Новости применение искусственного интеллекта в медицине

В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи.

Национальная база медицинских знаний

Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи. — Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность? — Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность? Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении.

Технология мРНК

  • Обзор Российских систем искусственного интеллекта для здравоохранения
  • Доктор нейросеть: что умеет искусственный интеллект в медицине - Ведомости.Город
  • Искусственный интеллект создал новое лекарство всего за 21 день -
  • Третье Мнение - искусственный интеллект в здравоохранении

Применение искусственного интеллекта в московском здравоохранении

Доктор нейросеть: что умеет искусственный интеллект в медицине - Ведомости.Город Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ ИИ может быть недостоверным в своих заключениях, кроме того, использование искусственного интеллекта в медицине может противоречить установленным этическим нормам и нарушать конфиденциальность пациентов.
Применение искусственного интеллекта в медицине | ComNews Как присутствие искусственного интеллекта влияет на современную российскую медицину?
Полная роботизация: как искусственный интеллект помогает врачам Искусственный интеллект на рынке медицины прогнозируемая нехватка врачей и специалистов в единицах, США, 2032 г.

Искусственный интеллект в медицине

Инвестиции в генеративный ИИ стремительно растут. Несмотря на снижение общих частных инвестиций в ИИ в прошлом году, финансирование генеративного ИИ резко выросло, увеличившись по сравнению с 2022 годом и достигнув 25,2 млрд долларов. ИИ повышает производительность труда сотрудников. В 2023 году в нескольких исследованиях оценивалось влияние ИИ на труд, и было высказано предположение, что ИИ позволяет работникам быстрее выполнять задачи и повышать качество своей продукции. Эти исследования также продемонстрировали потенциал ИИ для преодоления разрыва в навыках между низкоквалифицированными и высококвалифицированными работниками. Благодаря искусственному интеллекту научный прогресс ускоряется еще сильнее. В 2022 году ИИ начал ускорять научные открытия. Однако в 2023 году были запущены еще более значимые приложения искусственного интеллекта, связанные с наукой, — от AlphaDev, который делает алгоритмическую сортировку более эффективной, до GNoME, который облегчает процесс обнаружения материалов.

Одним из ключевых направлений стратегии является развитие рынка программных продуктов на основе ИИ для здравоохранения нашей страны. В настоящее время мы нашли информацию о 65 разнообразных ИИ-системах для медицины и здравоохранения, созданных и продвигаемых на рынке нашей страны.

Условно существующие продукты можно объединить в несколько основных групп: Анализ медицинских изображений и цифровая диагностика Профилактика и лечение состояний, заболеваний и осложнений Прочие направления.

Она выделяет проблемные места на снимках цветами, умеет виртуально корректировать расположение будущих протезов, воссоздавать 3D-модель челюсти. Искусственный интеллект может помнить десятки тысяч диагнозов. Но программная ошибка, как и человеческая, не исключена. С каждым годом все меньше и меньше ошибок и все больше и больше диагнозов. В начале 2019 года, конечно, кариес выявлять не мог. А сейчас он может кариес выявлять: на какой поверхности, насколько глубоко", — рассказал Наам.

Нейросети помогают стоматологам, хирургам, онкологам — словом, в каждом направлении медицины есть искусственный интеллект. Один из самых необычных используют в Краснодаре. Там алгоритм оценивает эмбрионы для трансплантации будущим мамам. Оценивает плод нейросеть в течение пяти дней. Алгоритм ведет съемку зародышей каждые десять минут. В отличие от традиционного метода, вынимать эмбрионы из инкубатора не нужно.

Несмотря на проценты, решающее слово в лечении за врачом и пациентом. Нейросеть сегодня — лишь помощник медика. Она выделяет проблемные места на снимках цветами, умеет виртуально корректировать расположение будущих протезов, воссоздавать 3D-модель челюсти. Искусственный интеллект может помнить десятки тысяч диагнозов. Но программная ошибка, как и человеческая, не исключена. С каждым годом все меньше и меньше ошибок и все больше и больше диагнозов. В начале 2019 года, конечно, кариес выявлять не мог. А сейчас он может кариес выявлять: на какой поверхности, насколько глубоко", — рассказал Наам. Нейросети помогают стоматологам, хирургам, онкологам — словом, в каждом направлении медицины есть искусственный интеллект. Один из самых необычных используют в Краснодаре. Там алгоритм оценивает эмбрионы для трансплантации будущим мамам. Оценивает плод нейросеть в течение пяти дней.

Применение искусственного интеллекта в московском здравоохранении

Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике. Отдельно будут рассмотрены современные технологические решения для практического здравоохранения и превентивной медицины: информационные системы сбора и анализа медицинских данных, облачные хранилища, мобильные приложения и веб-сервисы для врачей и пациентов. Участие в конференции бесплатное.

Это тяжелое заболевание, сопровождающееся рубцеванием легких, от которого страдают в основном пожилые люди. ИИ исследовал массив данных о фиброзе дыхательных путей с целью найти белок, отвечающий за заболевание. Когда белок был найден, нейросеть приступила к синтезированию молекулы, которая бы эффективно боролась с недугом. Препарат от ИЛФ прошел первую стадию клинических исследований, и его уже испытали на добровольцах. Столичные алгоритмы По данным Национального центра развития ИИ при правительстве РФ, Россия занимает лидирующие позиции в мире по разработке и внедрению ИИ в здравоохранении. Значительную роль в этом сыграл московский опыт внедрения ИИ в здравоохранение.

Как рассказали «Ведомости. Городу» в столичном депздраве, сегодня в Москве реализуются четыре крупнейших проекта использования ИИ в здравоохранении. Компьютерные алгоритмы находят патологии уже по 21 клиническому направлению. Нейросети помогают врачам определять на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, а также рака молочной железы, грыж позвоночника, артроза, плоскостопия и других заболеваний. О совершенно новой области применения ИИ в московском здравоохранении «Ведомости. Городу» рассказала заммэра по вопросам социального развития Анастасия Ракова. Это опасное неврологическое заболевание обычно начинает развиваться в молодом возрасте и со временем может привести к тяжелой инвалидности. Технологии ИИ позволят медикам повысить скорость и точность его диагностики на МРТ головного мозга», — объяснила Ракова.

Алгоритмы отмечают области возможных патологий цветовыми подсказками и ранжируют медицинские снимки по степени вероятности патологии. Окончательный диагноз в любом случае ставит врач, но технологии значительно ускоряют постановку диагноза и повышают его точность. На сегодняшний момент нейросети обработали уже больше 9 млн лучевых исследований пациентов.

Другим применением искусственного интеллекта является прогнозирование результатов лечения. Системы ИИ могут анализировать исторические данные о лечении пациентов и предсказывать вероятность успеха лечения для конкретного пациента.

Это позволяет врачам принимать более обоснованные решения и выбирать оптимальные лечебные стратегии. Еще одной областью применения искусственного интеллекта является персонализированная медицина. Системы ИИ могут анализировать генетические данные пациентов, учитывать их индивидуальные особенности и предлагать персонализированные подходы к диагностике и лечению. Это позволяет более точно определить риск развития заболеваний, выбрать наиболее эффективные лекарственные препараты и предотвратить нежелательные побочные эффекты.

Сервис анализирует данные ЭМК пациента за последние два года и сигнализирует врачу, если мнения с ИИ разошлись.

В обоих случаях ИИ выступает помощником, окончательное решение остается за врачом. Вся информация, все снимки, загруженные в электронную медицинскую карту пациента, могут стать частью «обучающей программы» для искусственного интеллекта. ИИ не нужен отдых, сон, он не болеет и не устает. Поэтому в алгоритмизированных задачах он может превзойти человека. Как калькулятор, автоматическая линейка.

Это продвинутые математические системы, способные мгновенно или за считаные минуты обрабатывать данные и выдавать стабильно точный результат. Также способность ИИ анализировать гигантские объемы данных позволит учитывать влияние неочевидных факторов на развитие рисков и заболеваний. То, что недоступно возможностям человека в условиях временных ограничений. ИИ может в считаные минуты обрабатывать полный объем данных и просчитать все взаимосвязи, учесть ретроспективные данные. Однако эффективная работа ИИ возможна только в результате совместных усилий ученых, экспертного врачебного сообщества и разработчиков.

Последнее слово будет оставаться за врачом. Это позволит держать работу ИИ под контролем, объективно оценивать алгоритмы и видеть потенциал развития. На основе медицинской истории пациента, данных о его образе жизни формируется цифровой двойник пациента. Это позволит перейти от всеобщей унификации к персонализированному здравоохранению. Извлечь ценность из этих данных можно при помощи ИИ.

ИИ-помощники смогут формировать необходимый набор профилактических мер, обследований для конкретного пациента, назначения, исходя не из установленных стандартов, а индивидуальные, в том числе учитывая резистентность к лекарственным препаратам, аллергоанамнез пациента и другие важные индивидуальные особенности. ИИ сможет освободить, с одной стороны, врача от рутины, а с другой стороны — стать персонализированным помощником для пациентов. Умным и эмпатичным, который сможет ответить на определенные вопросы, помочь подготовиться к исследованиям, оптимизировать прием препаратов. ИИ станет помощником в проактивном выявлении рисков развития заболевания и диагностировать болезнь не на стадии ее проявления или обострения, а заранее выявить риск и сформировать набор мер для предотвращения ее развития. В будущем сервисы ИИ могут стать «младшим научным сотрудником», помогая врачам и ученым в научных и клинических исследованиях.

Все мы хотим меньше соприкасаться с системой здравоохранения, переживать о своем здоровье, а если все же пришлось — получить быстрый, искренний и качественный сервис. Врачи, со своей стороны, хотят заниматься лечением, а не административными вопросами, избавиться от рутины. В этих целях мы и пробуем применять ИИ — он не склонен к профессиональному выгоранию и готов круглосуточно выполнять рутинные операции. Какие риски могут возникнуть при использовании ИИ в медицине? Внедрение новой технологии всегда ставит на первый план вопросы безопасности и этики.

Комплексный анализ работы сервисов ИИ в медицине провели в Москве

Программа конференции подробно отразит все современные возможности применения информационных технологий в биомедицинских исследованиях и клинической деятельности. Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике. Отдельно будут рассмотрены современные технологические решения для практического здравоохранения и превентивной медицины: информационные системы сбора и анализа медицинских данных, облачные хранилища, мобильные приложения и веб-сервисы для врачей и пациентов.

Эти технологии дали возможность выполнять автоматизированное машинное обучение с высокой точностью получаемых моделей, что в свою очередь открыло многочисленные примеры успешной автоматизации процессов и перспектив цифровой трансформации с возможностью сокращения затрат на здравоохранение. В последние годы мы наблюдаем постоянный венчурного инвестирования в медицинские стартапы, использующие технологии искусственного интеллекта.

По данным CB Insights , интерес инвесторов к этому рынку является одним из самых высоких среди всех направлений цифрового здравоохранения. В 2021 г.

В России важным фактором сдерживания развития ИИ-медицины, является недостаток финансирования, ограниченный доступ к высокотехнологичному оборудованию, а также недостаточная масштабность проектов. Тем не менее, Россия продолжает развивать эту сферу и прилагает усилия для преодоления препятствий. Вместе с тем, нужно отметить, что эта область относительно новая и ее развитие может занять много времени и усилий. Риски использования ИИ и нейросетей в области здравоохранения ИИ может «подсказать» неправильный диагноз, особенно если модель была обучена на неполных или неточных данных. Если искусственный интеллект используется неправильно или алгоритмы машинного обучения неправильно обучены, то они могут привести к опасным ошибкам, которые нанесут вред пациентам.

Возникают и морально-нравственные аспекты — кто несет ответственность за принятое и непринятое решение. Эта проблема рождается в самом алгоритме: он гибкий и критерий «не навреди» не всегда самый быстрый или дешевый способ лечения пациента. Разработчики могут установить параметры для системы, которые не совпадают с медицинской этикой и это также может повредить здоровью пациентов. Вопрос потери конфиденциальности тоже стоит довольно остро — данные пациента должны быть защищены от несанкционированного доступа, а использование ИИ в медицине может невольно повысить риск утечки личной информации. Еще одна проблема — неуместное лечение. Может возникнуть ситуация, когда ИИ предлагает протокол, который не подходит пациенту или его приоритетному заболеванию, что может привести к серьезным последствиям. Алгоритмы ИИ могут быть недостаточно точными в отношении определенных групп пациентов, таких как дети, пожилые люди и беременные женщины.

Наконец, использование ИИ может создать зависимость от технологии и уменьшить важность роли врача в лечебном процессе или даже вызвать что-то новое — типа «киосков самолечения». Перспективы ИИ-медицины Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике. Нейросети и другие формы ИИ используются для диагностики, лечения и прогнозирования различных заболеваний.

В ближайшие годы ИИ станет базовой медицинской технологией столицы.

Специалисты получат надежных цифровых помощников, уйдет в прошлое бумажная рутина, врачи будут пользоваться проактивным подходом, когда нейросети будут подсвечивать риски возникновения у пациентов различных болезней. Также в ближайшем будущем обычной практикой станет телемедицина. Большинство проблем со здоровьем пациенты смогут решать без личного посещения врача.

Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований

Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи. Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Искусственный интеллект помогает в диагностике болезней и назначении оптимального лечения, а также напоминает выпить таблетку и угрожает безработицей.

Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований

Виртуальная реальность и обучение: технологии виртуальной реальности VR и дополненной реальности AR , интегрированные с ИИ, могут служить мощными инструментами для обучения молодых врачей и хирургов, предлагая им возможность тренироваться в виртуальной среде перед реальной операцией. Ограничения и риски, связанные с применением ИИ в медицине Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Сюда входят вопросы конфиденциальности и безопасности данных, а также потенциальные ошибки в диагностировании или лечении, вызванные ошибками алгоритмов ИИ. Большой вопрос также представляет собой интеграция новых технологий в существующие медицинские системы и обеспечение подготовки персонала к работе с новыми инструментами. Конфиденциальность данных: с учетом того, что ИИ обрабатывает большое количество личной медицинской информации, вопросы конфиденциальности данных становятся крайне актуальными.

Необходимо выработать регламент для защиты приватности пациентов. Недостаточная точность и ошибки в диагностике: в настоящее время алгоритмы ИИ могут допускать ошибки, иногда весьма серьезные, в диагностике и предсказании болезней. Это создает потенциальные риски для пациентов и требует дальнейшего усовершенствования технологий. Зависимость от качества данных: эффективность ИИ во многом зависит от качества и объема входных данных.

Плохие или неадекватные данные могут привести к неточным или даже опасным выводам. Юридическая ответственность: определение юридической ответственности в случае ошибок или недочетов, связанных с использованием ИИ, остается сложным вопросом. Это создает правовую неопределенность и потенциальные риски для медицинских учреждений. Сопротивление со стороны медицинского сообщества: некоторые врачи и медицинские работники могут испытывать сопротивление новым технологиям, возможно, из-за опасений относительно замещения человеческого труда или потери профессиональной автономии.

Необходимость обучения и адаптации: для эффективного внедрения ИИ необходимо обучение медицинского персонала работе с новыми технологиями, что может занять значительное время и ресурсы.

Название происходит от четырёх английских слов, начинающихся с буквы П: персонализация, прогнозирование, профилактика и преемственность Инфографика: Skillbox Media — Что из этого было реализовано в «Джейн»? Мы взяли базу РЛС, распарсили и ввели в систему. Так у «Джейн» появились знания о показаниях, противопоказаниях и побочных явлениях приёма лекарственных средств. Далее врач, когда решал, какой препарат назначить, давал алгоритму задание: «Подбери лекарство для этого ребёнка». И система рассчитывала интегральный показатель для каждого вещества, который показывал степень риска приёма средства для конкретного пациента.

Вещества, которые могут ухудшить состояние больного, компьютер подсветит красным. Более того, лекарственные средства взаимодействуют друг с другом. Если врач попытается назначить несовместимые препараты, то «Джейн» и об этом просигнализирует. Так алгоритм подбирает лекарство, наилучшим образом подходящее конкретному пациенту. Это наглядный пример персонализированной медицины. Её можно модифицировать под другие болезни, не только для эпилепсии?

Это отдельный модуль, который был встроен в «Джейн» и работал очень успешно. Кстати, им пользовались не только неврологи, но и врачи других специализаций. Как «Джейн» помогала предсказать приступы эпилепсии — Из каких частей состояла «Джейн»? Перечислю основные модули: диагностика; разработка плана лечения и подбор лекарств; контроль принятия лекарств; Также был дневник пациента. Поскольку эпилепсия требует пристального внимания к состоянию пациента, были необходимы инструменты контроля. Сегодня все системы делаются с веб-доступом.

Я не могу себе представить стационарную программу такого рода, которую нужно было бы устанавливать как отдельное приложение. Естественно, «Джейн» тоже имела веб-доступ, а чат-бот — это просто дополнительный интерфейс к базе данных, в которой аккумулировались данные о пациенте — история болезни, жизненные показатели, дневник наблюдений и так далее. Если назначены какие-то антиэпилептические вещества, то их надо принимать ровно так, как назначено, буквально минута в минуту. Любой пропуск — риск для жизни. И соответствующий модуль «Джейн» как раз напоминал ребёнку или его родителям о том, что прямо сейчас надо выпить ту или иную таблетку. И в качестве подтверждения требовал нажатия соответствующей кнопки на экране смартфона.

То есть осуществляла поиск скрытых закономерностей. Например, у одного ребёнка «Джейн» выявила жёсткую причинно-следственную зависимость между фазами Луны и обострениями болезни. Ни родители, ни врачи этой связи не чувствовали и не знали о ней. Они просто отмечали в электронном дневнике дни, в которые происходили приступы. Я, конечно, всё перепроверил, долго копался в научных трудах. И нашёл публикации, в которых учёные отмечали селенозависимость течения эпилепсии у отдельных людей.

Но объяснить её, кстати, медики пока не могут. Зачастую эпилептики — очень метеозависимые люди. Циклолептическое течение эпилепсии встречается довольно часто, и система очень быстро научается прогнозировать интервалы этих циклов. Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует. Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами.

Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания. То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии. Врачи ей пользовались под моим контролем.

В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм. Некоторые приложения для смартфонов используют нейронные сети для мониторинга и контроля приема лекарств, например AiCure заставляет пациента делать селфи-видео во время проглатывания предписанной таблетки.

AiCure контролирует прием лекарства Алгоритмы, основанные на том, как повышаются или понижаются значения глюкозы, используются пациентами с диабетом. Они помогли предотвратить эпизоды гипогликемии. Таким образом, распространенные хронические состояния, такие как гипертония, депрессия и астма, теоретически можно лучше контролировать с помощью приложений. Проблемы и ограничения Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных. Существует риск выявления конфиденциальных данных пациента из истории болезни.

А возможность через приложение связать Watson и фитнес-трекер позволяет отслеживать даже самые незначительные изменения состояния здоровья пациента. Freepik Но диагностика не единственная сфера медицины, куда сегодня проник ИИ. Это, например, поиск перспективных молекул для определенных рецепторов, что может предварять открытие новых препаратов», — рассказал «Ведомости. Городу» врач-эксперт Тимур Пестерев. Один из последних примеров — китайская биотехнологическая компания в начале этого года с помощью ИИ придумала лекарство для лечения идиопатического легочного фиброза ИЛФ.

Это тяжелое заболевание, сопровождающееся рубцеванием легких, от которого страдают в основном пожилые люди. ИИ исследовал массив данных о фиброзе дыхательных путей с целью найти белок, отвечающий за заболевание. Когда белок был найден, нейросеть приступила к синтезированию молекулы, которая бы эффективно боролась с недугом. Препарат от ИЛФ прошел первую стадию клинических исследований, и его уже испытали на добровольцах. Столичные алгоритмы По данным Национального центра развития ИИ при правительстве РФ, Россия занимает лидирующие позиции в мире по разработке и внедрению ИИ в здравоохранении.

Значительную роль в этом сыграл московский опыт внедрения ИИ в здравоохранение. Как рассказали «Ведомости. Городу» в столичном депздраве, сегодня в Москве реализуются четыре крупнейших проекта использования ИИ в здравоохранении. Компьютерные алгоритмы находят патологии уже по 21 клиническому направлению. Нейросети помогают врачам определять на снимках лучевых исследований признаки рака легкого, COVID-19, остеопороза позвоночника, аневризмы аорты, ишемической болезни сердца, инсульта, а также рака молочной железы, грыж позвоночника, артроза, плоскостопия и других заболеваний.

О совершенно новой области применения ИИ в московском здравоохранении «Ведомости. Городу» рассказала заммэра по вопросам социального развития Анастасия Ракова.

Искусственный интеллект в медицине: применение и перспективы

Искусственный интеллект (ИИ) помогает врачам ставить верный диагноз и назначать нужные исследования. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Ученые из Сколковского института наук и технологий (Сколтех) занимаются применением методов машинного обучения и искусственного интеллекта в медицине. Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов. Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний.

Правила комментирования

  • Будущее рядом: как нас будет лечить искусственный интеллект? — Реальное время
  • Содержание
  • Хочу убедиться, что мне звонил ВЦИОМ
  • Топ-7 прорывов в медицине в 2023 году
  • Эксперимент по внедрению технологий искусственного интеллекта

Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек

Журналисты приводят данные, согласно которым совокупный экономический эффект от использования искусственного интеллекта в медорганизациях достиг 13 млрд рублей еще в 2021 году. Ученые из Сколковского института наук и технологий (Сколтех) занимаются применением методов машинного обучения и искусственного интеллекта в медицине. Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике. Искусственный интеллект (ИИ) сегодня является инновационной технологией, которая вызвала настоящую революцию в различных отраслях, и медицина не стала. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов.

Нейросеть ииМед спрогнозировала достижения ИИ в медицине к 2030 году. Вот они.

  • Машины лечат людей: как нейросети используют в российской медицине
  • Искусственный интеллект в медицине
  • Обзор Российских систем искусственного интеллекта для здравоохранения
  • Ставит диагнозы и придумывает лекарства

Эксперимент по внедрению технологий искусственного интеллекта

Таким образом, врач тратит меньше времени на сбор жалоб и анамнеза. Сервис был запущен в 2021 г. И четвертый — анализ электрокардиограмм. Все взрослые поликлиники в Москве оснастили цифровыми электрокардиографами с ИИ.

Как сообщала Ракова, с помощью умного помощника терапевты и врачи общей практики уже поставили более 10 млн предварительных диагнозов, из них с начала этого года — более миллиона. Сегодня умные алгоритмы доступны рентгенологам более чем 150 медицинских организаций, в том числе детских. К концу 2023 г.

Недоверие и интерес бизнеса Несмотря на столь массовое внедрение ИИ в столичное здравоохранение, эксперты отмечают несколько принципиальных проблем. Первая, как это ни странно, недоверие не только пациентов, но самих врачей к нейросетям. Об этом, в частности, говорится в докладе АНО «Цифровая экономика» — «Эффективные решения на базе ИИ в здравоохранении», который есть в распоряжении редакции.

Специалисты признают и дефицит кадров, способных эффективно работать со сложными нейросетями. В свою очередь, врач-эксперт Тимур Пестерев считает, что большинство нейросетей имеют достаточно простой в использовании интерфейс. Вы вводите определенные показатели — и нейросеть выдает какие-то вероятности относительно того или иного диагноза.

Нейросеть может указывать на определенные ошибки, подсвечивать места, провисающие в диагностике, по принципу «вы сделали все, но не сделали вот это». Есть, конечно, и более сложные нейросети, пользоваться которыми может только подготовленный человек. Но в целом сейчас нейросети унифицируются», — отметил Пестерев.

По его словам, уровень развития и внедрения ИИ по стране действительно сильно разнится.

На сегодня в мире существует примерно 30 масштабных проектов с использованием искусственного интеллекта, которые работают в этом направлении. Американское управление по санитарному надзору за качеством пищевых продуктов и медикаментов запустило собственный проект, цель которого — на порядки сократить траты на клинические исследования с помощью машинного обучения. ИИ проекта обучен на основе 20 последних лет клинических исследований американских препаратов. По предварительным оценкам, использование искусственного интеллекта и нейросетей поможет сократить инвестиции в создание лекарственных препаратов в четыре раза, а время разработки — в два раза. Клинические испытания требуют крупных инвестиций и могут длиться несколько лет Пока что концерны используют ИИ только как вспомогательный инструмент для синтеза лекарств, проводя все стадии клинических исследований как обычно. Но проекты уже показывают хорошие результаты.

ИИ на службе нутрициологии Успехи искусственного интеллекта в создании вакцин от коронавируса известны всему миру. Компьютерные технологии сократили время разработки результативной вакцины буквально до нескольких месяцев, когда для классических методов исследований требуется минимум год-два. Но на самом деле исследования куда глубже, чем можно представить. И касаются они не только вирусологии, но также профилактической медицины и нутрициологии, для которых анализируют натуральные органические соединения. Их существует десятки миллиардов, поэтому исследования вручную не слишком эффективны. Клинические испытания требуют крупных инвестиций и могут длиться несколько лет. Для разработки нового препарата нужно протестировать на клеточных культурах десятки и сотни химических соединений, которые в дальнейшем нужно будет проверить и на живых организмах.

Из-за этого все фазы клинических испытаний могут занять несколько лет. Компьютерные мощности способны помочь исследователям, значительно ускорив процесс создания новых лекарственных препаратов, а также ощутимо сократить расходы на проведение дорогостоящих клинических испытаний. К примеру, британо-ирландская компания Nuritas использует искусственный интеллект для поиска активных органических соединений, которые в теории можно использовать для лечения и предотвращения болезней. Как утверждают специалисты компании, технология анализа химических соединений с помощью искусственного интеллекта в 600 раз точнее и в десять раз быстрее, чем стандартные методики. Впрочем, без человека пока еще не обойтись.

Врачу остаётся только принять результат и проконтролировать на соответствие установленным требованиям значение, полученное с прибора. Или, если есть необходимость, отправить пробу на повторное исследование". Робот со скальпелем Однако использование роботов в медицине не ограничивается только диагностическими автоматизированными системами. Активно развивается применение искусственного интеллекта и в хирургии. По словам Андрея Наташкина, основателя и СЕО Mirey Robotics, сегодня в рамках общей хирургии уже выделилось отдельное направление — телехирургия. Технология позволяет хирургу управлять роботизированным манипулятором, который способен совершать сверхточные движения. Но здесь есть две опасности. Первая — разрыв интернет—соединения, вторая — это кибератаки. А во время операционного вмешательства эти факторы, которые ведут к потере управления процессом, могут стать фатальными для пациента". По словам эксперта, в связи с этим сейчас на первый план выходит вопрос обеспечения безопасных условий во время операций с использованием роботов, и недавно российские учёные представили своё решение данной проблемы: в условиях возникновения чрезвычайной ситуации манипулятор сможет автономно завершить оперативное вмешательство, без контроля со стороны хирурга.

Как медицинское изделие платформу прогнозной аналитики и управления рисками в здравоохранении зарегистрировали 3 апреля 2020 года. Это первая система ИИ в России, которая способна обработать большой объем информации о пациенте, выявить на основе данных подозрения на заболевания и спрогнозировать возможное ухудшение здоровья. При этом ИИ изучает не только медицинские показатели, но и социальные данные. Платформа формирует цифровой паспорт пациента. Можно сказать, что система заменяет целый консилиум врачей, что позволяет работать быстрее и точнее. В России этой сфере уделяется особое внимание. Несколько проектов уже достигли весомых результатов в использовании ИИ в радиологии. В их число вошли Botkin. Качество работы подтверждает статистика. Например, заммэра Москвы по вопросам социального развития Анастасия Ракова сообщила , что за два года сервисы ИИ обработали более 6 млн лучевых снимков. По ее словам, технологии помогли быстрее описать снимки и заметили мельчайшие отклонения. ИИ хорошо показал себя в медицине, поэтому ученые уже пишут алгоритм, по которому можно будет обнаружить ранние проявления болезни Альцгеймера по результатам МРТ. Еще одним направлением, где применяется искусственный интеллект, стала область семантического анализа. ИИ анализирует и систематизирует данные, содержащиеся в электронной медицинской карте пациента. Ее заполняют сразу несколько врачей: кардиолог, невролог, терапевт и другие. Алгоритм собирает анамнезы воедино, и так специалист может обнаружить определенные паттерны. Метод, при котором медкарта заполнена разными специалистами, а данные собраны воедино, позволяет оптимизировать постановку точного диагноза. Настоящей технологией будущего можно считать роботов-хирургов — это решение на стыке роботизации и ИИ.

Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей

Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. Многие россияне опасаются применения ИИ в медицине.

Похожие новости:

Оцените статью
Добавить комментарий