подписать еще несколько.
Специалисты полагают, что данная инновация фактически превращает БН-800 в вечный ядерный реактор. Облученное ядерное топливо с прочих атомных электростанций теперь можно повторно использовать после специальной переработки. Эксперты подчеркивают, что это событие можно считать ярким примером воплощения идеи мирного атома, работающего на благо всего человечества.
В легководных реакторах вода используется в качестве замедлителя, который помогает контролировать продолжающееся ядерное деление в активной зоне. Вода замедляет движение свободных нейтронов, чтобы те с большей вероятностью продолжили реакцию деления, тем самым повышая ее эффективность.
С нагревом реактора больше воды превращается в пар и меньше становится доступно для этой роли замедлителя. В результате ядерное деление замедляется. Этот принцип отрицательной обратной связи является ключевым аспектом безопасности, который предотвращает реакторы такого типа от перегрева. Реакторы типа РБМК-1000 отличаются. Они были созданы специально для работы на менее обогащенном топливе.
В качестве теплоносителя реакторы этого типа также используют воду, но в качестве замедлителя в них используются графитовые блоки. Из-за такого разделения ролей теплоносителя и замедлителя в РБМК не работал принцип отрицательной обратной связи «больше пара — меньше реактивность». Вместо это реакторы типа РБМК использовали принцип пустотного коэффициента реактивности. Часть теплоносителя в реакторе может испаряться, образовывая пузырьки пара пустоты в теплоносителе. Увеличение содержания пара может приводить как к росту реактивности положительный паровой коэффициент , так и к ее уменьшению отрицательный паровой коэффициент , это зависит от нейтронно-физических характеристик.
При положительном коэффициенте для нейтронов облегчается задача по движению к графитовому замедлителю, говорит ядерный физик из Швеции Ларс-Эрик де Геер. Отсюда и растет корень катастрофы, говорит Де Геер. С увеличением реактивности реактор нагревается, больше воды превращается пар, что еще сильнее повышает реактивность. Процесс продолжается и продолжается. Что стало причиной катастрофы на Чернобыльской АЭС?
Пульт управления атомной станцией это что-то из «Стар трэк» Когда Чернобыльская АЭС работала в полную силу, это не было большой проблемой, говорит Лайман. При высоких температурах урановое топливо, которое приводит в действие ядерное деление, поглощает больше нейтронов, что делает его менее реактивным. Но при работе на пониженной мощности реакторы типа РБМК-1000 становятся очень нестабильными. На станции 26 апреля 1986 года шел планово-предупредительный ремонт. И каждый такой ремонт для реактора типа РБМК включал испытания работы различного оборудования, как регламентные, так и нестандартные, проводящиеся по отдельным программам.
Что это значит на понятном языке? Испытания говорят о появлении принципиально новых ядерных реакторов, так называемых реакторов на быстрых нейтронах. Теперь отработанное топливо из других атомных электростанций можно не захоранивать, создавая зоны отчуждения и подвергая себя и будущие поколения огромному риску, а ещё раз использовать, соответствующим образом его переработав. В данном случае атом работает на благо человека и сможет снабжать потребителей дешёвой электроэнергией, не вредя при этом экологии. Успешно проведённые испытания реактора БН-800 на Белоярской АЭС подразумевают, что ядерная энергетика станет практически безотходной, поскольку будет базироваться на уране-238, объёмов которого хватит не на один миллион лет. Это будет машина по переработке всего сырьевого урана, который мы извлечём из земли.
Он весь будет вовлечён в производство электроэнергии.
"Росатом" надеется ввести реактор "БРЕСТ" в 2028-2029 гг
Элементы многоцелевого исследовательского реактора на быстрых нейтронах МБИР отправлены из Волгодонска в Димитроград на место постоянной сборки. Теперь детали реактора общим весом более 360 тонн отправлены в Ульяновскую область в научно-исследовательский институт. После монтажа оборудования длина корпуса реактора составит 12 метров с минимальной для таких изделий толщиной металла до 50 мм.
Производство и внедрение такого топлива позволит увеличить ресурс атомных электростанций, утилизировать накопленные запасы обеднённого урана, перерабатывать облучённые элементы для производства свежего топлива вместо их хранения, а также радикально сократить образование ядерных отходов и их активность.
В СХК в конце прошлого года сообщали "Интерфаксу", что модель переработки отработавшего ядерного топлива будет введена в 2030 году.
В мероприятии приняли участие более 200 ученых и специалистов предприятий Госкорпорации «Росатом», научных организаций страны, а также делегация из Казахстана. Участники заседания обсудили историю и будущее развитие отрасли, актуальные научные и технические вопросы, проанализировали опыт, полученный при создании, пуске и эксплуатации БН-350, пуск которого в те годы стал технологическим прорывом, положившим начало энергетике будущего.
Его успешная эксплуатация позволила накопить неоценимый опыт, который нашёл своё развитие в создании более мощных энергетических реакторов. Благодаря общему труду сегодня мы являемся лидирующей страной в области быстрых технологий». Он также зачитал поздравление от имени депутатов Государственной Думы Российской Федерации, адресованное коллективу Физико-энергетического института им. От имени администрации Обнинска к участникам обратился Глава городского самоуправления, Председатель Обнинского городского Собрания Геннадий Артемьев.
Он подчеркнул, что вклад ученых Физико-энергетического института оказался решающим в этом историческом событии. Доктор физико-математических наук, профессор, президент ядерного общества Казахстана Владимир Школьник в своем выступлении отметил перспективность технологии быстрых реакторов и актуальность направления по выводу отработавших ядерных установок из эксплуатации.
В России завершается сборка мощнейшего «суперреактора» на быстрых нейтронах
Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей | Реакторы на быстрых нейтронах способны нарабатывать плутоний, которого хватит, чтобы обеспечить собственную работу и при необходимости другие реакторы новым топливом. |
Россия запустила модель Реактора будущего или «Секрет» поставок урана в США | В отличие от водо-водяных энергетических реакторов (ВВЭР), реактор на быстрых нейтронах в качестве теплоносителя использует не воду, а жидкий металл, в данном случае — натрий. |
"Росатом" надеется ввести реактор "БРЕСТ" в 2028-2029 гг | «Росатом» начал монтаж первой в мире реакторной установки естественной безопасности на быстрых нейтронах со свинцовым теплоносителем. |
БАЭС стала первой в мире станцией, работающей на ядерных отходах — 03.11.2023 — В России на РЕН ТВ | В нем реакторы на быстрых и на тепловых нейтронах будут работать совместно, обмениваясь топливом. |
Реактор БН-800 проработал год на топливе из отработавшего ядерного топлива
В Северске началось капитальное строительство линий электропередачи (ЛЭП) для реализации схемы выдачи мощности будущего энергоблока с инновационным реактором на быстрых нейтронах со свинцовым теплоносителем БРЕСТ-ОД-300. Заметим, что и быстрые нейтроны появились в Поднебесной не без участия России. Целью сооружения МБИР является создание высокопоточного исследовательского реактора на быстрых нейтронах с уникальными потребительскими свойствами для реализации следующих задач: проведение реакторных и послереакторных исследований. Четвертый энергоблок Белоярской АЭС с реактором на быстрых нейтронах был впервые полностью переведен на инновационное МОКС-топливо. В реакторах на быстрых нейтронах обходятся без замедлителей. Россия продолжила работу с реакторами на быстрых нейтронах единственная в мире.
В России до сих пор работают 10 ядерных реакторов «чернобыльского типа». Безопасны ли они?
Утилизация радиоактивных отходов путём вовлечения в полезный производственный цикл отвального урана и плутония. Энергообеспечение развития экономики Свердловской области. До октября 2016 года — выполнение обязательств по утилизации оружейного плутония в рамках соглашения [21]. Выполнение обязательств приостановлено на основании Федерального закона от 31. При награждении было отмечено, что данный энергоблок: является самым мощным в мире реактором-размножителем на быстрых нейтронах с жидкометаллическим натриевым теплоносителем является универсальным устройством, пригодным для производства электроэнергии, утилизации плутония, утилизации отработанного ядерного топлива с АЭС на тепловых нейтронах, производства изотопов играет решающую роль в формировании экологически чистого «замкнутого» ядерного топливного цикла, увеличении объёмов производства ядерного топлива, увеличении мощности АЭС и сокращении ядерных отходов Безопасность реакторов типа БН, в частности БН-800[ править править код ] В разделе не хватает ссылок на источники см. Это качество убедительно продемонстрировано в процессе длительной эксплуатации предшествующего реактора БН-600. Принят целый ряд новых решений: они основываются на пассивных принципах. Это означает, что эффективность не зависит от надёжности срабатывания вспомогательных систем и действий человека. Поэтому ресурс натриевого оборудования большой, а количество образующихся в таком реакторе радиоактивных продуктов коррозии намного меньше, чем в других типах реакторов. При эксплуатации установок типа БН образуется незначительное количество радиоактивных отходов.
Большие проблемы вызывают примеси кислорода из-за участия кислорода в массопереносе железа и коррозии компонентов; натрий является очень активным химическим элементом.
Это первое промышленное, а не экспериментальное применение реактора на быстрых нейтронах. Идея ЗЯТЦ заключается в том, чтобы извлекать энергию из радиоактивных материалов, которые до сих пор считались отходами и подлежали захоронению. Что само по себе крайне дорого и опасно.
При облучении плутоний-239 не только делится, но и захватывает нейтроны, в связи с чем накапливаются его другие изотопы: плутоний-240, -241, -242, такое превращение наиболее эффективно происходит в реакторе на быстрых нейтронах. Принципиально важно, что при этом возможна наработка плутония в количестве, превышающем потребности самого реактора поэтому реакторы такого типа называют размножителями. За счет этого происходит не только наработка топлива для обеспечения работающих быстрых реакторов, но и постепенное его накопление. В связи с этим становится очевидным, что внедрение реакторов-размножителей на быстрых нейтронах является необходимым условием для развития крупномасштабной ядерной энергетики.
В процессе эксплуатации реакторов на быстрых нейтронах должна быть решена важнейшая задача — создание замкнутого ядерного топливного цикла, который характеризуется повторяющимися циклами переработки отработавшего ядерного топлива и изготовления на основе выделенного плутония нового топлива. Этапы освоения быстрых натриевых реакторов Работы по быстрым реакторам были начаты в Физико-энергетическом институте с создания исследовательской базы — экспериментального реактора мощностью 5 МВт БР-5, 1958 г. В нем впервые были использованы и испытаны в работе научно-технические идеи и решения, на основе которых позднее стали развиваться быстрые реакторы большей мощности. К числу таких решений относились: натриевый теплоноситель для отвода тепла от ядерного реактора, керамическое топливо в виде смеси диоксидов урана и плутония, нержавеющие стали в качестве основного материала конструкций, контактирующих с натрием. Реактор БОР-60 разработчик проекта РУ — ОКБ «Гидропресс» представлял собой следующую ступень в освоении технологии быстрых натриевых реакторов и разрабатывался с более широкими возможностями для проведения различных исследований. Реактор был введен в эксплуатацию в 1969 году и является основной экспериментальной базой натриевых реакторов по настоящее время. Африкантова, научный руководитель проектов — Физико-энергетический институт им.
И в 2010 году уже стало ясно, что когда нужно будет загружать топливо в реактор, готово оно не будет. Тогда перед конструктором поставили срочную задачу: заменить проектную МОКС-зону на смешанную, где часть сборок будет содержать урановое топливо. И конструктор был вынужден принимать решения в условиях нехватки времени и с учётом всех требований, которые необходимо было соблюсти… Решения эти были связаны главным образом с распределением потока натрия — применили дроссельное устройство, которое вкручивалось снизу в топливную сборку. Как оказалось, это устройство при наших расходах натрия надёжно работать не может: там такие нагрузки, что оно просто-напросто вывинчивается и выпадает. Естественно, это касается только той части сборок их чуть больше сотни из общего количества в тысячу штук , которые пошли под замену штатных… Теперь нужно исправлять их недостатки, заменять ненадёжные части. На 2018 год энергоблок работает на номинальном уровне мощности [19]. В разделе не хватает ссылок на источники см. Информация должна быть проверяема , иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. Экспериментальная демонстрация ключевых компонентов закрытого топливного цикла. Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введённых для повышения показателей экономичности, надёжности и безопасности.
Ядерный спор: Ученый и "Росатом" разошлись в вопросе о развитии отрасли
Ядерный спор: Ученый и "Росатом" разошлись в вопросе о развитии отрасли | Реакторы на быстрых нейтронах — более безопасные, кроме того, они способны повысить эффективность использования сырья и обращения с отходами, говорится на сайте World Nuclear Association. |
Радиационные явления в реакторных материалах обсудили в Обнинске | Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. |
К «Прорыву» добавляется реактор | С моей точки зрения именно реактор на быстрых нейтронах это самое значимое, что создала Россия после перестройки. |
"Росатом" надеется ввести реактор "БРЕСТ" в 2028-2029 гг | Раньше в российские реакторы на быстрых нейтронах загружали обычное урановое топливо, так как на них отрабатывали натриевые технологии. |
Россия на пороге создания нового реактора на быстрых нейтронах
Производство и внедрение такого топлива позволит увеличить ресурс атомных электростанций, утилизировать накопленные запасы обеднённого урана, перерабатывать облучённые элементы для производства свежего топлива вместо их хранения, а также радикально сократить образование ядерных отходов и их активность.
Это именно та веха, ради которой изначально проектировался БН-800, строился уникальный атомной энергоблок и автоматизированное производство топлива на ГХК», — сказал он. Его применение в десятки раз увеличит топливную базу атомной энергетики. Кроме того, теперь отработавшее ядерное топливо других АЭС можно вместо хранения использовать повторно, в БН-800.
Топливо вторично перерабатывается и используется. Успешное испытание такого реактора означает почти безотходную ядерную энергетику с доступом к урану 238 в отличие от классической на уране 235 , которого хватит на очень и очень долго, это миллионы лет. И произошло это у нас на Урале. Прорыв, о котором не «гремели» зарубежные СМИ, и как ни странно, прошел почти незамеченным и в России. Отдельные быстро промелькнувшие репортажи это не значительно, на фоне такого значимого события. По словам специалистов, реактор успешно прошёл стадию технологического перехода на инновационное топливо, и готов нести полную нагрузку.
Для таблеток используется обедненный уран и высокофоновый плутоний, извлеченный из облученного топлива тепловых реакторов. В январе 2021 года после очередной перегрузки доля МОКС-топлива выросла до трети. В конце июня 2022-го во время планового ремонта в реактор загрузили последнюю треть, а в начале сентября блок включили в сеть.
Это позволило практически полностью замкнуть ядерный цикл. Что это значит на понятном языке? Испытания говорят о появлении принципиально новых ядерных реакторов, так называемых реакторов на быстрых нейтронах. Теперь отработанное топливо из других атомных электростанций можно не захоранивать, создавая зоны отчуждения и подвергая себя и будущие поколения огромному риску, а ещё раз использовать, соответствующим образом его переработав.
В данном случае атом работает на благо человека и сможет снабжать потребителей дешёвой электроэнергией, не вредя при этом экологии. Успешно проведённые испытания реактора БН-800 на Белоярской АЭС подразумевают, что ядерная энергетика станет практически безотходной, поскольку будет базироваться на уране-238, объёмов которого хватит не на один миллион лет. Это будет машина по переработке всего сырьевого урана, который мы извлечём из земли.
АО "ТВЭЛ" представило инновационные решения для замыкания ядерного топливного цикла
БН-800 — Википедия | Новый ядерный реактор на быстрых нейтронах со свинцовым теплоносителем должен стать демонстратором уникальной технологии – полностью замкнутого ядерного топливного цикла. |
Бесконечная энергия: в России придумали способ сделать атомные электростанции «вечными» | Это послужит дальнейшему развитию реакторов на быстрых нейтронах и пониманию, что происходит в радиационных полях с различными материалами». |
БН-800 — Википедия | Энергоблок №4 с реактором на быстрых нейтронах БН-800 (800 МВт) включен в энергосистему России и уже поставляет электроэнергию. |
В Волгодонске отгрузили реактор на быстрых нейтронах | Вообще-то, Россия не является пионером в создании реакторов на быстрых нейтронах, но она стала первой, кто преуспел в этом. |
Россия на пороге создания нового реактора на быстрых нейтронах
Специалисты отметили, что это означает появление вечных ядерных реакторов, способных повторно использовать облучённое ядерное топливо из других реакторов после того, как оно подвергается определённой переработке. Таким образом, Россия продемонстрировала ещё один пример работы атома на благо людей, пишет newsnn. Действительно, успешное испытание реактора данного типа означает начало практически безотходной ядерной энергетики с доступом к урану-238. Его хватит человечеству на миллионы лет.
Утилизация радиоактивных отходов путём вовлечения в полезный производственный цикл отвального урана и плутония. Энергообеспечение развития экономики Свердловской области. До октября 2016 года — выполнение обязательств по утилизации оружейного плутония в рамках соглашения [21]. Выполнение обязательств приостановлено на основании Федерального закона от 31. При награждении было отмечено, что данный энергоблок: является самым мощным в мире реактором-размножителем на быстрых нейтронах с жидкометаллическим натриевым теплоносителем является универсальным устройством, пригодным для производства электроэнергии, утилизации плутония, утилизации отработанного ядерного топлива с АЭС на тепловых нейтронах, производства изотопов играет решающую роль в формировании экологически чистого «замкнутого» ядерного топливного цикла, увеличении объёмов производства ядерного топлива, увеличении мощности АЭС и сокращении ядерных отходов Безопасность реакторов типа БН, в частности БН-800[ править править код ] В разделе не хватает ссылок на источники см. Это качество убедительно продемонстрировано в процессе длительной эксплуатации предшествующего реактора БН-600. Принят целый ряд новых решений: они основываются на пассивных принципах. Это означает, что эффективность не зависит от надёжности срабатывания вспомогательных систем и действий человека. Поэтому ресурс натриевого оборудования большой, а количество образующихся в таком реакторе радиоактивных продуктов коррозии намного меньше, чем в других типах реакторов. При эксплуатации установок типа БН образуется незначительное количество радиоактивных отходов. Большие проблемы вызывают примеси кислорода из-за участия кислорода в массопереносе железа и коррозии компонентов; натрий является очень активным химическим элементом.
При оптимальных условиях при делении одного ядра урана-235 можно будет получить 1,25 ядра нового оружейного плутония-239 из урана-238. Звучит фантастически. Заметим, что Российская Федерация в области подобных передовых энергетических технологий реально находится впереди планеты всей. Ни США, ни Франция, ни Япония, начав эксперименты с жидким натрием в качестве носителя в реакторах на быстрых нейтронах, так и не смогли добиться их устойчивой работы. Срок его эксплуатации продлен до 2025 года. Реактор следующего поколения БН-600 был запущен в Свердловской области в 1980 году, и он по-прежнему функционирует. Его мощность составляет 600 Мегаватт, для сравнения, у экспериментального китайского CEFR China Experimental Fast Reactor , запущенного в 2010 году, этот показатель составляет 45 Мегаватт. Самый свежий уже российский реактор на быстрых нейтронах БН-800 был запущен в строй в 2015 году на все той же Белоярской АЭС. Помимо промышленного назначения, ядерная установка, использующая натриевый теплоноситель, послужила платформой для обкатки передовых технологий. Помимо самого реактора, в рамках одного комплекса будут построены завод по сборке топливных элементов, а также завод по переработке отработанного топлива.
Благодаря общему труду сегодня мы являемся лидирующей страной в области быстрых технологий». Он также зачитал поздравление от имени депутатов Государственной Думы Российской Федерации, адресованное коллективу Физико-энергетического института им. От имени администрации Обнинска к участникам обратился Глава городского самоуправления, Председатель Обнинского городского Собрания Геннадий Артемьев. Он подчеркнул, что вклад ученых Физико-энергетического института оказался решающим в этом историческом событии. Доктор физико-математических наук, профессор, президент ядерного общества Казахстана Владимир Школьник в своем выступлении отметил перспективность технологии быстрых реакторов и актуальность направления по выводу отработавших ядерных установок из эксплуатации. Сочетание быстрых и тепловых реакторов в организации замкнутого цикла и исследования тех лет остаются актуальными, и я очень рад, что в Физико-энергетическом институте данные работы продолжаются, так как они имеют важное значение для будущего развития атомной энергетики. Эту тему нужно продолжать. Очень приятно отметить работы по материаловедению, особенно систематизированные данные исследований по радиационному распуханию.
Содержание
- Россия сделала шаг к энергетике будущего — Фонд стратегической культуры
- Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом
- ВЗГЛЯД / Уникальный реактор обеспечит энергетическое будущее России :: Общество
- Также по теме
- Россия сделала шаг к энергетике будущего — Фонд стратегической культуры
- Бесконечная энергия: в России придумали способ сделать атомные электростанции «вечными»
журнал стратегия
Россия первой запустила реактор на быстрых нейтронах с полным циклом использования МОКС-топлива, которое позволяет использовать неисчерпаемые запасы природного урана. Внедрение замкнутого топливного цикла осуществляется прежде всего для реакторов на быстрых нейтронах, которые по своей физике изначально более «всеядны» с точки зрения топлива и делящихся материалов. не нужно будет хранить ядерные отходы и «урановые хвосты». "Росатом" начал строительство уникального энергоблока с реакторной установкой на быстрых нейтронах БРЕСТ-300 по стратегическому проекту "Прорыв". Несмотря на то, что разработкой реакторов на быстрых нейтронах занимались еще в СССР, для промышленного производства МОКС-топлива пришлось построить отдельный завод. Физико-энергетический институт остается лидером в разработке и формировании реакторов на быстрых нейтронах.
"Росатом" начнет испытания топлива для "реактора будущего" на Белоярской АЭС в 2023 году
При выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла то, что не знали куда деть, становится ценнейшим сырьем – реакторы на быстрых нейтронах «питаются» тем, что остается после работы обычных реакторов. «Росатом» приступил к строительству в России атомного энергоблока с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300. Научно-техническая конференция «Развитие технологии реакторов на быстрых нейтронах с натриевым теплоносителем (БН-2023)». Эксперт Уваров: Россия сделала новый важный шаг к атомной энергетике будущего. Рассказываем, как устроены реакторы на быстрых нейтронах и почему они могут в корне изменить наше представление об энергетике.
Россия создала нейтронный «Прорыв»
Фактически реактор на быстрых нейтронах превратится в «перпетуум мобиле». С моей точки зрения именно реактор на быстрых нейтронах это самое значимое, что создала Россия после перестройки. Росатом ЗАМКНУЛ ЯДЕРНЫЙ ЦИКЛ! Борис Марцинкевич. Четвертый энергоблок БН-800 Белоярской АЭС после очередной загрузки инновационным МОКС-топливом выведен на 1. Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. Сообщается, что отечественные реакторы на быстрых нейтронах ранее загружались обычным урановым топливом, т. к. отрабатывали на них натриевые технологии. Россия первой запустила реактор на быстрых нейтронах с полным циклом использования МОКС-топлива, которое позволяет использовать неисчерпаемые запасы природного урана.