Новости что такое эврика

– «Я нашел!» – согласно преданию, восклицание Архимеда при открытии им основного закона гидростатики. Да, со временем программа ЭВРИКА измельчала, потеряла былую амбициозность, но ведь это именно то, что надо нашим малым и средним наукоемким фирмам для выхода со своей продукцией на европейский и мировой рынки. нашёл!] Восклицание, выражающее радость, удовлетворение при найденном решении, при возникновении удачной мысли и т.п. По преданию, так воскликнул греческий учёный Архимед.

Формула силы Архимеда

  • Что такое Эврика? Значение слова Эврика в историческом словаре
  • Случайная статья
  • Россия решила выйти из европейской научно-технической программы «Эврика»
  • Найдено научных статей по теме — 2

Архимедова сила: что это такое и как действует

Правительство постановило принять соответствующее предложение Министерства промышленности и торговли, согласованное с МИД России, Министерством финансов и Министерством юстиции, отмечается в документе. Также Минпромторгу дано поручение сообщить председателю и руководителю секретариата Ассоциации «Эврика» о принятии Россией данного решения. Ранее Совфед одобрил закон о прекращении действия в отношении России международных договоров Совета Европы.

Показательным является эксперимент, который Вольфганг Кёлер провел на своей исследовательской станции на Тенерифе в 1918 году. Он заставил домашних цыплят различать светлый и темный фон. Более светлый фон был целевым стимулом, который Кёлер награждал за распознавание. Психолог внимательно наблюдал за тем, что произошло, когда он представил цыплятам еще более светлый фон. Выбор ранее изученного целевого стимула был бы не чем иным, как обучением через ассоциации. На самом деле, однако, животные выбирали новый стимул. В опытах с цыплятами Кёлер показал, что животные способны к восприятию взаимосвязей, реагируя на больший или более яркий из двух стимулов и отвергая даже тот стимул, на который они были натренированы. Гештальт-психологи назвали этот феномен «законом транспозиции».

Очевидно, они уловили взаимосвязь между стимулами как решающий критерий и перенесли предыдущий результат обучения в новую ситуацию. Таким образом, память играет важную роль в когнитивном обучении. Предыдущие знания и убеждения определяют, как решаете новую задачу. Обучение через мысленные представления Особенность когнитивного обучения также состоит в том, что оно основано на внутренней обработке информации. Идея, лежащая в основе так называемого когнитивного подхода в психологии, заключается в следующем: люди и животные могут — в разной степени, конечно, — составлять «план в уме». Мысленно отображать свое окружение, а затем работать с этими внутренними идеями вместо того, чтобы иметь дело непосредственно с окружающей средой. В случае с Султаном когнитивный подход может дать объяснение. Очевидно, животное мысленно отображает проблему и внутренне моделирует отдельные компоненты этой репрезентации, пока не находит решение, которое оно затем применяет в реальном мире. Эксперименты заключались в размещении шимпанзе в замкнутом пространстве и предоставлении им желаемого объекта, который был вне досягаемости. Полученное решение остается доступным и далее, потому что мысленное представление постоянно.

Поэтому Султан смог перенести его на решение аналогичных задач, потому что представление, возможно, достаточно абстрактно не только для изображения исходной ситуации. Очевидно, что во многих случаях когнитивное обучение можно разбить на два этапа. В первую очередь решается проблема. На втором этапе решение проблемы сохраняется в памяти. Ведь оно может снова пригодиться в подобных ситуациях. Память играет важную роль в когнитивном обучении. Когнитивные карты Эдварда Толмена Одним из первых сторонников когнитивного подхода в обучении был американский психолог-необихевиорист Эдвард Толмен Edward Chace Tolman. В 1930-х — 1940-х годах его интересовала проблема того, как крысы узнают путь через сложный лабиринт. Толман стал автором концепции когнитивных карт Tolman, E. Cognitive maps in rats and men.

Идея Толмена: в процессе обучения в мозгу крысы создается что-то вроде полевой карты окружающей среды. Крысы составляют когнитивный план лабиринта, расположение которого они фиксируют в своем мозге. Различные исследования, похоже, подтверждают это предположение. В типичной экспериментальной установке крысы сталкиваются с пищей в конце каждой ветви лабиринта. Их задача — зайти в каждую из этих веток, не заходя ни в одну из них дважды. Крысы учатся быстро — и, вероятно, тоже с помощью ментальной карты. Как показывают эксперименты, маленькие грызуны довольно быстро учатся — даже если запах еды в еще не посещенных ходах покрывается лосьоном после бритья.

При этом в центре экрана находились часы, и спустя некоторое время после ответа испытуемые должны были вспомнить, когда они нашли решение задачи поняли, куда двигаются точки , и перевести на это время стрелку часов.

Это техника ментальной хронометрии. Она часто используется в когнитивной и экспериментальной психологии. Однако исследователям удалось — благодаря остроумному математическому приему — показать, что скорость и точность процесса решения связаны одной мозговой функцией. Ранее исследовательская группа Шедлена установила, что процесс принятия решений осуществляется на уровне отдельных нейронов.

О словаре Большая советская энциклопедия — одна из крупнейших и авторитетнейших мировых энциклопедий, в которой содержится более 100 тысяч статей на самые разные темы: наука, искусство, история, техника и так далее.

Первое издание содержало 65 томов и вышло еще в 1920-1940 годах прошлого века, третье — в 1970-х. В составлении энциклопедии принимали участие ведущие ученые и научные коллективы Советского Союза. Несмотря на достаточную давность, издание до сих пор не утратило своей актуальности и широко используется, переведено на многие языки мира. Адресовано самому широкому кругу читателей. Современный экономический словарь 1999 эврика европейское агентство по координации научных исследований, осуществляющее совместно программу научных исследований и разработок, в которой участвует большинство западноевропейских стран.

Россия решила выйти из Европейской научно-технической программы «Эврика»

Есть еще одна возможность усилить интеллект машины. Не обязательно ей начинать с «каменного топора» и самостоятельно проходить весь сложный путь становления ума. Можно сразу сделать ее умнее, снабдив всем тем опытом мышления, который накопило человечество — не каждый из нас, а именно все мы за тысячелетия сознательной жизни. Снабженная таким коллективным опытом и творческими навыками, да при ее удивительном быстродействии, машина, по мнению современных кибернетиков, сможет превзойти своего создателя в поединке интеллектов. Но кто даст нам в таком случае гарантию, что, «работая над собой», машина не создаст совершенно новые эвристические приемы, неизвестные нашему мозгу? И не окажемся ли мы когда-нибудь перед необходимостью изучать творчество машины, подобно тому как мы изучаем сейчас творчество людей?

Естественно, что сейчас, с появлением на границе кибернетики и психологии новой науки — эвристики, у многих возникло желание признать за ней право на первенство. Англичанин Саймон, первым создавший для машины эвристическую программу, заявил недавно: «Я думаю, мы можем согласиться, что XX век — это век эвристики». Конечно, он по-своему прав, но где гарантия, что через пару лет не будут совершены еще более грандиозные открытия, скажем, в биологии, и тогда станут столь же справедливо связывать нашу эпоху с новым триумфом в науке? Между тем во всех этих определениях XX века есть одна общая черта. В химии ли, в физике или в кибернетике — всегда речь шла о большом количестве открытий, поставивших ту или иную науку впереди других.

Невероятное обилие научных открытий — вот характерная особенность нашей эпохи. По данным ЮНЕСКО, девять десятых ученых всех времен и народов, совершивших важные открытия, — жители двадцатого столетия, наши современники. А предшествующие тысячелетия, вся многовековая история человечества — от Аристотеля до Сеченова — дала лишь одну десятую великих первооткрывателей. Количество открытий и изобретений удваивается каждые десять лет. Причем темп развития науки все убыстряется.

Подсчитано, что за последние пятнадцать лет сделано столько же научных открытий, сколько за всю предшествующую историю науки! Так не правильнее ли было бы назвать наш век эпохой открытий? В конце XIX века на всем земном шаре научными исследованиями занимались едва пятьдесят тысяч человек. К середине XX столетия их было уже четыреста тысяч. Сейчас во всем мире ученых, активно двигающих науку вперед, свыше двух миллионов.

Если теперешние темпы даже не ускорятся, а хотя бы останутся на таком же уровне а наука развивается по геометрической прогрессии! Поистине речь идет о грядущей «промышленности открытий», как ее справедливо называют. И как всякой индустрии, ей нужна соответствующая техника. Такими современными механизмами, способными автоматизировать умственный труд, и служат вычислительные машины, которые могут не просто решать отдельные задачи, большей частью уже давно решенные людьми, а быть настоящими действенными помощниками человека в высокоинтеллектуальной работе. Это по силам машинам, работающим по эвристическим алгоритмам, машинам, созданным, чтобы делать открытия.

Известный ученый, директор Киевского института кибернетики Виктор Михайлович Глушков считает, что речь должна идти о комплексной автоматизации таких высокоинтеллектуальных творческих процессов, как развитие науки и техники. Ведутся эксперименты с программами, выводящими сложные логические следствия из имеющихся в распоряжении исследователя фактов. Планируются работы по созданию программ, строящих теорию, которая простейшим образом объединила бы сложный экспериментальный материал. Высказаны первые идеи о путях построения программы, которые формулировали бы новые интересные идеи в математике… Уже сегодня электронная машина в нашем вычислительном центре может вывести любые теоремы алгебры так называемых вещественных полиномов, в том числе и те, которые не выведены человеком». Как скоро настанет пора такой «кибернетизации научного творчества»?

Академик Глушков уверен, что очень скоро. Сразу же после «кибернетической десятилетки» в экономике, с которой, по его мнению, надо начинать массовое внедрение кибернетики в нашем народном хозяйстве. На помощь ученым придут электронные ньютоны, умеющие «думать» не только очень быстро и логически стройно, но и пусть несколько приблизительно, с некоторой долей вероятности, зато с помощью так называемых «скачков ума», внезапных откровений, интуитивных догадок, и составляющих суть творческого мышления. Рациональная в своей основе, наука движется вперед не за счет только простого рассуждения, а главным образом благодаря способности ума освобождаться от оков железной логики — мыслить широко, остроумно, порой парадоксально, забегать далеко вперед, воображать иногда то, что еще не получило подтверждения фактами. Мысль человека всегда основана на чувствах, она всегда эмоциональна, хотя эта сторона деятельности ума не бросается в глаза и потому гораздо меньше изучена.

Тем более это относится к мыслительной работе ученых и вообще творческих людей. Кто-то остроумно сказал, что эмоции — «закулисный дирижер» творчества. И дирижер этот играет не второстепенную, а главную роль в поисках нового. Когда эмоциями снабдят машины, они смогут «думать» еще более творчески. Не обязательно им впадать в экстаз, вдохновенно «щелкать цифрами».

Не знаю, доведется ли им переживать минуты вдохновения, творческого подъема, но без воображения и интуиции их электронных моделей, разумеется им не стать подлинными ньютонами. Тем более что им придется работать на науку XX столетия — науку «безумных идей» и фантастических открытий. Весь XIX век да и начало нашего ушли в значительной степени на собирание фактов — подготовку фундамента колоссального рывка вперед, который знаменовался такими невероятными, с точки зрения здравого смысла, открытиями, как теория относительности или антимир. Сами физики назвали эти теории «безумными» в хорошем смысле. И несмотря на уже обнаруженные парадоксы, по признанию многих ученых, современная наука нуждается в новых «сумасшедших» теориях.

Этого не смогут сделать трезво рассуждающие умы. XX веку нужны ученые-фантазеры, ученые-мечтатели, люди гибкой и смелой мысли, способные оторваться от канонов старых теорий, вырваться за пределы прежнего знания. И если вы — будущие ученые, инженеры, художники — хотите стать участниками великих деяний своего времени, учитесь думать широко, эмоционально, творчески. Помните: у вас есть теперь конкурент и ваш ученый друг — машина. Как не дать себя обогнать электронным ньютонам?

Видимо, прежде всего иначе учиться и учить, что, пожалуй, даже важнее. Когда у нас появятся автоматические библиографы, переводчики, справочники, не будет необходимости разыскивать немыслимое количество фактов и загружать ими свою память. Нам надо сосредоточить внимание на другом — изучать не летопись науки, а ее принципы, суть составляющих ее открытий, чтобы на примере физики или химии познакомиться с методами познания и затем овладевать новыми, более совершенными способами обобщения и анализа, разнообразными приемами мышления. А для этого еще со школьной скамьи не просто набираться знаний, но и учиться думать. Собственно, первому мы школьников учим, а вот второму — умению думать — предоставляем учиться самим.

Кто поспособней, интуитивно доходит до правильной технологии мышления. Менее способные ученики нередко уходят из школы, унося багаж пассивных знаний, а умения активно пользоваться ими так и не приобретают. Как же научить школьников сложному искусству мышления? Ввести в число школьных предметов логику, представляющую собой как раз описание технологии мышления? Но во многих школах преподают логику, а существо дела не меняется.

Ученики выучивают, какие формы выражения мыслей правильные, какие неверные, но лучше мыслить от этого не начинают. Не хватает опять того же — умения пользоваться приобретенными навыками. Выходит, надо не просто знакомить школьников с описанием разных форм мышления, а вырабатывать у них способность думать: «делать» рассуждение, строить умозаключение и т. Или, как сказали бы кибернетики, выявить алгоритмы умственной работы и обучить им школьников. Такие опыты обучения науке думания на основе выводов эвристики ставятся.

Прежде всего попробовали разложить мысленно процесс решения геометрических задач на отдельные операции — один из очень эффективных алгоритмов, как мы знаем, — и обучать им школьников восьмых классов. Результаты оказались очень хорошими. Школьники, изучавшие геометрию в течение двух с половиной лет и так и не научившиеся решать задачи, после непродолжительного обучения специальным алгоритмам вдруг проявили способности к математике. Теперь они запросто решали большинство задач, которые до этого представляли для них камень преткновения. А тот, кто и раньше хорошо справлялся с этими задачами, применяя вновь разработанные правила, стал соображать еще лучше.

Этот первый опыт обучения умению думать был проведен несколько лет назад. Его успешные результаты натолкнули на мысль: а не помогут ли аналогичные алгоритмы овладеть и правильным правописанием, что составляет обычно наибольшую трудность. При ближайшем рассмотрении выяснилось, что и тут дело сводится к определенным правилам решения «грамматических задач» — описания действий, которые надо совершить, чтобы определить, например, простое предложение или сложное. Такой алгоритм состоит всего из трех частей. Прежде всего надо проверить: есть ли в предложении подлежащее.

Если да, необходимо определить, нет ли «лишних» сказуемых, не относящихся к этому подлежащему. Значит, предложение сложное и запятую ставить придется, как, скажем, во фразе: «Поезд ушел, и его огни скоро исчезли». Тогда предложение простое, и разделять его знаками препинания не нужно. Ведь не поставите же вы запятую в выражении: «Взошла луна и бледным сиянием своим осветила море». Другое дело, если первый контрольный вопрос дал отрицательный ответ: подлежащих в предложении не оказалось.

Тогда надо проверить его по дополнительным признакам. Посмотреть, не выражены ли все сказуемые глаголами в третьем лице множественного числа. Предположим, это не подтвердилось. К примеру, фраза выглядела так: «Темнело, и начинало холодать». Вывод: предложение сложное, запятая нужна.

А если сказуемое стоит в третьем лице множественного числа, скажем: «В саду нашли зарытый клад старинных монет и передали его в музей»? Тут придется установить, производят действие в обоих случаях одни и те же лица или нет. В нашем примере клад нашли люди, которые передали его в музей. Значит, предложение простое. А вот в предложении: «Приемник отнесли в мастерскую, и быстро починили» — запятую придется поставить.

Ведь отнесли его владельцы, а починили мастера. Вот и весь набор правил. Вспомните: вы не учили их в школе. Это не сокращенный вариант очередной главы из учебника русского языка, а как бы план размышления на одну из грамматических тем, алгоритм правописания. Попробуйте применить его на практике, и, если вы даже не корректор по профессии, то убедитесь в определенных выгодах такого упрощенно-скоростного метода нацеленного размышления.

По аналогичному плану может работать и кибернетическая машина. Исследователи, подготавливавшие программу для машин-переводчиков, как известно, столкнулись с тем, что существующие грамматические правила с трудом воспринимались машиной. Пришлось разрабатывать специальный машинный вариант их. Это и был, по существу, алгоритм обучения машины русскому языку. Машинный и человеческий алгоритмы, разумеется, неодинаковы.

Ведь мозг совершеннее машины, и то, что школьнику ясно с полуслова, машине надо тщательно «разжевать». Но в принципе речь идет об одном и том же — о создании правил, так сказать, «грамматического мышления». Когда эти алгоритмы применили на практике, грамотность школьников резко повысилась. Они делали теперь в пять-семь раз меньше ошибок по сравнению с контрольной, кибернетически не обученной группой. Но иногда и среди первых попадались «неисправимые» двоечники.

Что же мешало этим ученикам писать грамотно? Ведь они владели секретом правильного мышления. Оказалось, мало составить надежный алгоритм того или иного предмета. Надо разработать алгоритм самого обучения и строго придерживаться его. Иными словами, не просто передавать знания, а активно управлять процессом обучения.

В самом деле, сейчас ученик для преподавателя что-то вроде «черного ящика», с которым так любят сравнивать инженеры мозг человека. Учитель знает, что «ввел» какие-то сведения в голову ученика. А как они усвоены, что осталось в его памяти, что проскочило мимо сознания — неизвестно. Виден только результат: ученик стал решать задачи лучше, писать грамотнее или так и не научился ни тому, ни другому. Но почему, что, грубо говоря, «не сработало» в его голове?

Об этом можно только догадываться. Ведь все происходящее в сознании школьника во время урока, фигурально выражаясь, закрыто от преподавателя «непроницаемым футляром», подобно тому как скрывает «черный ящик» — черепная коробка — физиологические процессы в мозгу. И все-таки многими физиологическими процессами научились управлять извне. Почему бы не попробовать управлять и психологическими процессами во время обучения? Конечно, это гораздо сложнее, но в принципе ничего невозможного тут нет.

Мозг человека, разумеется, самопрограммирующееся устройство. Только надо ли предоставлять ему «становиться на ноги» самостоятельно? Не лучше ли вмешаться в самообучение мозга и направить его психологический рост и развитие. А ведь обучение — частный случай управления, изучаемого кибернетикой. Что необходимо для успешного управления?

Хорошая обратная связь. Между тем именно ее и нет в современном процессе обучения. Учитель может детально объяснить задание, а ученик будет «считать ворон» и ничего не усвоит. И тогда усилия преподавателя пропадают зря. Другое дело, если бы в любое мгновение он получал «обратные» сведения об усвоенных знаниях.

Но мыслимо ли это? Вычисления показывают: за двадцать минут урока учитель должен получить по крайней мере сто пятьдесят подтверждений, что ученик слушает и понимает его объяснения. А ведь в классе не один школьник — их человек двадцать или тридцать. Разве успеешь принять ответы от каждого? Так родилась мысль — поручить роль контролера обучения кибернетической машине.

Расплавлять же красивую корону Гиерон не хотел. И царь обратился за помощью к Архимеду, чтобы тот помог уличить вора. Архимед долго бился над задачей, пока совершенно случайно, во время купания в общественной бане не открыл один из главных законов физики: на тело, погружённое в воду, действует выталкивающая сила, равная весу вытесненной этим телом воды. Едва учёный сел в ванну, как тут же выскочил из неё и с криком «Эврика!

Однако исследователям удалось — благодаря остроумному математическому приему — показать, что скорость и точность процесса решения связаны одной мозговой функцией. Ранее исследовательская группа Шедлена установила, что процесс принятия решений осуществляется на уровне отдельных нейронов. Совместив это положение и математический «трюк», ученые смогли доказать, что субъективное чувство инсайта о котором отчитался испытуемый — это точное отражение мозгового процесса. То, что ранее изучалось философией, в скором времени может быть понято и в биологических терминах, считает ученый.

С полным текстом исследования можно ознакомиться по ссылке.

Терминологический словарь по экономике ЭВРИКА европейское агентство по координации научных исследований, осуществляющее совместно программу научных исследований и разработок, в которой участвует большинство западноевропейских стран. Цель этой программы - налаживание кооперации, научных связей и обменов в области новых технологий для того, чтобы преодолеть техническое отставание от США и Японии. Современный экономический словарь.

ЭВРИКА Европейское агентство по координации научных исследований — многосторонняя программа сотрудничества ряда стран Западной Европы в области технологии, так называемое западноевропейское технологическое сообщество.

Архимедова сила: что это такое и как действует

 ЭВРИКА ориентирована на развитие промышленного сектора и поддержку инновационной активности малых и средних предприятий (МСП). По легенде ученый воскликнул «Эврика!», что по-гречески значит «нашел», когда постиг смысл закона, позже названного его именем. Скачать презентацию на тему ЭВРИКА можно ниже.

Читайте также в рубрике «Образовательная политика»

  • Эврика! (дайджест новостей науки)
  • Эврика что такое evrika значение слова, Исторический словарь
  • Толковый словарь
  • Финляндия | Эврика | MyTravelNote - сайт о путешествиях
  • Когнитивное обучение у животных и людей. Эврика и инсайт
  • Употребления слова в предложениях

Россия спустя 30 лет выходит из европейской научной программы "Эврика"

В истории было немало моментов "Эврика!", включая Архимеда, Исаака Ньютона и Альберта Эйнштейна, которые испытали озарение в то время, когда думали совершенно об отвлеченных вещах. Возглас, выражающий удовлетворение, радость при найденном решении, при возникновении удачной мысли и т.п. я нашел) - согласно преданию, восклицание Архимеда при открытии им основного закона гидростатики. Что такое закон силы Архимеда? Суть, определение силы Архимеда, как изменяется, как работает сила Архимеда в жидкости (воде) и газах.

Глава 7 Эврика и эвристика

Александр Емельяненков Спустя двадцать лет после вхождения России, ее научно-исследовательских, проектных и конструкторских организаций в число участников европейской научно-технической программы "Эврика" мы оттуда уходим. Тем же лаконичным документом Минпромторгу России поручено уведомить об этом решении председателя и руководителя Секретариата Ассоциации "Эврика". В постановлении из трех пунктов ничего не говорится о мотивах выхода из программы и не раскрывается существо нашего участия в ней. Поэтому напомним: проект "Эврика" родовое название - EUREKA, European Research Coordination Agency возник в середине 80-х годов прошлого века как совместная программа европейских стран в области научных исследований и опытно-конструкторских разработок.

И как одноименное агентство для координации таких исследований.

Юные читатели Липецкой областной детской библиотеки смогут приобщиться к этому празднику и принять участие в виртуальном дне информации «Эврика, или Кто это придумал? Маленькие почемучки посмотрят познавательный видеоролик «Нам есть чем гордиться» и узнают, что Нобелевская премия — это достояние шведского учёного, изобретателя и предпринимателя Альфреда Нобеля 1833—1896 гг.

Много наших талантливых соотечественников в своё время становились лауреатами этой премии в разных номинациях.

Создано по инициативе Франции в 1985 г. Цель «Э. В работе органов «Э. Высший орган «Э.

Председательствует на заседании приглашающая страна. Рабочий орган — Секретариат, подчиненный Конференции министров и не обладающий правом принятия решений. В задачи Секретариата входит организация контактов между партнерами, сбор и распространение информации.

После этого Архимед в голом виде помчался по улице из купальни домой, чтобы как можно быстрее проверить возникшее у него предположение. Призвав в свидетели царя, он взял два предмета: одним из них была корона, а вторым — золотой слиток, имевший такой же вес. Поочередно он опустил их в воду.

При этом корона вытеснила большее количество воды, чем слиток. А из этого следовало, что определенная часть золота и вправду была заменена серебром. Оно имеет меньший вес и больший объем. Так, по преданию, был открыт закон Архимеда, который гласит, что на тело, которое погружено в газ или в жидкость, действует сила — подъемная или выталкивающая, которая равняется весу объема газа или жидкости, вытесненного телом.

Эврика! Новости науки: 27 апреля 2024

Теория эмерджентности: что такое реальность? Виталий Гинзбург, лауреат Нобелевской премии по физике 2003 г. нашёл!] Восклицание, выражающее радость, удовлетворение при найденном решении, при возникновении удачной мысли и т.п. По преданию, так воскликнул греческий учёный Архимед. ЭВРИКА. [гр. heureka я нашел] – согласно преданию, восклицание Архимеда при открытии им основного закона гидростатики.

Эврика! Почему гениальные идеи приходят, когда мы не стараемся

Что такое закон силы Архимеда? Суть, определение силы Архимеда, как изменяется, как работает сила Архимеда в жидкости (воде) и газах. Новости науки: 27 апреля 2024 | ФОТО Pixabay. Что такое СПЭВМ «МОНОЛИТ» — это серия специализированных ПЭВМ, предназначенных для эксплуатации в сложных условиях воздействия внешних факторов (вибрация, удары, повышенная и пониженная температура окружающей среды, повышенная влажность и т.п.). Эврика — Эврика! (греч.) – Я нашел! Восклицание, приписываемое величайшему из математиков древности Архимеду Сиракузскому (ок. Что такое ? Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. я нашел), согласно преданию, восклицание Архимеда при открытии им основного закона гидростатики.

Похожие новости:

Оцените статью
Добавить комментарий