Новости что мощнее водородная или ядерная бомба

Водородная или термоядерная бомба в несколько раз мощнее любой ядерной бомбы, ведь ее мощность практически не исчисляема. В результате ядерного деления образуется атомная бомба, оружие массового уничтожения, использующее энергию, выделяющуюся при расщеплении атомных ядер. Принцип работы атомной и водородной бомб. Конструкция ядерного заряда. Водородная бомба является гораздо более продвинутой и технологичной, чем атомная.

Что произойдет после взрыва ядерной бомбы?

Однако ученые нашли источник, который способен выделить гораздо больше энергии — в 8 раз больше, чем при термоядерном синтезе. Это кварковый синтез. О чем сообщили в журнале Nature. Реакция кваркового синтеза в представлении Карлайнера и Роснера.

Кварки образуются, к примеру, в результате столкновения протонов в Большом адронном коллайдере БАК , эксперименты в котором начались в 2009 году и продолжаются до сих пор. Образовавшись, кварки сливаются в барионы. В ходе этого синтеза и выделяется колоссальная энергия.

Карлайнер и Роснер успокаивают: их открытие, о котором коротко рассказывает портал Futurism , для военных бесполезно.

Рассмотрим классификацию ядерных боеголовок, находящихся на вооружении некоторых стран: Ядерная атомная бомба. В процессе ядерной реакции и деления плутония и урана, происходит выделение энергии колоссальных масштабов. Обычно в одной боеголовке находится от двух зарядов плутония одинаковой массы, которые взрываются друга от друга. Водородная термоядерная бомба. Энергия выделяется на основе синтеза ядер водорода отсюда пошло и название. Интенсивность ударной волны и количество выделяемой энергии превышает атомную в разы. Что мощнее: ядерная или водородная бомба? Пока ученые ломали голову над тем, как пустить атомную энергию полученную в процессе термоядерного синтеза водорода в мирные цели, военные уже провели не с один десяток испытаний.

Выяснилось, что заряд в несколько мегатонн водородной бомбы мощнее атомной в тысячи раз. Даже трудно представить, что было бы с Хиросимой да и с самой Японией , если бы в брошенной на нее 20-ти килотонной бомбе был водород. Рассмотрим мощную разрушительную силу, которая получается при взрыве водородной бомбы в 50 мегатонн: Огненный шар: диаметр в 4,5 -5 километра в диаметре. Звуковая волна: взрыв можно услышать, находясь на расстоянии в 800 километров.

Атомные бомбы такой мощности еще ни разу не взрывали. Есть показатели бомбы сброшенной на Хиросиму в 1945 году, но своими размерами она значительно уступала водородному разряду описанному выше: Огненный шар: диаметр около 300 метров. Ядерный гриб: высота 12 км, радиус шапки — около 5 км.

Сейчас на вооружении ядерных держав стоят именно водородные бомбы. Кроме того, что они опережают по своим характеристикам своих «малых братьев», они значительно дешевле в производстве. Принцип действия водородной бомбы Разберем пошагово, этапы приведения в действие водородных бомб: Детонация заряда. Заряд находится в специальной оболочке. После детонации идет выброс нейтронов и создается высокая температура, требуемая для начала ядерного синтеза в главном заряде. Расщепление лития. Под воздействием нейтронов, литий расщепляется на гелий и тритий.

Термоядерный синтез. Тритий и гелий запускают термоядерную реакцию, вследствие чего в процесс вступает водород, и температура внутри заряда мгновенно возрастает.

Это обусловлено выработкой изотопов водорода. Ими являются дейтерий и тритий. В основе механизма функционирования такого устройства лежит применение энергии, которая продуцируется в процессе термоядерного синтеза. Она, в частности, протекает в звездных недрах.

Там под влиянием крайне высоких температур и огромного давления происходит столкновение ядер водорода, которые сливаются в компоненты гелия — они тяжелее. В ходе реакции некоторая масса водорода трансформируется в огромный поток энергии. Исследователи выполнили копирование этой реакции с применением изотопов водорода. Именно с этим связано наименование рассматриваемого вида оружия. Вначале для изготовления зарядов применяли жидкие изотопы водорода. Но затем стали пользоваться дейтеридом лития-6.

Это твердый элемент, полученный вследствие объединения дейтерия и изотопа лития. Ключевые отличия Важным отличием рассматриваемых видов вооружения считаются особенности детонации. Взрывная сила атомного вида устройства считается следствием резкого высвобождения энергетического потенциала. Оно осуществляется вследствие расщепления тяжелого химического элемента.

60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США

При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру.

Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает.

Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.

Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой.

Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. H-bomb А вот горючее для термоядерного синтеза критической массы не имеет.

Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития тяжелого и сверхтяжелого изотопа водорода энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235. Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд.

Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. Классический супер К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием.

Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички. Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики. Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США.

Чистое термоядерное оружие Основная статья: Чистое термоядерное оружие Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе — в настоящее время создать чистый термоядерный боеприпас разумных размеров и веса не представляется практически возможным. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30.

Атомная бомба Еще в конце 19 века было обнаружено, что радиоактивные элементы типа урана хранят в своих атомах гигантскую энергию. Как только учёные в своих лабораториях смогли расщепить ядра таких атомов — вопрос о создании атомной бомбы был предрешен. Работы начались в США в самый разгар Второй мировой войны — в 1943 году.

Уже через два года всё было готово. Как всем известно из учебников истории, урановая бомба под прозвищем «Little Boy» была сброшена американцами в 1945 году на японский город Хиросиму, а спустя три дня плутониевый «Fat Man» полетел на Нагасаки. Советский Союз начал разработку атомного оружия практически одновременно с США, но из-за войны работы были окончены позже: первое испытание состоялось в 1949 году.

Как же работает атомная бомба? Все мы из школы помним, что атом — мельчайшая частица вещества — состоит из ядра и вращающихся вокруг него отрицательно заряженных электронов. При этом само ядро состоит из положительных протонов и нейтральных нейтронов: Чаще всего число положительных протонов и отрицательных электронов совпадает, и атом остается электрически нейтральным.

Но нас интересуют прежде всего нейтроны. Дело в том, что число нейтронов в атоме одного и того же вещества может быть разным. Атомный номер вещества в таблице Менделеева будет один и тот же, а вот массовые числа — разные.

Чем больше нейтронов будет иметь ядро, тем, масса будет больше. Такие вещества с «нестандартным» количеством нейтронов называются изотопами. Изотопы встречаются в природе.

Некоторые из них весьма стабильны. А другие изотопы называемые радиоактивными крайне нестабильны и склонны к распаду — когда изначально тяжелые ядра вещества теряют свои частицы, испуская их в окружающее пространство с выделением энергии. При этом излучение ядер может быть трех типов: альфа-лучи, бета-лучи и гамма-лучи.

Последние — самые опасные, так как они способны выбивать электроны из атомов живых клеток, что приводит к их гибели лучевая болезнь.

Есть разные виды ядерного оружия, но основной принцип заключается в расщеплении ядер атомов для создания мощного взрыва, пишет Livescience. При расщеплении тяжелых атомов, таких, как уран или плутоний, высвобождаются нейтроны, которые могут разбивать другие атомы и вызывать цепную реакцию. Эта цепная реакция приводит к освобождению большого количества энергии и мощному взрыву. Атомные бомбы, которые уничтожили Хиросиму и Нагасаки в Японии, имели мощность от 15 до 20 тысяч тонн тротилового эквивалента. Современное оружие способно причинить еще больше разрушений. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Термоядерные бомбы были испытаны, но никогда не использовались в боевых действиях. Подводный ядерный взрыв бомбы «Бэйкер» в 1946 году.

Эти смерти будут вызваны пожарами и интенсивным облучением радиацией. Кто-то получит травмы от ударной волны, кто-то пострадает из-за разрушенных зданий или летящих осколков. Большинство строений в радиусе 800 метров от эпицентра взрыва будут разрушены или сильно повреждены.

Самые современные Сейчас, когда обстановка в мире снова накалена до предела, гонка вооружений опять ускоряется. Россия начинает ее с форой. Как и 30 лет назад, по общему числу боезарядов с ней могут сравниться только США. Другие ядерные державы, такие как Китай , значительно отстают. Несмотря на перестройку, распад Советского Союза и экономические трудности 1990-х годов, России удалось сохранить ядерное наследие СССР. Более того, арсенал атомного оружия только вырос и пополнился современными образцами — в отличие от американского. Срок службы ядерного оружия времен холодной войны превысил все нормативы на много лет. Ремонтировать его тяжело, а запчастей не хватает», — пишет журнал Time. Журналисты издания посетили одну из баз ракетного оповещения, расположенную в 20 метрах под землей в штате Вайоминг. Они были потрясены, когда вместо современного оборудования увидели технику времен холодной войны. В том, что она работоспособна, сомневается даже Пентагон. По оценкам ведомства, ее модернизация обойдется в астрономические суммы. Мало того, что из шахт нужно удалить более 400 ракет, а 45 командных центров полностью переоборудовать, предстоит еще и выплачивать гигантские компенсации местным жителям и фермерам, которых, возможно, придется переселять. К счастью, подобные мероприятия в России проводились постепенно и не останавливались даже в самые смутные периоды 1990-х. Доля современного оружия в ядерной триаде страны выросла до исторического рекорда и, по данным на декабрь 2021 года, составила 89,1 процента. Все они, кроме Р-36М2 «Воевода», приняты на вооружение уже после 1991 года. Первая является модификацией ракеты, созданной в Советском Союзе; разработка второй велась уже в современной России. Смертоносное оружие В отличие от только начавших обновлять свой арсенал США, Россия уже располагает готовыми образцами современного ядерного оружия. Они готовы к серийному производству и массовому развертыванию на местах. Работы по созданию новейшей российской МБР шахтного базирования РС-28 «Сармат» начались более десяти лет назад, а прошедшие в прошлом году испытания стали настоящей сенсацией для мировой прессы. Ракеты заступят на боевое дежурство уже в ближайшие месяцы. Точные характеристики комплекса засекречены. Известно тем не менее, что 200-тонный «Сармат» может преодолевать в полете около 16 тысяч километров. В зависимости от поставленной задачи, его нагрузка может включать несколько разделяющихся боеголовок общей мощностью несколько мегатонн в тротиловом эквиваленте. Это в разы больше, чем американцы обрушили на Хиросиму и Нагасаки , вместе взятые. В заряд ракеты входят ложные цели — имитационные боезаряды, на перехват которых будет отвлекаться защита противника. Эти элементы также маневрируют и летят на гиперзвуковой скорости, так что перехват практически невозможен. Надежно защищены от вражеского удара и шахтные пусковые установки «Сарматов». Если противник попытается нанести удар по месту старта МБР, в действие будет приведен комплекс активной защиты «Мозырь». Он распыляет на высоте около шести километров облако металлических шаров. Преодолеть его не сможет ни одна современная ракета. Аналогов этим ракетам «в мире нет и еще долго не будет» США оружием такой мощности похвастать не могут. Ракеты шахтного базирования Minuteman III чудовищно устарели. Им на смену должны были прийти новые LGM-35 Sentinel, но первые испытания в июле 2022 года закончились провалом — взрывом на 11-й секунде после старта. Программа перевооружения арсенала LGM-35 Sentinel обходится в десятки миллиардов долларов, но погрязла в задержках и перерасходе средств. Что до «Сармата», то бывший гендиректор «Роскосмоса» Дмитрий Рогозин называет его основой российского ядерного щита на ближайшие 30-40 лет. Американские радары при этом исторически — еще со времен холодной войны — сосредоточены на Аляске и Восточном побережье. К угрозам из Северного полушария Америка готова, а вот путь через Южное остается незащищенным. В качестве боевого оснащения «Сармат» может получить гиперзвуковой блок от стратегического ракетного комплекса «Авангард». Он способен незаметно для радаров и спутников летать в плотных слоях атмосферы, но главное — его управляемость и маневренность. Именно управляемость делает «Авангард» абсолютно неуязвимым для любых средств противовоздушной и противоракетной обороны. Если на суше ядерную триаду России представляет «Сармат», то на море эту роль выполняют ракеты Р-30 «Булава». Их переносят стратегические атомные подводные лодки проекта 955 шифр «Борей» и его модификации. Принятая на вооружение в 2018 году «Булава» получила 1,1-тонную разделяющуюся боевую часть и может пролететь до цели 9,3 километра. Вооруженная такими ракетами субмарина, находясь в Тихом, Атлантическом или Северном Ледовитом океане, способна поразить практически любую цель на планете. Это делает субмарины незаменимой частью российской ядерной триады и обеспечивает мощный потенциал для ответного удара по любой стране, которая первой применит ядерное оружие против Москвы», — отмечает автор американского журнала Popular Mechanics Кайл Мизоками. Этого примера хватило, чтобы показать, насколько разрушительную вещь создало человечество. Чтобы понять масштаб урона, достаточно вспомнить бомбардировку Хиросимы 6 августа 1945 года. Несмотря на малую мощность ядерной бомбы, более 70 тысяч человек погибли почти сразу, а к концу 1945 года число умерших превысило 160 тысяч. Сегодня Россия обладает самым крупным атомным арсеналом в мире, но до сих пор ни разу его не использовала. Ядерный потенциал, по национальной доктрине, является оружием не для нападения, а для сдерживания. Ведь его применение станет финальной точкой не только для обеих сторон конфликта, но и для всего человечества. Победителя в такой войне не будет — и это прекрасно понимают и Россия, и каждый ее потенциальный противник. Оружие России.

Никто не спрячется: что будет после ядерной войны?

Водородная бомба, она же термоядерная бомба является наиболее продвинутой и технологичной бомбой. Водородная (термоядерная) бомба: испытания оружия массового поражения. как действует водородная бомба и каковы последствия взрыва. На днях Северная Корея провела успешные испытания межконтинентальной баллистической ракеты «Хвасон-17». По словам экспертов в ней может использоваться не тол. Одна мощная бомба способна положить тысячи людей разом.

Зона поражения — вся планета: почему атомные бомбы такие мощные?

Водородная бомба, она же термоядерная бомба является наиболее продвинутой и технологичной бомбой. Водородная бомба и атомная бомба оба типы ядерного оружия, но одно устройства очень сильно отличаются от другого. Однако между Солнцем и атомной бомбой была существенная разница, которая казалась непреодолимым препятствием на пути осуществления ядерного синтеза на Земле. Авиационная бомба повышенной мощности — самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию.

В чем отличия между атомной и водородной бомбой, какой взрыв мощнее

В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез. Ракетный комплекс «Алабуга», основанный на использовании новых физических принципах, разработка которого сейчас ведется в России, будет «мощнее ядерной бомбы». Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Однако между Солнцем и атомной бомбой была существенная разница, которая казалась непреодолимым препятствием на пути осуществления ядерного синтеза на Земле. Если в урановой бомбе идет реакция деления, то в водородной реакция слияния — в этом суть того, чем отличается водородная бомба от атомной. Al Jazeera: "Царь-бомба" — самое мощное ядерное оружие Путина.

Похожие новости:

Оцените статью
Добавить комментарий