Новости телескоп горизонта событий

Ученые коллаборации Телескопа горизонта событий EHT показали первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути.

A VLBI receiving system for the South Pole Telescope

  • Groundbreaking Milky Way Results From the Event Horizon Telescope Collaboration – Watch Live
  • Астрономы показали первое в истории изображение черной дыры
  • Поделиться
  • Search code, repositories, users, issues, pull requests...

Телескоп горизонта событий разглядел рекордно далекий для себя квазар

Event Horizon Telescope ready to image black hole (BBC News). The paradigm-shifting observations made with the Event Horizon Telescope — composed of ALMA, APEX and six other radio telescopes — have produced an image of the gargantuan black hole at the heart of distant galaxy Messier 87. Целью этого международного сотрудничества радиотелескопов и обсерваторий телескопа "Горизонт событий" было получение первого изображения черной дыры. вы делаете те новости, которые происходят вокруг нас. Консорциум Event Horizon Telescope (EHT) с 2006 года работал над тем, чтобы получить снимок горизонта событий сверхмассивной черной дыры. Наблюдения с использованием Телескопа горизонта событий в течение нескольких лет подтвердили наше предсказание», — рассказал Захаров.

На фото показали магнитное поле вокруг сверхмассивной чёрной дыры нашей Галактики

Телескоп Event Horizon (EHT) добавил большее количество обсерваторий в глобальную сеть радиотелескопов, и первое изображение черной дыры нашей галактики может быть получено меньше, чем через год. The Event Horizon Telescope is an international collaboration aiming to capture the first image of a black hole by creating a virtual Earth-sized telescope. The paradigm-shifting observations made with the Event Horizon Telescope — composed of ALMA, APEX and six other radio telescopes — have produced an image of the gargantuan black hole at the heart of distant galaxy Messier 87. Event Horizon Telescope (EHT).

Рекомендуем

  • Time variability of the Galactic Center black hole Sgr A*
  • Опубликован первый снимок гигантской черной дыры в Млечном Пути
  • Event Horizon Telescope: истории из жизни, советы, новости, юмор и картинки — Все посты | Пикабу
  • ESO показала первую в истории фотографию черной дыры в центре Млечного Пути
  • Телескоп горизонта событий — Википедия

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

и миллиметровых обсерваторий под названием Телескоп горизонта событий (Event Horizon Telescope, EHT) получила первое в истории изображение тени сверхмассивной черной дыры в центре нашей галактики Млечный Путь. View a PDF of the paper titled First M87 Event Horizon Telescope Results. "Первые результаты телескопа горизонта событий M87. Команда проекта «Телескоп горизонта событий» (EHT) получила самое четкое изображение сверхмассивной черной дыры, на котором видна ее «граница», так называемый горизонт событий.

Астрономы впервые получили фото черной дыры в центре Млечного Пути

Эти объекты хорошо изучены в ходе реализации международного проекта «Телескоп горизонта событий» и по данным наблюдений на других интерферометрах со сверхдлинными базами. Event Horizon Telescope Collaboration (testing-general-relativity-with-the-event-horizon).jpg 2,358 × 1,762; 674 KB. Траектория полёта и маршрут зонда "Новые горизонты" к Плутону. Дыра в центре Дыра в центре Для того, чтобы проникнуть за эту завесу, был организован проект Event Horizon Telescope (EHT, Телескоп горизонта событий). Телескоп горизонта событий — это проект, объединяющий в глобальную сеть данные нескольких телескопов.

Event Horizon Telescope

Алгоритм, разработанный ученой Кэти Боуман Katie Bouman , собирает изображение из маленьких частей, как пазл, но пользуется ради научной достоверности тремя наборами «подсказок»: из смоделированных черных дыр, астрономических изображений и повседневных фотографий, как если бы вы дали одинаковое техническое задание трем разным иллюстраторам, а потом сравнили результат. Как на смоделированной черной дыре, так и на других возможных картинках алгоритм получает идентичные изображения. Скриншот из «Твиттера» Массачусетского технологического института. В 2018 году было записано 3500 ТБ данных, большая часть которых посвящена одному объекту — черной дыре из галактики M87. Чтобы отправить этот массив информации в вычислительные лаборатории, решили использовать не Интернет, а обычную почту и множество жестких дисков, потому что с помощью Интернета за сутки получится передать только 1 ТБ. Данные послали в Массачусетский Технологический институт и Радиоастрономический институт Макса Планка, чтобы получить два независимых результата.

В апреле 2019 года человечеству показали первую живую фотографию черной дыры, которая находится в 55 млн световых лет от нас. Первая презентация изображения черной дыры в галактике M87. Фото: www. Messier 87 — более чистый объект. В фоновом режиме ТГС наблюдает и за ними.

Дальше — больше. На это делаются большие ставки, ведь живого видео никто никогда не делал.

Эта черная дыра имеет массу примерно 4,3 миллиона масс Солнца. Для такой массы радиус горизонта событий составляет около 6 миллионов километров, что примерно в 15 раз больше расстояния от Земли до Луны. На изображении видна яркая кольцеобразная область, за свечение которой ответственен горячий газ, падающий на черную дыру.

Но несмотря на то, что диаметр кольца объекта оставался постоянным, данные показали один сюрприз: колебания кольца. Поскольку поток материи турбулентен, кажется, что полумесяц колеблется со временем. По словам исследователей, не все теоретические модели допускают такие колебания.

Поэтому новые данные позволяют сказать, что одни теории оказываются более верными, чем другие.

Фото выше эмиссионной струи, снятой с телескопа Хаббла. В связи с тем, что погода сотрудничала во многих местах, в апреле 2017 года проводились одновременные наблюдения в течение большей части десятидневного периода. Для интерпретации данных и восстановления изображения по сигналам, полученным со всех телескопов, потребовалось почти два года. Их сравнивали с сотнями компьютерных симуляций, которые применяли математику общей теории относительности к моделируемым параметрам, включая массу черной дыры, вращение, ориентацию оси вращения черной дыры и окружающего аккреционного диска и многое другое. На историческом изображении изображена темная «дыра в космосе», окруженная кольцом света, которое становится немного размытым из-за предела разрешения. Термин «светлый» используется в общем смысле; обнаруженное здесь излучение имеет длину волны в миллиметрах, которая не видна глазу, и отображается в произвольных цветах. Этот темный край обозначает внутренний предел стабильной орбиты фотоны вокруг черной дыры. Это примерно в два раза больше фактического горизонта событий. Эффекты относительности сильно искажают путь света, излучаемого окружающим аккреционным диском и фоновыми источниками.

Можно подумать, что черная дыра действует как такая мощная линза, что она не только направляет лучи света к нам, но и заставляет некоторых вращаться по орбитам, как спутник, вращающийся вокруг Земли. Фотоны, отклоняющиеся внутрь от «последней стабильной фотонной орбиты», навсегда теряются в горизонте событий, в то время как другие могут двигаться к нам. Наилучшее совпадение изображения с компьютерным моделированием, а также с известным направлением радиоструй свидетельствует о том, что мы наблюдаем черную дыру почти над ее осью вращения и она вращается по часовой стрелке с нашей точки зрения. Его сферическая форма согласуется с предсказаниями общей теории относительности. Увеличенная яркость нижнего квадранта обусловлена релятивистским усилением световых волн, движущихся к нам. Расчетная масса черной дыры составляет 6,5 миллиардов солнц, упакованных в горизонт событий примерно размером с нашу солнечную систему. Команда Event Horizon Telescope планирует выпустить дальнейший анализ, который включает измерения поляризации, чтобы отобразить интенсивные магнитные поля, которые обвивают черную дыру и концентрируются, и усиливают энергетические пучки заряженных частиц, которые извергаются в полярных направлениях от M87 и многих других квазаров и активных галактические центры. Будущие наблюдения на более коротких волнах и добавление большего количества телескопов планируется улучшить разрешение изображения. Следующий большой скачок в разрешении изображения потребует размещения радиотелескопов на орбите или на Луне. Его масса, оцененная по движению звезд и газа, вращающегося очень близко к центру галактики, составляет всего 4 миллиона солнечных масс.

По сравнению с черной дырой M87, это всего лишь пшик, но расстояние до него составляет всего 25 000 световых лет. Это настолько близко, что угловой размер должен быть примерно таким же, как черная дыра в M87. Хотя наблюдения уже сделаны, сокращение данных имеет свои проблемы. Вглядываясь в диск нашей галактики, мы сталкиваемся с сильно затеняющим материалом, и эта меньшая черная дыра может поглощать материю с нерегулярной скоростью, вызывая более быстрые изменения яркости и формы обнаруженного изображения. В то время как проблема в получении изображения, такое изменение могло бы помочь астрономам понять особенности роста черной дыры.

Астрономы впервые получили фото черной дыры в центре Млечного Пути

Космическая обсерватория «Миллиметрон» в каком-то смысле является продолжателем традиций «Спектра-Р» — первого аппарата серии для исследования Вселенной, запущенного на орбиту в 2011 г. И это закономерно, учитывая, что разработчиком обоих проектов является одна организация — Астрокосмический центр АКЦ Физического института имени П. Однако «Миллиметрон», в отличие от предшественника, будет работать в двух режимах — одиночном и режиме интерферометра — в кооперации с наземными телескопами. На каждом этапе инструмент обеспечит непревзойденную зоркость. Высочайшая чувствительность во время «сольной» работы будет достигнута благодаря глубокому охлаждению, которое защитит бортовую аппаратуру от «теплового шума». А режим интерферометра предполагает, что вместе с наземными радиотелескопами «Миллиметрон» сможет образовать систему, работающую как одно огромное чуткое электронное око. Эта связка даст возможность получить гигантское угловое разрешение 3. Что касается диапазона исследований, то у «Миллиметрона» он будет беспрецедентно широким — с длиной волны от 70 мкм тепловое излучение средней длины до 10 мм миллиметровые волны , в то время как предшественник вел наблюдения в чистом радиодиапазоне. В числе отличий и координаты точки назначения: «Спектр-Р» вглядывался в бесконечность, вращаясь вокруг Земли по эллиптической орбите, а «Миллиметрон» для выполнения своей миссии направится в точку Лагранжа L2, находящуюся на прямой линии между Солнцем и нашей планетой на расстоянии 1. Орбита в окрестности точки L2 была выбрана главным образом для обеспечения охлаждения до сверхнизких температур. Из рода «Спектров» Было запланировано создать четыре обсерватории серии «Спектр» для изучения астрономических объектов в различных диапазонах электромагнитных волн.

Первый аппарат — «Спектр-Р» — стартовал в 2011 г. Отправленная на орбиту летом 2019 г. В середине десятилетия эстафету подхватит разрабатываемый аппарат «Спектр-УФ», который будет собирать информацию о далеких объектах в ультрафиолете. Завершит масштабный проект обсерватория «Спектр-М», чьей задачей станет исследование Вселенной в миллиметровом и инфракрасном диапазонах. Космический цветок Главное зеркало «Миллиметрона», где отразятся ответы на загадки Вселенной, отправится в космическое путешествие аккуратно сложенным и раскроется как огромный космический цветок сразу по выведении на орбиту. После этого его полет к точке L2 составит еще три месяца. Это время будет использовано для начального охлаждения конструкции.

Как выглядит наша черная дыра и чем отличается от М87? Однако ее размер для телескопов всего 52 миллионные доли угловой секунды.

Здесь-то и пригодился Event Horizon Telescope. По сути, EHT — это объединенная сеть из восьми обсерваторий по всему миру, чьи радиотелескопы синхронизированы по сверхточным атомным часам. Вся эта сеть работает как единый телескоп диаметром 10 тыс. Это и еще специально разработанный компьютерный алгоритм, позволяющий распознавать образы на основе зашумленной информации, и позволили построить, как из элементов пазла, фотографическое изображение черной дыры. Выглядит это как темный круг с оранжевым ореолом.

The results offer new insights into the mysterious objects. By Korey Haynes Published: April 10, 2019 Last updated on May 18, 2023 The first ever image of a black hole shows the supermassive black hole in the heart of galaxy M87. Event Horizon Telescope Collaboration On Wednesday, astronomers revealed the first image ever taken of a black hole, bringing a dramatic conclusion to a decades-long effort. The iconic image offers humanity its first glimpse at the gas and debris that swirl around its event horizon, the point beyond which material disappears forever. A favorite object of science fiction has finally been made real on screen. Their target was a nearby galaxy dubbed M87 and its supermassive black hole, which packs the mass of six and half billion suns. Despite its size, the black hole is so far from Earth — 53 million light-years — that capturing the image took a telescope the size of the planet. The image data was taken back in 2017 but scientists have spent two years piecing it together. An impossible black hole image Black holes are so massive and dense, not even light can escape their pull. But this mysterious singularity is surrounded by the sphere of its event horizon. And anything that travels past it is doomed to fall into the black hole, with no hope of escape. That means the black hole itself is literally dark — it neither reflects nor gives off any light.

Полученная учеными картинка воображение не поражает — оранжевый бублик, словно снятый на некачественную камеру телефона. Масса газа, падающего в черную дыру, достигает примерно одной массы Солнца каждые десять лет. Возможность увидеть это при помощи гигантского виртуального интерферометра стала одним из наиболее интересных достижений в астрофизике в течение последних десятилетий. Естественно, что сразу после первого опыта ученые решили сосредоточиться на наиболее важной для Земли черной дыре, которая находится в центре нашей галактики Млечный Путь. Астрофизики довольно давно высказывают предположение, что в центре спиральных галактик, к которым относится и Млечный Путь, должно находиться сверхмассивное небесное тело, которое служит центром масс и вокруг которого вращается галактика.

3. Представлено первое фото черной дыры в центре нашей Галактики

Они также использовали данные 2017 года, полученные с помощью глобальной сети телескопов EHT Телескоп горизонта событий. Эта сеть состоит из восьми связанных между собой обсерваторий в разных частях Земли, которые изучают одни и те же космические объекты. На новом изображении видно фотонное кольцо, состоящее из ряда все более ярких подколец, формирующих целую картину.

Открытие они сделали с помощью 8-метрового телескопа на Гавайских островах 8. Астрономы уже тогда определили массу объекта - около 7 миллиардов солнечных. Чудовищными оказались и размеры «монстра» - внутри него целиком поместилась бы Солнечная система. Далеко не все верили, что черная дыра может быть такой огромной. Но теперь убедились в этом, что называется, увидели собственными глазами. Галактика М87 на снимке, сделанном радиотелескопом Chandra X-ray Observatory Наблюдение за объектом в галактике М87 астрономы вели в апреле 2017 года. Собрали более одного петабайта данных, 2 года их обрабатывали, пока не получили искомое изображение.

Оно размытое, но представление об объекте дает. Более того, соответствует прежним — не столь давно выдвинутым - теоретическим представлениям. О том, как черная дыра должна выглядеть на самом деле еще в 2013 году рассказывал астроном из Университета Калифорнии в Беркли University of California, Berkeley Айман Бин Камруддин Ayman Bin Kamruddin , работавший в команде «Телескопа горизонта событий». Уверял, что черные дыры совсем не такие, какими их принято было изображать — эдакими воронками и пузырями.

По этой логике у каждой из двух триллионов галактик находится в центре сверхмассивная или ультрамассивная чёрная дыра. Это как 40 000 000 000 солнц. Полный мрак. Почему невозможно сфотографировать чёрную дыру? Долго считалось, что сфотографировать чёрную дыру невозможно. Потому что слово "фотография" переводится как светопись. А какой может быть свет там, где кванты света поглощаются? Но, если отбросить формализм в сторону, это всё-таки снимок контуров дыры, и для того, чтобы его получить, команде Event Horizon Telescope в составе 300 учёных из 80 институтов пришлось объединить работу одиннадцати гигантских телескопов, расположенных на пяти континентах. В общей сложности было собрано 3,5 петабайта данных, или 3584 терабайта. Только создав сложные алгоритмы обработки и собрав воедино максимальное число ракурсов, а затем смонтировав данные, на что ушли годы, учёные получили искомый снимок. Эта технология была впервые отработана на сверхмассивной звезде в центре галактики М87, снимок которой был обнародован в 2019 году. Учёные верят в то, что это только начало. Интерес к чёрным дырам растёт с каждым днём, уровень техники совершенствуется, и, возможно, в недалёком будущем подобные снимки получится делать чаще, и они будут всё более и более качественными.

Это позволит детальнее изучить ее и понять, как рождается излучение в ее окрестностях, невидимых для EHT. Год назад участники проекта EHT получили первые снимки той зоны, где рождается излучение черной дыры, и раскрыли несколько ее неожиданных особенностей, в том числе предполагаемую асимметричность. Ученым удалось удвоить разрешение и очистить данные от помех, возникающих из-за рассеяния радиоволн внутри плотных облаков из межзвездного газа и пыли, закрывающих центр Галактики от взора наблюдателей на Земле. Подобное открытие противоречит популярной сегодня теории о том, что почти все видимое излучение, вырабатываемое сверхмассивными черными дырами, рождается внутри джетов.

Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А*

Оба показывают яркость на южном конце одной струи, которая, по мнению исследователей, является радиоядром. Разрешение изображений было достаточно высоким, чтобы были видны два компонента ядра. Источник: Phys. Любите космос?

Посмотрите, какие странности он в себе таит: 25фотографий.

В 1915 году Эйнштейн опубликовал теорию общей теории относительности, удивительно успешную теорию гравитации, которая вытеснила концепцию Ньютона «таинственное действие на расстоянии» с новым подходом к геометрии пространства-времени. Вместо того, чтобы рассматривать объекты, притягиваемые к другой массе силой гравитации, общая теория относительности описывает способ, которым масса и энергия деформируют пространство, а объекты, включая свет, просто следуют контурам искривленного пространства. Общая аналогия - представить батут или матрас с шаром для боулинга, вызывающим углубление на окружающей поверхности, в то время как движущийся рядом мрамор следует по пути наименьшего сопротивления и спирали внутрь. Перефразируя физика Джеймса Уилера: «искривленное пространство говорит материи, как двигаться, в то время как материя говорит пространству, как изгибаться». Концепция проста и изящна, но математика для решения конкретных задач устрашает.

Через год после публикации Эйнштейн был удивлен, получив письмо от молодого математика Карла Шварцшильда, который тогда находился на российском фронте Первой мировой войны, в котором было дано точное решение общих уравнений относительности для сферической массы достаточного веса, которая бы заставила пространство-время изгибаться так сильно, что вся материя и свет будут захвачены внутри. Граница, из которой ничто не могло уйти, стала называться «горизонтом событий». Эйнштейн поздравил Шварцшильда с его математическим достижением, но утверждал, что таких объектов на самом деле не существует. Вселенная не должна содержать все явления, которые соответствуют уравнениям теории. Немногие физики взялись за этот вопрос, но в 1939 году Роберт Оппенгеймер и Хартленд Снайдер рассчитали, как массивная звезда, лишенная ядерного топлива, будет бесконечно взрываться до точки «сингулярности». Ничто, кроме ее гравитационного поля, не будет сохраняться для внешних наблюдателей.

Уникальные свойства черной дыры продолжают оставаться предметом изучения великих умов теоретической физики. Общая теория относительности описывает материю и пространство в большом масштабе, в то время как квантовая механика описывает свойства очень малых с выдающейся предсказательной силой. Но эти две теории имеют фундаментальные различия в своих математических основах, включая саму природу пространства, что делает их несовместимыми везде, где они оба необходимы для описания реальности. Это существо, где интенсивная масса ограничена крошечными пространствами. Два места, где происходит это столкновение теорий, находятся в начале вселенной большого взрыва и в черных дырах. Общая теория относительности предсказывает, что ничто не остановит коллапс до сингулярности звезды, более чем в десять раз превышающей массу Солнца, когда оно исчерпало внешнее давление своего ядерного синтеза.

И ничто не остановит падение неосторожного космического путешественника, когда он упадет в черную дыру. Но может ли вселенная действительно иметь массовый контракт с бесконечно малой точкой? Многие ученые надеются, что возможная теория квантовой гравитации покажет, что такая особенность предотвращена. Поиски этой теории остаются одной из величайших задач современной физики. Первое «обнаружение» черной дыры произошло не от ее непосредственного наблюдения, а от анализа ее взаимодействия с соседними звездами. Более десяти лет, начиная с 1960-х годов, усовершенствования в орбитальных рентгеновских обсерваториях предоставили подробную информацию о мощном источнике рентгеновских лучей, названном Cygnus X-1.

Было установлено, что оптически видимая звезда вращается вокруг оптически темного спутника, который был источником рентгеновского излучения.

The aim of the project is to combine the real world and the digital, using street art. We want to show that the same street art equally exists in different forms. The collection is divided into three gradations, depending on the rarity.

Исследователи полагают, что наблюдение поможет понять сложную физику и необычную яркость этих объектов. Изображение : Jorstad et al. Считается, что это активные ядра галактик , которые находятся на начальном этапе развития.

В этот момент сверхмассивная черная дыра в центре такого активного ядра поглощает окружающее вещество, формируя аккреционный диск. Это подтип блазара — активного галактического ядра с мощной релятивистской струей или джетом, направленным в сторону наблюдателя.

Астрономы впервые измерили магнитное поле в окрестностях сверхмассивной черной дыры

View a PDF of the paper titled First M87 Event Horizon Telescope Results. это глобальная сеть из радиотелескопов, которые работая вместе достигают очень высокого углового разрешения, что позволяет увидеть детали вокруг сверхмассивных черных дыр. Мини-печень вместо большой. Крупнейшая цифровая камера. Новости QWERTY №295. По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» (Event Horizon Telescope) — телескопы восьми обсерваторий на разных. Телескоп горизонта событий (англ. Event Horizon Telescope, EHT) — проект по созданию большого массива телескопов.

Похожие новости:

Оцените статью
Добавить комментарий